Digitizing chemical discovery with a Bayesian explorer for interpreting reactivity data

M. Mehr, S. H. , Caramelli, D. and Cronin, L. (2023) Digitizing chemical discovery with a Bayesian explorer for interpreting reactivity data. Proceedings of the National Academy of Sciences of the United States of America, 120(17), e2220045120. (doi: 10.1073/pnas.2220045120) (PMID:37068251)

[img] Text
293885.pdf - Published Version
Available under License Creative Commons Attribution.

1MB

Abstract

Interpreting the outcome of chemistry experiments consistently is slow and frequently introduces unwanted hidden bias. This difficulty limits the scale of collectable data and often leads to exclusion of negative results, which severely limits progress in the field. What is needed is a way to standardize the discovery process and accelerate the interpretation of high-dimensional data aided by the expert chemist’s intuition. We demonstrate a digital Oracle that interprets chemical reactivity using probability. By carrying out >500 reactions covering a large space and retaining both the positive and negative results, the Oracle was able to rediscover eight historically important reactions including the aldol condensation, Buchwald–Hartwig amination, Heck, Mannich, Sonogashira, Suzuki, Wittig, and Wittig–Horner reactions. This paradigm for decoding reactivity validates and formalizes the expert chemist’s experience and intuition, providing a quantitative criterion of discovery scalable to all available experimental data.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Caramelli, Dr Dario and Mehr, Dr Hessam and Cronin, Professor Lee
Authors: M. Mehr, S. H., Caramelli, D., and Cronin, L.
College/School:College of Science and Engineering > School of Chemistry
Journal Name:Proceedings of the National Academy of Sciences of the United States of America
Publisher:National Academy of Sciences
ISSN:0027-8424
ISSN (Online):1091-6490
Published Online:17 April 2023
Copyright Holders:Copyright © 2023 The Authors
First Published:First published in Proceedings of the National Academy of Sciences of the United States of America 120(17): e2220045120
Publisher Policy:Reproduced under a Creative Commons License
Data DOI:10.5281/zenodo.6337271

University Staff: Request a correction | Enlighten Editors: Update this record

Project CodeAward NoProject NamePrincipal InvestigatorFunder's NameFunder RefLead Dept
190796Programmable 'Digital' Synthesis for Discovery and Scale-up of Molecules, Clusters and NanomaterialsLeroy CroninEngineering and Physical Sciences Research Council (EPSRC)EP/L023652/1Chemistry
301241Ultra-Reduced Polyoxometalates as Electron-Coupled-Proton-Systems for Energy StorageLeroy CroninEngineering and Physical Sciences Research Council (EPSRC)EP/R020914/1Chemistry
304037EPSRC International Centre-to-Centre CroninLeroy CroninEngineering and Physical Sciences Research Council (EPSRC)EP/S030603/1Chemistry
300591Programmable Molecular Metal Oxides (PMMOs) - From Fundamentals to ApplicationLeroy CroninEngineering and Physical Sciences Research Council (EPSRC)EP/R01308X/1Chemistry
3026673DSynth: Design and fabrication of cartridges for digital chemical synthesisLeroy CroninEngineering and Physical Sciences Research Council (EPSRC)EP/S017046/1Chemistry
303747Digital-Chemical-Robotics for Translation of Code to Molecules and Complex Chemical SystemsLeroy CroninEngineering and Physical Sciences Research Council (EPSRC)EP/S019472/1Chemistry
172151SMARTPOM: Artificial-Intelligence Driven Discovery and Synthesis of Polyoxometalate ClustersLeroy CroninEuropean Research Council (ERC)670467Chemistry
302959Microbial deployment of new-to-nature chemistries for refactoring the barriers between living and non-living matterLeroy CroninEuropean Commission (EC)766975Chemistry
300851Programmable Multiplexed Droplets and Arrays Containing Reaction NetworksLeroy CroninDefense Advanced Research Projects Agency (DARPA)W911NF-18-2-0036Chemistry