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Abstract: This paper presents a trainable hybrid approach involving a shallow autoencoder (AE)
and a conventional classifier for epileptic seizure detection. The signal segments of a channel of
electroencephalogram (EEG) (EEG epochs) are classified as epileptic and non-epileptic by employing
its encoded AE representation as a feature vector. Analysis on a single channel-basis and the low
computational complexity of the algorithm allow its use in body sensor networks and wearable
devices using one or few EEG channels for wearing comfort. This enables the extended diagnosis
and monitoring of epileptic patients at home. The encoded representation of EEG signal segments is
obtained based on training the shallow AE to minimize the signal reconstruction error. Extensive
experimentation with classifiers has led us to propose two versions of our hybrid method: (a) one
yielding the best classification performance compared to the reported methods using the k-nearest
neighbor (kNN) classifier and (b) the second with a hardware-friendly architecture and yet with
the best classification performance compared to other reported methods in this category using a
support-vector machine (SVM) classifier. The algorithm is evaluated on the Children’s Hospital
Boston, Massachusetts Institute of Technology (CHB-MIT), and University of Bonn EEG datasets.
The proposed method achieves 98.85% accuracy, 99.29% sensitivity, and 98.86% specificity on the
CHB-MIT dataset using the kNN classifier. The best figures using the SVM classifier for accuracy,
sensitivity, and specificity are 99.19%, 96.10%, and 99.19%, respectively. Our experiments establish the
superiority of using an AE approach with a shallow architecture to generate a low-dimensionality yet
effective EEG signal representation capable of high-performance abnormal seizure activity detection
at a single-channel EEG level and with a fine granularity of 1 s EEG epochs.

Keywords: autoencoder; EEG classification; epilepsy; seizure detection

1. Introduction

Epilepsy is the second most probable neural disease of the brain according to the
WHO, affecting more than 50 million people worldwide. It is the most severe chronic
neurological disorder of the central nervous system and is characterized by repeated
unprovoked seizures [1,2]. Epileptic seizures can cause severe upheaval in the emotions,
behavior, and consciousness of patients and can lead to severe injury or even death [3,4].

Electroencephalograms (EEG) are a conventional and relatively inexpensive method
for the detection and diagnosis of epilepsy [5]. Epileptic seizure detection in EEG signals
involves recognizing brain abnormalities that distinguish normal activities (non-ictal) from
unusual ones (seizure) [6]. Seizures are usually detected by the visual analysis of EEG
signals by neurologists [6]. However, EEG signals demand neurology professionals for
the visual assessment of long-duration EEG recordings, which is extremely laborious [7].
The accurate detection of these disorders requires us to develop an efficient algorithm to
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capture brain abnormalities associated with epileptic seizures in the scalp EEG signals to
support clinicians. This will help to minimize human efforts and error [8].

Various algorithms have been developed in recent studies on automatic seizure de-
tection using multi-channel [9] and single-channel EEGs [10]. Hardware implementations
for real-time seizure detection in wearable EEG devices are also advancing fast [11]. The
constant monitoring of epileptic patients is indispensable to prevent the serious outcomes
that can be caused by seizures. In consequence of these requirements, wearable EEG
devices integrated with epileptic seizure detection algorithms have become essential for
health management systems. Moreover, these methodologies have led to the proposal of
patient-specific algorithms [12] and patient-independent methods [13].

The main contribution of our paper is that it proposes a low-complexity, high-performance
seizure detection approach that is based on single-channel analysis. In contrast to other ap-
proaches, our approach allows abnormal seizure activity identification at the channel level.
It out-competes existing approaches not only in these respects but also due to its suitability
of use in wearable devices by minimizing the number of channels. Furthermore, our hybrid
approach does not involve the use of traditional features, which are laborious to select. In con-
trast, it uses the low-dimensional encoded representation of the signal generated by training
a shallow autoencoder (AE) by minimizing the reconstruction error of the decoded signal.
This encoded representation is effectively classified by a conventional classifier. We report
two algorithms based on our experiments: (a) one with the best classification performance
compared to the reported methods and (b) another one with the best performance compared
to single-channel approaches but of the lowest reported computational complexity. We have
presented extensive results on two datasets using different AE hidden sizes with several
classifiers. Furthermore, our approach successfully compiles most of the powerful features of
the different approaches into a single approach.

The following section describes the recent advancements in seizure detection. The
design methodology of the work is presented in Section 3. Section 4 discusses the algorithm
of the proposed method. A brief overview of the experimental setup along with the
method’s classification performance and computational complexity is presented in Section 5.
Concluding remarks are addressed in Section 6.

2. Related Works

Numerous algorithms have been proposed in the literature for classifying EEG data
as epileptic or non-epileptic. Figure 1 depicts a general overview of the main components
of these methodologies. Seizure detection methods can be mainly categorized into two
classes. The first one relates to conventional classification methods computing statistical
features along with machine learning tools for classification. The second one corresponds
to deep learning models using artificial neural networks. Both multi-channel and single-
channel approaches are reviewed. A short review of recent preprocessing methods is also
provided below.

2.1. Preprocessing Methods

EEG signals are preprocessed to improve the quality and reliability of the data. Prepro-
cessing techniques are used to remove or reduce the artifacts and enhance the underlying
neural activity in the signal. This may involve filtering out unwanted frequencies, removing
or correcting for artifacts, and re-referencing the signal to a common reference electrode.
Moreover, the preprocessing steps may include segmentation of the signal into epochs,
artifact rejection, baseline correction, and normalization of the data. EEG signals are often
contaminated with various artifacts, including muscle activity and eye movements, which
can make it difficult to extract meaningful information from the signal [14]. An EEG signal
artifact detection methodology was developed in [14]. This study offers a novel technique
for automatically identifying muscle and eyeblink artifacts from EEG data using a kNN
classifier and subsequently eliminating them using a long short-term memory (LSTM) net-
work. A baseline removal approach was developed in [15]. The suggested approach in this
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article is the InvBase method, which aims to eliminate the baseline power prior to feature
extraction to ensure that the extracted features remain consistent across different subjects.
Moreover, polar projection- and fast Fourier transform (FFT)-based data transformation
have also been addressed as a preprocessing step for EEG classification [16]. Normalization
of the EEG signal before using it for abnormal activity identification has also been proposed
in the literature [17]. Additionally, some existing approaches use raw EEG data directly
without any preprocessing [18,19].

Figure 1. A general overview of seizure detection methods.

2.2. Classification Methods—Conventional

Overall, the detection of epileptic seizures using conventional techniques has three
subdivisions, as shown in Figure 1. Most of these techniques compute statistical features
from multi-channel EEG data [4,8] represented in the time domain, frequency domain or
time-frequency domain. These features include min-max histogram [8], energy, entropy,
and the variance coefficient, along with others [20]. Signal enhancement methods, such as
common spatial patterns (CSP), and dimensionality reduction techniques, such as principal
component analysis (PCA), are extensively used to fine-tune the features [6]. Spectral
and temporal feature computation using scattering transform (ST) and discrete wavelet
transforms (DWT) have also been addressed for seizure detection [21,22]. Ramanujan
periodic subspace (RPS) [23] and empirical mode decomposition (EMD) [24] have also
been proposed. The selection of EEG electrodes through adaptive ranking or manual
choice has also been proposed for performance improvement [2]. The optimal selection of
the customized features along with feature ranking has also been discussed in previous
approaches to enable the classifier to demonstrate better learning [4,8]. This phenomenon
also adds complexities to the system and demands more resources. Seizure detection based
on the direct use of compressively sensed EEG data was proposed in [25]. However, the
authors used Lomb–Scargle periodograms (LSP) to extract the spectral energy features
of the compressed data, which adds extra computations to the process. A generalized
autoregressive conditional heteroscedasticity (GARCH) model was proposed in [26] to
determine the hidden properties in epileptiform EEGs. Confidence intervals were created
using the delta and asymptotic method to compare the half-lives to determine the volatility
attributes of seizure and non-seizure intracranial EEG data.

These features can be used as input for machine learning classifiers to categorize
the data into different classes. Machine learning algorithms such as kNN, SVM, linear
discriminant analysis (LDA), quadratic discriminant analysis (QDA), decision tree (DT),
random forest (RF), and the naive Bayes (NB) classifier are mostly used to categorize
the data.
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The above approaches vary in number of channels from 8 to 23 [27,28]. Various single-
channel approaches have also been proposed. Ref. [17] used compressively sensed EEG
data directly for classification, but segment-level results were not provided. Ref. [25]
performed seizure detection based on partially reconstructed EEG data from compressively
sensed data using orthogonal matching pursuit (OMP). The approach utilizes the energy
features of the reconstructed signal for two different compression ratios. Results were
presented for signals with compression ratios of 0.05 (1:20), 0.1 (1:10), and 0.2 (1:5). Though
the involved compression ratios are high, the reported classification performances are low.
The computational cost is also high. Wavelet-based features of single-channel EEG data
are presented in [22,29]. However, the classification performance of all these approaches is
quite low, and significant improvements are essential for real-life applications.

Conventional methods have also been implemented in hardware. Both multi-channel
and single-channel approaches have been adopted. Examples of hardware modules based
on multi-channel approaches are [11,30]. They use statistical features, non-linear compu-
tations [11], and wavelets [30] with considerable computational cost. A single-channel
epileptic seizure detection ASIC design was discussed in [10]. Ten sub-band FIR filters
with a band energy feature were used for an SVM classifier. A significant area reduction
was reported, along with low power consumption; however, the classification performance
needs to be improved.

Finally, it should be noted that wearable health devices require low computational
complexity both in terms of power consumption and computing resources. Existing meth-
ods are still computation- and resource-hungry. Moreover, due to the highly nonstationary
nature of EEG data, conventional statistical features are unable to capture their actual na-
ture. This may lead to missing the non-stationary property in epileptic EEGs and produce
suboptimal recognition. More work is required on algorithms that are reliable, computa-
tionally light, and hardware-friendly to improve wearable health systems [31]. In addition,
some approaches use patient-specific features [20,24,32] and might be difficult to generalize
to other patients’ data. The actual performance of these algorithms is a major concern in
real-life health monitoring systems.

2.3. Classification Methods—Neural Networks

The detection of epileptic seizures using deep learning models has evolved rapidly
in recent times. Deep learning models such as convolutional neural network (CNN) ar-
chitectures, stacked autoencoder (SAE), and convolutional autoencoder (CAE) developed
for classifying EEG data result in high-accuracy systems [5,9,16]. These methodologies
apply data preprocessing or use raw EEG data directly for model training [5]. AE or neural
networks can be trained to compute weights and biases to obtain unique parameters from
EEG data. Then, classification is carried out by adding a softmax layer at the end of the
network. These models are trained based on classification metrics. An integer CNN model
was proposed in [33] for hardware-friendly computations. Quantized deep neural networks
(QDNNs) for low-power embedded applications have also been developed [34]. Further-
more, deep transfer learning techniques for classifying EEG data have been established in
the literature [35]. A combination of four different CNN models and transfer learning with
a ResNet50 model was developed in [35]. Deep network architectures provide satisfactory
results by paying the penalty of requiring immense resources, which is not feasible for the
development of wearable health systems. Architectures comprise many computational
layers, with mathematical operations increasing exponentially alongside the increase in
the number of layers. Secondly, the weights and biases of each layer have to be saved,
which results in the utilization of more resources. A major drawback in many neural
network approaches is their computational complexity, especially when deep architectures
are employed. For this, shallow networks instead of deep architectures are suggested.

Hybrid architectures have been proposed based on generating some encoded rep-
resentation followed by classification using a conventional machine learning approach.
The detection of epileptic seizures utilizing compressively sensed EEG signals has been
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extensively reported in the literature [17,25,36]. In these studies, there are both single- and
multi-channel approaches. In [17], a denoising sparse AE (shallow encoder)-based hybrid
approach was adopted for ictal EEG classification, where the classification of encoded
representation was carried out through logistic regression. The shallow AE architecture
supports developing a system with fewer computations and less resource utilization as
compared to deep networks. However, the preprocessing of the input signal was carried
out through z-score standardization and by adding random noise to it, which increased the
processing. The AE structure is 256-200-256, providing 1.28 CR. This compression ratio is
not large enough. Thus, no EEG epoch classification has been done. Moreover, it uses the
BONN dataset, which is not a large dataset.

It should be generally noted that the reviewed approaches have demonstrated results
on a single dataset. Finally, none of the multi-channel approaches provide the classification
of EEG epochs at the individual channel level. Their classification is based on the collective
analysis of channels involved.

3. Materials and Methods
3.1. Datasets

In order to evaluate the proposed seizure detection method, we used a publicly
available PhysioNet scalp EEG database, named CHB-MIT, provided in [37]. This dataset
was collected at the Children’s Hospital Boston. It contains 916 hours of recordings of
intractable generalized seizures from pediatric subjects. Recordings were collected from
22 subjects grouped into 23 cases and sampled at 256 Hz. Ref. [38] can be referenced for
tabulated information on the subjects involved.

We also used another publicly available EEG dataset provided by the University of
Bonn [39]. The dataset comprises 5 different sets of single-EEG-channel recordings, named
A, B, C, D, and E. A and B correspond to scalp EEGs of healthy subjects, whereas C, D, and
E are intra-cranial EEGs. Each set has 100 EEG files with generalized seizures. Details of the
database are provided in [36]. As many researchers have used this dataset [23,38,40–42],
we have also included this dataset for the purpose of comparison.

3.2. Proposed Method
3.2.1. Design Methodology and Considerations

In the previous section, we reviewed various conventional and neural network meth-
ods for epilepsy detection, along with their pros and cons. As reviewed earlier, both
multiple- and single-channel approaches have been proposed. This depends on the tar-
geted application. Most of these approaches that are high performance are multi-channel
and computationally intensive. Neural network architectures generally involve deep
architectures, while conventional approaches involve complex feature extraction stages.

Compact wearable devices, wireless sensor networks, and associated data processing
are of increasing importance for diagnosis and patient monitoring. One should also consider
minimizing the number of channels for the wearing comfort of ambulatory patients. Many
hardware implementations have, therefore, adopted designs utilizing a low number of
EEG channels and even a single channel. The application of such systems can be seen
with reference to the extended diagnosis of epilepsy (generalized or focal seizures) and in
monitoring the effectiveness of the treatment. Monitoring, recording, and marking seizure
activity in one or a few channels in ambulatory patients at home can augment the status
information obtained from the full-fledged EEG captured at the hospital. In such cases, the
choice of these few monitoring locations will be the prerogative of the treating neurologists.
This decision can be made by the neurologists after diagnosing the epilepsy type and
observing abnormal wave complex activity in the EEG at different scalp locations.

The current focus of our work is to propose a computationally light and hardware-
friendly approach that can analyze a single EEG channel with high accuracy to detect
seizure activity. Most of the existing approaches employ multiple channels of EEG to
extract a group feature vector and label the EEG epoch as seizure (ictel) or non-seizure
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(non-ictel) activity. Such an approach does not localize the evidence of the abnormal seizure
activity to the channel level. Hence, a neurologist has to accomplish this on their own to
accept or reject the automatic classification result. Furthermore, an approach based on
processing a channel individually has a better potential to be scalable with respect to the
number of channels, allowing its deployment in devices using one, few, or all EEG channels.
For a multi-channel detection framework, this will mean processing the given channels
separately as proposed and then assembling the individual detection results for a final
global decision. This, however, is not discussed in this work. Furthermore, the scope of the
current work is limited to achieve low algorithmic computational complexity but does not
cover hardware implementation. This could be undertaken in the future.

As discussed earlier, AE models have been proposed in the recent literature [9,17] for
epileptic seizure detection. Shallow AEs (involving a single layer) have been shown in
earlier works to be successful in the generation of effective encoded samples (as features for
classification) [17]. They learn the essential representations of data from a number of sample
sets [17]. They have been extensively utilized in areas such as image de-noising [43], feature
learning [44], and data modeling [45], etc. For any considered dimension of the latent space,
ref. [45] reports that the best performance for unsupervised learning is obtained with AE
for image databases.

This work experiments with a trainable hybrid approach involving a shallow AE and
a conventional classifier. A shallow AE, instead of a deep neural architecture, is considered
to provide an encoded representation of the input signal. A shallow AE brings a smaller
number of parameters to train and store and are computationally efficient. Theoretical
evidence about the fact that shallow AE models indeed can be used as a feature learning
mechanism for a variety of data models has been proved in [45]. A similar mechanism has
been adopted in this work to develop our model taking into account our data. Conventional
classifiers have been used to realize seizure detection or classification on this encoded
representation of the input signal. An effective lower-dimensional encoded signal (smaller
feature vector) in turns reduces the computational complexity and training effort along
with the improvement in classification performance.

The proposed system involves a two-stage training process that involves training
the AE first and then training the classifier. An encoded representation of the signal is
trained in the first stage of the training process involving both the encoder and the decoder.
The decoder reconstructs the signal to its original shape, and the objective of training
is to minimize the reconstruction error. In the second stage, the trained encoded signal
samples are used to train the classifier. Various conventional classifier models have been
experimented on to see possible compromises in computational costs and classification
performances suitable for different scenarios. The tested classifiers include kNN, SVM,
DT, QDA, NB and softmax. The classification results of these models are discussed in the
coming sections.

For determining the optimal design, multiple AE hidden sizes and different conven-
tional classifier models have been experimented with. Analysis has been conducted on
multiple hidden sizes to find the right balance for a shallow network that is large enough
to capture the actual nature of the data and yet small enough to run faster as compared to
other network architectures in the literature.

A completely training-based approach is suitable for both the ease of initial devel-
opment and re-training for introducing patient specificity and adaptability to provide
enhanced performance. The training or re-training is essentially more computationally
intensive than test or in-operation-mode computation. However, as the algorithm training
is usually done offline in the initial training phase or re-training phase, it is the compu-
tational effort in the testing (or operational) mode that matters most with respect to the
minimization of energy and the computational time of the device. A detailed analysis and
comparison of the computational cost in the testing phase of the model will be provided in
the upcoming sections.

A short review of the theory of shallow AEs is provided as follows.
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3.2.2. Shallow Autoencoder

An autoencoder is an unsupervised learning technique for neural networks that learns
efficient data representations (encoding) by training the network to ignore signal “noise”.
It learns to transform the data from a high-dimensional space to a lower-dimensional space.
They work by encoding the data to a 1-D vector, which can then be decoded to reconstruct
the original data. As compared to principal component analysis (PCA), autoencoder works
for both linear and non-linear surfaces, whereas PCA only works for linear surfaces.

A shallow AE with a single hidden layer comprised of n neurons in the input/output
layer and m hidden neurons is developed with m < n, as shown in Figure 2. The encoder
layer is evaluated by sharing the weights WE ∈ Rn×m and bias vectors b ∈ Rm. The decoder
layer reconstructs the signal with the weights WD ∈ Rm×n and bias vectors b ∈ Rn. These
weights and biases of the model are calculated for the signal reconstruction error instead of
the classification results. The scaled conjugate gradient (SCG) method was designated to
update these weights and bias values. Ref. [44] averts the decoder bias, but we consider
it an essential part of our model. The encoding process for an input EEG signal x ∈ Rn is
modeled as:

y = f (WTx + b) (1)

where f (.) represents the activation function in the encoder neurons. The choice of the
activation function usually varies with different data [44]. However, linear activation aids
in developing a system with a low computational cost as compared to non-linear functions.
Therefore, we selected linear activations for the encoding and decoding processes. The
saturating linear transfer function (Satlin) [46] for the encoder activation function is given
as:

satlin(x) =


−1 x < −1
0 −1 6 x 6 1
1 x > 1

 (2)

The decoder layer reconstructs the encoded vector y ∈ Rm to its original form, as
follows:

x̂ = WDy (3)

The transfer function to compute the decoder layer’s output is a linear function
(Purelin) f (x) = x. These functions are carried out on each sample of the signal with the
mean square error (MSE) loss function. MSE is selected in the training phase of the AE to
compare the original and reconstructed signal, and the AE model is trained until the loss
function achieves its minimum possible value. Moreover, during the training phase, the L2
regularization parameter is used to avoid model over-fitting. The encoded representation of
the signal is achieved through encoding, and the reconstruction of the signal to its original
form is achieved through the decoder. The decoding process is added to ensure the best
possible encoded representation of the data.
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Figure 2. Workflow architecture of the proposed seizure detection method.

3.2.3. Processing Architecture

Figure 2 depicts the basic processing architecture of the proposed methodology. The
process starts with EEG data segmentation. EEG signal epochs of 1 to 30 s are usually
adapted for different seizure detection methods in the literature [47]. These durations are
short enough to capture the dynamics of seizure activity while still being long enough
to provide sufficient data for analysis. Shorter epochs in the stated range can enable the
detection of seizure onset with low latency and can easily provide instances that are artifact-
and noise-free. Thus, a 1 s non-overlapping EEG epoch is selected in this paper for accurate
marking at fine granularity. This determines the system latency is 1 s as it detects the
seizure for each second of EEG recording. An AE with a single hidden layer processes
each 1 s EEG epoch to produce its encoded representation, as shown in Figure 2. The
input signal is encoded using the encoder layer to obtain an encoded vector. Once the AE
is trained, the decoder layer is discarded, and only the encoder layer is applied for the
encoded representation of the data, which is then used as an input to the classifier.

The steps necessary to process a 1 s EEG signal epoch are as follows. First, the database
of our choice is at a sampling rate of 256 samples/sec. Therefore, the input layer consists
of a length of 256. The encoder compresses the input signal to 64 samples, whereas the
decoder layer reconstructs the signal to its original length of 256, providing a compression
ratio of 4 in our core experiment. Multiple experiments have been carried to determine the
optimum value of the AE’s hidden size to obtain the best performance. However, for large
values of the AE’s hidden size, the algorithm tends to learn very local features of the input
data, which reduces the classification performance.

Table 1 encapsulates different lengths of encoded representations of EEG signals used
in this paper, along with the corresponding data reduction ratios. The analysis of multiple
AE hidden sizes is provided to evaluate the classification performance along with the
computational complexity of the system. Therefore, the number of arithmetic operations
(AO) for the AE and classifier are also presented to evaluate the exact computations
with corresponding classification results. Our primary experiment deals with an AE
hidden size 64, providing 75% diminution in the data. However, other levels are also
part of our analysis and produce comparable results, even applying more than 90% data
reduction. Consequently, the user has the choice to select any AE hidden size and achieve
the corresponding data reduction among the listed options.
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Table 1. AE Hidden size with corresponding data reduction and arithmetic operations required for
256 actual samples.

AE Hidden Size Data Reduction (Compression Ratio) Arithmetic Operations (AE) Arithmetic Operations (SVM)

64 75.00% (4) 32,704 1057
32 87.50% (8) 16,352 577
20 92.18% (12.8) 10,220 397
16 93.75% (16) 8176 337
8 96.87% (32) 4088 217

In order to categorize the data as epileptic or non-epileptic, the encoded representation
of EEG epochs from the output of the encoder is used. Various machine learning algorithms
are used for classification, such as kNN, SVM, DT, QDA, NB, and softmax layers. Adding a
deep neural network (DNN) model may provide good results, but its computational cost
would be quite high.

kNN: We selected 10 nearest neighbors according to their Euclidean distance for the
kNN classifier. Weighted kNN is used to handle uncertain conditions with a squared
inverse distance weight kernel. In order to encapsulate the uncertain outliers and to
deal with incomplete and inconsistent information existing in the features, the exhaustive
neutrosophic set was used to determine the decision criteria [48].

SVM: For the SVM classifier, multiple kernel functions were tested. The impact of
various kernel functions on SVM characteristics is highly variable. In this paper, we used
the Gaussian kernel with random search. The hyper-parameters were randomly sampled
from a specified distribution, and the model was trained and evaluated for each set of
sampled hyper-parameters. An optimized hyperplane in kernel space was generated by a
Gaussian function of kernel scale 2 and kernel offset 0.1. Training instances are separable
for these parameters and yield optimal results. The feature space that training data is
mapped to is determined by the kernel width. The optimal kernel scale value is the one
that yields the best performance on the test set.

QDA: QDA is similar to LDA but without the assumption that the classes share the
same covariance matrix, i.e., each class has its own covariance matrix. In this case, the
boundary between classes is a quadratic surface instead of a hyperplane.

DT: DT is listed as the least computationally expensive classifier [49]. To find the
best split, we used the ‘exact search’ algorithm with a tree of 159 nodes and the ‘gdi’
split criterion.

NB: NB is based on Bayes’ theorem derived from the conditional probabilistic theory
with an assumption of independence among predictors [4]. In simple terms, an NB classifier
assumes that the presence of a particular feature in a class is unrelated to the presence of
any other feature. We used the Gaussian kernel function with a normal distribution for
this classifier.

Softmax: Softmax layers are often used as the last layer of neural networks trained for
data classification [5]. We trained our softmax layer over an encoded vector in the same
manner as previously listed classifiers. The ’binary cross-entropy’ function was used with
the SCG algorithm to update the weight and bias values.

4. Results
4.1. Experimental Setup

The proposed algorithm was implemented using MATLAB 2018. The experiments
were performed on a system with an Intel Core i7 processor at 3.20 GHz and with
24 GB memory.

In the case of the CHB-MIT database, around 916 h scalp EEG recordings containing
185 seizure events were adopted in this study. About 5 recordings (1 s duration EEG epoch),
including randomly selected seizure and non-seizure events, were used as the training
set. The seizure and non-seizure ratio is 40% and 60%, respectively. The reason for this
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choice is the fact that the dataset comprises long hours of EEG recordings with rare seizure
occurrences. Thus, we have maintained some data balancing in terms of seizure and
non-seizure EEG epoch ratios for effective training on seizure events. On the other hand,
911 h of EEG data were used to test the performance of our system. The AE model for
the encoded representation of the input signal was trained using the training data. The
encoded representation of these EEG epochs was used to train the classifier. In order to
prevent model overfitting, the 5-fold cross-validation strategy was used for AE training.

Additionally, for the Bonn database, a similar protocol for testing and training was
utilized. EEG epochs of 173 samples each were processed with an AE hidden size of 44.
Due to the small size of the total dataset, researchers have used from 50% to 90% of the
data for training and the rest for testing. The EEG epochs were selected randomly for
the two sets. No constraints for data balancing were used, as the seizure and non-seizure
EEG epochs are found in equal quantities in this dataset. The training/testing ratio for the
BONN dataset is 70% and 30%, respectively, in our case. In addition, test data are devided
into 10% validation and 20% test sets. This is not surprising, as this training data size is still
smaller than the one that we used for the CHB-MIT dataset.

4.2. Performance Evaluation

The encoded representation of the EEG signal is characterized in Figure 3 by address-
ing a random example of the original EEG signal and its reconstruction by decoding. The
first figure shows patient 1’s EEG epoch for channel ’P7O1’ of the database, whereas the
second signal is the corresponding EEG epoch for the same channel for patient 2. This
implies the patient-wise consistency of the methodology. With a mean absolute error of 0.68
and 0.71, respectively, only a minor difference can be seen between the two plots, which
infers that encoding the EEG data is a more efficient method for encoded representation as
compared to evaluating statistical features.

Figure 3. Original and reconstructed EEG epoch during training.

The average mean absolute error (MAE) calculated from the reconstructed signal
is addressed in Figure 4 for each EEG channel. Our goal in this paper is to correctly
categorize the data as epileptic or non-epileptic, which is accomplished through encoded
representation. Moreover, if a user (for example, a neurologist) needs to analyze the
reconstructed signal, our proposed algorithm can be utilized for that purpose as well.
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Figure 4. Average MAE of reconstructed signal for each channel with AE hidden size 64.

We investigated a diverse range of AE hidden sizes to obtain an optimized feature
vector for classifier models. Although kNN obtains the highest classification figures for
an AE hidden size 64, it also produces promising results for other AE hidden sizes. SVM,
on the other hand, provides the best score for an AE hidden size of 32. Table 2 shows the
channel-wise mean testing measures in terms of accuracy, sensitivity, and specificity for
all EEG channels. The AE hidden size is 64. All the results for each EEG channel exhibit
quality metrics above 94%, which addresses the effectiveness of the proposed methodology.
Table 3 encapsulates the same results for AE hidden sizes of 32 using the SVM classifier.

Table 2. Channel-wise average accuracy, sensitivity, and specificity of kNN classifier on the CHB-MIT
database with AE hidden size of 64 (Compression Ratio = 4).

Channel Accuracy (%) Sensitivity (%) Specificity (%)

‘FP1F7’ 98.17 95.04 98.28
‘F7T7’ 99.46 94.17 99.46
‘T7P7’ 96.26 95.15 96.26
‘P7O1’ 99.32 94.47 99.32
‘FP1F3’ 98.28 95.20 98.98
‘F3C3’ 98.60 95.16 98.60
‘C3P3’ 98.72 95.07 98.72
‘P3O1’ 99.20 94.59 99.20
‘FP2F4’ 99.04 95.04 99.04
‘F4C4’ 99.35 96.39 99.35
‘C4P4’ 99.21 94.81 99.38
‘P4O2’ 99.05 96.40 99.05
‘FP2F8’ 99.90 94.59 99.90
‘F8T8’ 98.58 95.40 98.58
‘T8P8’ 98.17 94.47 98.17
‘P8O2’ 98.85 99.29 98.85
‘FZCZ’ 98.65 95.46 98.97
‘CZPZ’ 99.79 94.33 99.79
‘P7T7’ 96.61 94.74 96.61

‘T7FT9’ 96.36 95.12 96.36
‘FT9FT10’ 97.26 94.94 97.26
‘FT10T8’ 99.32 96.13 99.32

‘T8P8’ 98.17 94.47 98.86
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Table 3. Channel-wise average accuracy, sensitivity, and specificity of SVM classifier on the CHB-MIT
database with AE hidden size of 32 (compression ratio = 8).

Channel Accuracy (%) Sensitivity (%) Specificity (%)

‘FP1F7’ 99.73 86.83 99.74
‘F7T7’ 98.91 91.81 98.92
‘T7P7’ 99.11 91.67 99.11
‘P7O1’ 99.30 89.64 99.31
‘FP1F3’ 99.59 92.15 99.60
‘F3C3’ 99.39 90.47 99.40
‘C3P3’ 99.19 96.10 99.19
‘P3O1’ 98.88 87.75 98.89
‘FP2F4’ 99.33 91.79 99.35
‘F4C4’ 99.57 93.21 99.58
‘C4P4’ 99.47 93.80 99.48
‘P4O2’ 99.46 92.52 99.47
‘FP2F8’ 99.54 88.21 99.55
‘F8T8’ 99.69 95.41 99.70
‘T8P8’ 99.73 86.83 99.74
‘P8O2’ 99.67 94.93 99.67
‘FZCZ’ 99.04 95.27 99.04
‘CZPZ’ 99.18 29.75 99.31
‘P7T7’ 99.01 91.63 99.01

‘T7FT9’ 98.52 90.84 98.53
‘FT9FT10’ 99.57 94.34 99.57
‘FT10T8’ 98.46 93.76 98.47

‘T8P8’ 99.02 89.32 99.31

Tables 2 and 3 correspond to the two flavors (cases) of our method. The first one is the
combination of AE with the kNN classifier, providing the best classification results over
all classifiers and AE hidden sizes that we experimented with. This conclusion takes into
account that all three metrics (accuracy (acc), sensitivity (sen), and specificity (sp)) perform
the best or close to the best. This performance can be compared with the second case, which
is based on combining AE with an SVM classifier. Here, the accuracy and specificity are
even better, but the sensitivity has decreased. This gap in performance in sensitivity shall
not be ignored in terms of ranking the overall classification performance due to the equal
importance of this metric. Nevertheless, this second case carries merit, as its performance
is on the higher side among the state-of-the-art reported approaches, and furthermore, it
has low computational costs and memory requirements compared to other state-of-the-art
approaches and our kNN-based approach.

Table 4 encapsulates a brief comparison of the obtained results with different classifiers
using the average figures of all the EEG channels. kNN achieved the highest results for
all three statistical measures using an AE hidden size of 64; this was followed by SVM’s
results. The traditional softmax classifier used in deep learning models provides the lowest
figures among all the listed classifiers.

Figure 5 encapsulates the trends in the performance of SVM and kNN with changes
in AE hidden sizes for EEG data. As for the sensitivity, which is an area of concern, kNN
maintained its performance above 90%, even for an AE hidden size of 8, which corresponds
to only 8 EEG samples out of 256. Only a minor fluctuation can be perceived in Figure 5 for
kNN sensitivity. However, the SVM classifier shows instability in terms of sensitivity for
changes in the AE’s hidden size. Performance considerations regarding seizure detection
accuracy show the opposite trend for both classifiers. SVM is able to catch a glimpse of
inconsiderable change in accuracy measures for a decrease in the AE’s hidden size of the
EEG signal. Contrarily, kNN evaluates a bit more variation as compared to SVM while
categorizing the data for different AE hidden sizes.
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Table 4. Average classification results of CHB-MIT database for various AE hidden sizes with
different classifiers.

AE Hidden Size Classifier Accuracy (%) Sensitivity (%) Specificity (%)

64

kNN 98.60 95.23 98.90
SVM 98.38 65.29 99.39
QDA 87.47 47.63 88.71
NB 92.83 58.23 93.05
DT 89.96 39.17 91.05

Softmax 68.31 51.24 61.70

32

kNN 93.08 94.01 93.09
SVM 99.29 89.03 99.30
QDA 80.10 60.09 80.12
NB 82.38 46.90 82.96
DT 93.99 43.42 94.07

Softmax 78.50 73.82 79.98

20

kNN 90.00 93.42 90.00
SVM 98.17 88.89 98.18
QDA 86.34 61.35 86.37
NB 82.36 52.32 83.10
DT 94.28 43.26 94.36

Softmax 71.63 53.36 74.10

16

kNN 88.77 91.15 89.36
SVM 98.10 61.79 99.06
QDA 90.85 43.10 91.98
NB 90.52 38.36 91.65
DT 92.55 35.65 93.79

Softmax 81.62 42.86 72.60

8

kNN 84.47 94.42 84.45
SVM 97.24 76.16 97.27
QDA 92.47 43.57 92.54
NB 88.06 48.23 88.63
DT 94.97 35.69 95.06

Softmax 53.68 58.90 48.86

Figure 5. Performance variations with different AE hidden sizes for kNN and SVM classifiers in
terms of accuracy and sensitivity.

Figure 6 depicts the quality measures of the proposed seizure detection algorithm
according to the AE hidden size. A single EEG channel providing the overall best classi-
fication results among all the available channels for a specific AE Hidden size is shown.
For AE hidden sizes of 64 and 32, the channel ‘P8O2’ provides the highest-quality statistics.
However, channel ‘FT9FT10’ provides optimum results for 20 samples, channel ‘P7O1’
best performs for an AE hidden size of 16, and channel ‘T7P7’ yields its best classification
performance for 8 samples.
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Figure 6. Best classification results of single EEG channel using kNN for various AE hidden sizes.

The classification results obtained by the EEG channel ‘P8O2’ for different AE hidden
sizes are presented in Figure 7. This channel produces the highest classification figures
among all the other available channels of the database for two AE hidden sizes. Seizure
detection sensitivity is above 99% for AE hidden sizes of 64 and 32, whereas the minimum
sensitivity of this channel is 93%. These statistics also demonstrate the effectiveness of the
proposed classification algorithm for a specific EEG channel.

AE hidden sizes providing the best classification results in terms of accuracy, sensitivity,
and specificity for each EEG channel are presented in Figure 8. An AE hidden size of 64
produced the highest results in most cases. Accuracy and specificity are the highest when
obtained with an AE hidden size of 64 for all the channels. However, for the channels
‘F7T7’, ‘CZPZ’ and ‘P7O1’, the highest sensitivity is achieved using s AE hidden size of 8.

Figure 7. Classification results of channel ‘P8O2’ with kNN for different AE hidden sizes.
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Figure 8. AE hidden sizes providing best accuracy, sensitivity, and specificity with kNN for
each channel.

5. Discussions
5.1. Performance Comparison

To illustrate the effectiveness of the proposed method, the obtained results are com-
pared with the state-of-the-art approaches in Table 5 for the CHB-MIT dataset and Table 6
for BONN database. An exact comparison is challenging as the approaches vary in terms
of the number of channels used and the different training and testing scenarios, along with
different EEG epoch sizes. Table 5 encapsulates information on different approaches. Those
approaches are listed for comparison that classify EEG at the segment level (of intervals
1–30 s) and provide classification results in terms of accuracy, sensitivity, and specificity.
Both multi-channel as well as single-channel methods are enlisted. Patient-specific results
are also indicated. The training strategy among reported approaches varies from 5-fold
and 10-fold cross-validation (CV) to leave-one-out CV (LOO-CV).

Table 5. Comparison of classification results for CHB-MIT database.

Ref., Year No. of
Channels Method Acc (%) Sen (%) Sp (%) Evaluation & Data Used

[7], 2021 Multiple EMD, DWT, CSP & multi-SVM fusion 97.49 97.34 97.50 Tr: 31.6 h; Te = 945.3 h
[38], 2021 23 DWT, OMP, SFFS & SVM 97.09 96.81 97.26 177 h; 5-fold CV
[3], 2020 21 Spectral, temporal, CE-stSENet 95.96 92.41 96.05 For each patient, 1.11 h inter-ictal and all ictal data
[12], 2020 23 LDA & ANN 95.11 91.15 95.16 42.8 h; Tr: 25%;Te: 75% (PS)
[4], 2020 22 30 Statistical features & XGB 86.27 80.32 92.22 5-fold CV (PS)
[8], 2020 Multiple 24 Statistical features & SVM 94.50 - - -
[27], 2020 23 DWT & ANN 95.3 97.2 93.5 Tr: 208.3 h, Te: 23.3 h
[11], 2020 2 Statistical features &RF - 96.60 92.50 Tr: 70%, Te: 30%
[25], 2020 23 LSB, Spectral energy &SVM 91.70 95.00 - Tr: 80%,Te: 20% (PS)
[9], 2019 23 SAE, Deep CNN, FC & SVM 92.00 95.00 90.00 LOO-CV (PS)
[5], 2019 23 Deep CNN, Dense & SoftMax 98.05 90.00 91.65 Test on 1 patient, train rest
[47]-2019 23 Deep CAE, FC & SoftMax 93.97 - - 210.7 h; 5 fold CV
[32], 2019 Multiple Statistical features, PCA, SVM & NB 95.63 95.70 96.55 Tr: 50%,Te = 50% (PS)
[6], 2018 Multiple Statistical features, Change point detection - 96.00 - LOO-CV for each seizure (PS)
[33], 2018 Multiple FFT, Deep CNN, FC & SoftMax 96.10 - - LOO-CV for each seizure
[24], 2018 23 EMD dictionary & SVM 92.90 94.30 91.5 (PS)
[16], 2018 21 Deep CNN & SoftMax - 87.95 86.50 80% inter-ictal, 20% ictal, LOO-CV
[21], 2017 Multiple FFT, DWT, ST & Channel aggregate - 91.40 86.00 -
[20], 2016 23 Poincare section, PCA, LDA & NB 94.69 89.10 94.80 Tr: 50%, Te: 50% (PS)
[10], 2021 1 Band energy & SVM - 87.60 88.00 (PS)
[29], 2017 1 DWT & SVM 96.80 72.00 98.11 0.4h iner-ictal, all ictal, (PS)
[22]-2015 1 DWT, PCA & SVM 93.96 75.75 98.66 916 h with 10 fold CV
Proposed:

Optimal (Single-channel mean) 1 AE & SVM; 32 encoded features 99.29 89.03 99.30 Tr: 5 h; Te: 911 h
Best Results (Single-channel mean) 1 AE & kNN; 64 encoded features 98.60 95.23 98.90 Tr: 5 h; Te: 911 h

Acc: accuracy; Sen: sensitivity; Sp: specificity; PS: patient-specific; Tr: training data; Te: test data; h: Hours; CV:
cross-validation.

Table 5 includes two cases of our proposed approach: one achieving the best perfor-
mance in terms of average accuracy, sensitivity, and specificity (using kNN classifier) and



Sensors 2023, 23, 4112 16 of 21

the other of low computational complexity but providing state-of-the-art classification per-
formance. The computational complexity of the latter approach is analyzed and compared
favorably with the reported approaches in the following section. The performances of all
approaches are indicated in terms of their reported average classification accuracy, sensi-
tivity, and specificity. Our approach is also presented in terms of its average performance
figures for the full training set (i.e., for all EEG channels and for all patients) processed one
channel at a time. Individual channel-wise performance for our cases have already been
covered in Tables 2 and 3.

Table 6. Comparison of classification results for BONN database.

Ref., Year Method Data Acc (%) Sen (%) Sp (%) Evaluation

[1], 2021 CNN–RNN A vs. E 99.61 99.81 99.43 10-fold CV
[38], 2021 DWT & OMP with SVM A vs. E 99.50 98.95 100 5-fold CV
[40], 2021 CNN & sigmoid A vs. E 93.00 93.00 93.00 80% train, 20% test
[23], 2021 RPS average energy & SVM A vs. E 99.50 99.00 100 10-fold CV
[42], 2019 Symlets wavelets, PCA & SVM A vs. E 100 - - 10-fold CV
[41], 2017 Local mean decomposition & SVM A vs. E 100 100 100 50% train, 50% test
This work 44 AE features & SVM A vs. E 99.64 99.71 99.56 70% train, 30% test

[1], 2021 CNN–RNN A vs. E 99.46 99.17 99.22 10-fold CV
[38], 2021 DWT & OMP with SVM B vs. E 99.75 98.60 100 5-fold CV
[23], 2021 RPS average energy & SVM B vs. E 98.50 97.00 100 10-fold CV
[42]-2019 Symlets wavelets, PCA & SVM B vs. E 100 - - 10-fold CV
This work 44 AE features & SVM B vs. E 97.71 99.30 96.71 70% train, 30% test

[1], 2021 CNN–RNN A vs. E 99.51 99.31 99.43 10-fold CV
[38], 2021 DWT & OMP with SVM C vs. E 99.00 98.89 98.89 5-fold CV
[23], 2021 RPS average energy vs. SVM C vs. E 98.00 97.00 99 10-fold CV
[42], 2019 Symlets wavelets, PCA vs. SVM C vs. E 98.4 - - 10-fold CV
This work 44 AE features & SVM C vs. E 99.42 99.86 98.96 70% train, 30% test

[1], 2021 CNN–RNN A vs. E 99.82 99.68 99.82 10-fold CV
[38], 2021 DWT & OMP with SVM D vs. E 99.50 100 99.16 5-fold CV
[40], 2021 CNN & sigmoid D vs. E 88.50 92.00 85.0 80% train, 20% test
[23], 2021 RPS average energy & SVM D vs. E 97.50 95.00 100 10-fold CV
[42], 2019 Symlets wavelets, PCA & SVM D vs. E 98.1 - - 10-fold CV
[41], 2017 Local mean decomposition & SVM D vs. E 98.10 98.80 97.40 50% train, 50% test
This work 44 AE features & SVM D vs. E 98.77 99.71 97.85 70% train, 30% test

The approach demonstrates its potential for use in extended monitoring/diagnosis in
the case of ambulatory patients. After making a regular diagnosis with standard EEG equip-
ment at the hospital, the neurologist is expected to make a smart decision about channel(s)
to use (one or more) for a given patient. This can minimize the number of channels (for
patient comfort) and resources (for long battery life and form factor) required in the context
of a wearable device and still provide top performance in terms of seizure detection.

5.2. Computational Complexity

The computational complexity of multi-channel approaches is generally far higher
than single-channel approaches, as multi-channel approaches involve preprocessing and
feature extraction from many channels. This is supported by [50], which provides a useful
comparison of the computational cost of different classifier models for seizure detection.
This study shows that the number of EEG channels relates directly to computational costs.
It is to be noted that most of the techniques in the literature [1–13] use multi-channel pro-
cessing and hence require far more computational resources. This also applies to hardware
implementations of [11,30]. Furthermore, it is also shown that for neural networks, the
number of layers directly relates to computational costs and memory requirements [50].
It also enlists the SVM classifier as the second model having the least computational and
memory requirements.
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Our approach, at its basis, is a single-channel approach, which can be extended to
multi-channel EEG. However, keeping in view its top classification performance and the
application scenario, as discussed earlier, the number of utilized channels may remain
confined to one or a few selected channels. Furthermore, the use of a shallow encoder
replaces the preprocessing and complex feature extraction stages in other approaches. Thus,
the proposed architecture provides lower computational complexity. As part of our hybrid
EEG seizure detection approach employing AE, various machine learning algorithms
for the classification of seizure and non-seizure EEG signal epochs have been examined.
In our proposed method, kNN shows the most promising classification results (for an
AE hidden size of 64). However, it requires memory storage and the retrieval of many
trained examples, which is not hardware-friendly. The SVM classifier is more attractive
for hardware implementation as it eliminates the above issue with comparable second-
highest performance results (for an AE hidden size of 32). This is computationally light
and still out-competes current approaches in classification performance. For the best-case
performance, the average time for processing a 1 s EEG epoch is about 1.6 msec with kNN
(with an AE hidden size of 64) and 0.36 msec with SVM (with an AE hidden size of 32) on
our platform.

In Table 7, we have compared the computational complexity of the proposed algorithm
(single-layer AE with SVM classifier) with some of the recent promising seizure detection
approaches. This includes all the single-channel approaches referred to in Table 5 and some
multi-channel approaches (both neural network and traditional approaches) as examples
to portray the expected computational complexity range. We will focus on the analyzing
the computational complexity in the testing/operational mode as training is expected to
take place off-line. The training involved in our case is not heavier than other trainable
approaches, both with respect to the size of training data as well as the computations
involved in our simpler architecture.

Table 7. A comparative analysis of computational cost with recent seizure detection methods.

Ref., Year Channels Preprocessing Methodology Multiplications (FE + CLS) Additions (FE + CLS)

[5], 2019 23 Nil 7-layer CNN, dense & SoftMax * 6161.7K (6161.4K + 0.35K) 6144.5K (6144.5K + 0.04K)
[16], 2018 21 Polar projection & FFT 11 layers CNN & SoftMax * 777.5K (777.2K + 0.35K) 691.2K (691.1K + 0.04K)

[10] ***, 2021 1 Nil Filter bank, (10 bands), band energy & SVM 235,540 (235.5K + 0.02K) 235.5K (235.5K + 0.02K)
[22], 2015 1 Nil 7 DWT levels & SVM 130,858 (130.8K + 0.04K) 127.7K (127.7K + 0.06K)
[36], 2021 1 Nil OMP & Binary classifier 475,436.3K 474,817.1K

[29] **, 2017 1 Nil 7 DWT levels & SVM 391.1K 390.0K
[17], 2018 1 Noise addition & Z-score AE & LR 51.7K (51.2K + 0.5K) 51.4K (51K + 0.4K)
[40], 2021 1 Filter bank & Recurrence plots 7-layer CNN & Sigmoid * 5037.3K (5037.1K + 0.17K) 4023.8K (4023.8K + 0.02K)
Proposed 1 Nil Single-layer AE (sparsity = 8) & SVM 8.5K (8.1K + 0.34K) 8.3K (8.1K + 0.2K)

* We used 10 Taylor series approximations for the exponent. ** Classifier operations are not included in this paper
as complete information is missing. *** Number of filter coefficients are not mentioned, so we used the value
from [51]. feature extraction (FE); classification (CLS); K: Kilo (1000).

Table 7 compares the mathematical operations required for feature extraction (FE)
and classification (CLS) for a single EEG epoch. These operations include the number
of multiplications and additions required for feature extraction and classification. Our
algorithm does not involve any preprocessing. However, it is mentioned in Table 7 if any of
the listed methods perform preprocessing. We have, however, excluded their preprocessing
stages in computation calculations for simplicity. Furthermore, the tabulated computations
correspond to the testing phase only (in the case of training-based approaches). The reason
for this choice is the fact that the trained model can be prepared online only once and then
used for real-life seizure detection. As illustrated in Table 7, the computational complexity
of our proposed seizure detection algorithm is far lower compared to other techniques.

When comparing the basic processing architecture of the proposed seizure detection
methodology with existing techniques, it can be seen that our proposed model out-competes
the state-of-the-art models in terms of classification performance as well as the computa-
tional cost. Some major drawbacks of the existing methods are the pre- and postprocessing
units requiring input data transformation and noise addition, as in [17]. These steps are
avoided in our proposed method to reduce the required computations. An assessment of
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our proposed model on two different epilepsy datasets is provided, and EEG segment level
results are addressed, which is not provided in [17]. Furthermore, some approaches, such
as [9], use convolutional layers in their proposed neural network, which is also compu-
tationally expensive compared to a fully connected network. In addition, the proposed
seizure detection model uses a shallow architecture instead of deep networks as in [9].
This shallow architecture makes the model computationally efficient. Due to the use of
a single-layer model, network parameters become significantly lower compared to deep
networks. Consequently, computational and storage requirements to process the data
become lower. Moreover, the compression ratio of the existing methods that utilize the
encoded representation of EEG data for classification is also low [17]. The proposed model
provides a higher compression ratio for low-dimensional encoded representation compared
to the existing methods for seizure detection. As a result, the amount of input features for
the classifier model decreases, making the model computationally efficient, and conver-
gence of classifier becomes easier. Thus, practically, it has a higher potential for hardware
implementation in wearable devices.

Our proposed approach can be scaled up to a multi-channel approach, as it can be
seen as channel-wise modular. This would mean adding a final ensembling stage that
can combine the seizure detection results obtained at the individual channel levels. Table
7 shows that in our case, the per-channel computational effort is the lowest. It can be
deduced that the total computational complexity after scaling up to multiple channels
will remain lower compared to other approaches with an equivalent number of channels.
However, this effort is beyond the scope of this research, which is limited to demonstrating
the potential towards seizure activity detection in a single channel with high accuracy and
low complexity.

Preprocessing was not included as the dataset used in our study is already pre-
processed for the removal of artifacts. Furthermore, our approach does not involve
feature extraction.

6. Conclusions

We have proposed a low-complexity epileptic seizure detection algorithm with po-
tential applications in wearable health systems. The approach is based on single-channel
analysis with the potential to modularly build a multi-channel seizure detector. The algo-
rithm design is simpler as it does not involve design complexities related to the feature
extraction stage, such as feature selection, feature raking, etc. A shallow autoencoder with
a single encoder layer has been used to obtain various encoded representations, which
are classified using a conventional classifier. We have compared our hybrid approach
performance with both deep learning models and traditional techniques. Our approach
outperforms the state-of-the-art methods with regard to classification accuracy, sensitivity,
and specificity, with classification sensitivity at 99 % using a kNN classifier, which provides
the most promising results. The relatively low-complexity SVM classifier also out-competes
the existing approaches and is more hardware-implementation-friendly.
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Abbreviations
The following abbreviations are used in this manuscript:

AE Autoencoder
ASIC Application Specific Integrated Circuit
CAE Convolutional Autoencoder
CNN Convolutional Neural Network
CSP Common Spatial Patterns
CR Compression Ratio
CV Cross Validation
CLS Classification
LOO-CV Leave One Out Cross Validation
CHB-MIT Children Hospital Boston, Massachusetts Institute of Technology
DT Decision Tree
DWT Discrete Wavelet Transforms
EEG Electroencephalogram
EMD Empirical Mode Decomposition
FE Feature Extraction
GARCH Generalized Autoregressive Conditional Heteroscedasticity
kNN k Nearest Neighbour
LDA Linear Discriminant Analysis
LSP Lomb-Scargle Periodogram
LSTM Long Short Term Memory
MAE Mean Absolute Error
NB Naive Bayes
OMP Orthogonal Matching Pursuit
PCA Principal Component Analysis
QDA Quadratic Discriminant Analysis
QDNN Quantized Deep Neural Networks
RF Random Forest
SVM Support Vector Machine
WHO World Health Organization
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