A shallow autoencoder framework for epileptic seizure detection in EEG signal

Khan, G. H., Khan, N. A., Bin Altaf, M. A. and Abbasi, Q. (2023) A shallow autoencoder framework for epileptic seizure detection in EEG signal. Sensors, 23(8), 4112. (doi: 10.3390/s23084112)

[img] Text
296613.pdf - Published Version
Available under License Creative Commons Attribution.

15MB

Abstract

This paper presents a trainable hybrid approach involving a shallow autoencoder (AE) and a conventional classifier for epileptic seizure detection. The signal segments of a channel of electroencephalogram (EEG) (EEG epochs) are classified as epileptic and non-epileptic by employing its encoded AE representation as a feature vector. Analysis on a single channel-basis and the low computational complexity of the algorithm allow its use in body sensor networks and wearable devices using one or few EEG channels for wearing comfort. This enables the extended diagnosis and monitoring of epileptic patients at home. The encoded representation of EEG signal segments is obtained based on training the shallow AE to minimize the signal reconstruction error. Extensive experimentation with classifiers has led us to propose two versions of our hybrid method: (a) one yielding the best classification performance compared to the reported methods using the k-nearest neighbor (kNN) classifier and (b) the second with a hardware-friendly architecture and yet with the best classification performance compared to other reported methods in this category using a support-vector machine (SVM) classifier. The algorithm is evaluated on the Children’s Hospital Boston, Massachusetts Institute of Technology (CHB-MIT), and University of Bonn EEG datasets. The proposed method achieves 98.85% accuracy, 99.29% sensitivity, and 98.86% specificity on the CHB-MIT dataset using the kNN classifier. The best figures using the SVM classifier for accuracy, sensitivity, and specificity are 99.19%, 96.10%, and 99.19%, respectively. Our experiments establish the superiority of using an AE approach with a shallow architecture to generate a low-dimensionality yet effective EEG signal representation capable of high-performance abnormal seizure activity detection at a single-channel EEG level and with a fine granularity of 1 s EEG epochs.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Abbasi, Professor Qammer
Authors: Khan, G. H., Khan, N. A., Bin Altaf, M. A., and Abbasi, Q.
College/School:College of Science and Engineering > School of Engineering > Electronics and Nanoscale Engineering
Journal Name:Sensors
Publisher:MDPI
ISSN:1424-8220
ISSN (Online):1424-8220
Published Online:19 April 2023
Copyright Holders:Copyright © 2023 by the authors
First Published:First published in Sensors 23(8):4112
Publisher Policy:Reproduced under a Creative Commons license

University Staff: Request a correction | Enlighten Editors: Update this record

Project CodeAward NoProject NamePrincipal InvestigatorFunder's NameFunder RefLead Dept
307826COG-MHEAR: Towards cognitiveky-inspired 5G-IoT enabled, multi-modal Hearing AidsQammer H AbbasiEngineering and Physical Sciences Research Council (EPSRC)EP/T021063/1ENG - Systems Power & Energy