Browse by Research Project Code
![]() | Up a level |
Teo, Y. V. et al. (2019) Notch signaling mediates secondary senescence. Cell Reports, 27(4), 997-1007.e5. (doi: 10.1016/j.celrep.2019.03.104) (PMID:31018144) (PMCID:PMC6486482)
Cole, J. J. et al. (2017) Diverse interventions that extend mouse lifespan suppress shared age-associated epigenetic changes at critical gene regulatory regions. Genome Biology, 18, 58. (doi: 10.1186/s13059-017-1185-3) (PMID:28351383) (PMCID:PMC5370462)
Wang, T., Tsui, B., Kreisberg, J. F., Robertson, N. A., Gross, A. M., Yu, M. K., Carter, H., Brown-Borg, H. M., Adams, P. D. and Ideker, T. (2017) Epigenetic aging signatures in mice livers are slowed by dwarfism, calorie restriction and rapamycin treatment. Genome Biology, 18, 57. (doi: 10.1186/s13059-017-1186-2) (PMID:28351423) (PMCID:PMC5371228)
Vizioli, M. G. and Adams, P. (2016) Senescence can be BETter without the SASP? Cancer Discovery, 6(6), pp. 576-578. (doi: 10.1158/2159-8290.cd-16-0485) (PMID:27261480)
Pchelintsev, N. A., Adams, P. D. and Nelson, D. M. (2016) Critical parameters for efficient sonication and improved chromatin immunoprecipitation of high molecular weight proteins. PLoS ONE, 11(1), e0148023. (doi: 10.1371/journal.pone.0148023) (PMID:26821228) (PMCID:PMC4731078)
Adams, P. D., Jasper, H. and Rudolph, K. L. (2015) Aging-induced stem cell mutations as drivers for disease and cancer. Cell Stem Cell, 16(6), pp. 601-612. (doi: 10.1016/j.stem.2015.05.002) (PMID:26046760) (PMCID:PMC4509784)
Rai, T. S. et al. (2014) HIRA orchestrates a dynamic chromatin landscape in senescence and is required for suppression of neoplasia. Genes and Development, 28(24), pp. 2712-2725. (doi: 10.1101/gad.247528.114) (PMID:25512559) (PMCID:PMC4265675)
Ivanov, A. et al. (2013) Lysosome-mediated processing of chromatin in senescence. Journal of Cell Biology, 202(1), pp. 129-143. (doi: 10.1083/jcb.201212110) (PMID:23816621) (PMCID:PMC3704985)
Pchelintsev, N.A., McBryan, T., Rai, T.S., van Tuyn, J., Ray-Gallet, D., Almouzni, G. and Adams, P.D. (2013) Placing the HIRA histone chaperone complex in the chromatin landscape. Cell Reports, 3(4), pp. 1012-1019. (doi: 10.1016/j.celrep.2013.03.026) (PMID:23602572) (PMCID:PMC3974909)
Tang, Y., Puri, A., Ricketts, M.D., Rai, T.S., Hoffmann, J., Hoi, E., Adams, P.D., Schultz, D.C. and Marmorstein, R. (2012) Identification of an ubinuclein 1 region required for stability and function of the human HIRA/UBN1/CABIN1/ASF1a histone H3.3 chaperone complex. Biochemistry, 51(12), pp. 2366-2377. (doi: 10.1021/bi300050b)
Ray-Gallet, D. et al. (2011) Dynamics of histone H3 deposition in vivo reveal a nucleosome gap-filling mechanism for H3.3 to maintain chromatin integrity. Molecular Cell, 44(6), pp. 928-941. (doi: 10.1016/j.molcel.2011.12.006)
Kennedy, A.L., McBryan, A., Enders, G.H., Johnson, F.B., Zhang, R. and Adams, P.D., (2010) Senescent mouse cells fail to overtly regulate the HIRA histone chaperone and do not form robust Senescence Associated Heterochromatin Foci. Cell Division, 5(16), (doi: 10.1186/1747-1028-5-16) (PMID:20569479) (PMCID:PMC2904742)