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Significance

Critical issues in automated 
chemistry discovery include 
cherry picking, disregarding 
negative data, and arbitrary 
interpretation of outcomes. 
Robotic data collection has 
accelerated experimentation but 
not addressed consistent 
interpretation. We introduce a 
Bayesian reasoning system that 
accounts for user bias, utilizes all 
data, and provides confidence 
values for deductions. Working 
with a robotic platform, it 
interprets experiment outcomes 
for chemists and designs new 
experiments, automating the 
process without hidden bias and 
quantifying discovery based on 
prior knowledge and observed 
data.
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Interpreting the outcome of chemistry experiments consistently is slow and frequently 
introduces unwanted hidden bias. This difficulty limits the scale of collectable data 
and often leads to exclusion of negative results, which severely limits progress in the 
field. What is needed is a way to standardize the discovery process and accelerate the 
interpretation of high-dimensional data aided by the expert chemist’s intuition. We 
demonstrate a digital Oracle that interprets chemical reactivity using probability. By 
carrying out >500 reactions covering a large space and retaining both the positive 
and negative results, the Oracle was able to rediscover eight historically important 
reactions including the aldol condensation, Buchwald–Hartwig amination, Heck, 
Mannich, Sonogashira, Suzuki, Wittig, and Wittig–Horner reactions. This paradigm 
for decoding reactivity validates and formalizes the expert chemist’s experience and 
intuition, providing a quantitative criterion of discovery scalable to all available 
experimental data.

chemputing | Bayesian explorer | reactivity data

Across chemistry, discovering new chemical reactions and compounds is a time-consuming 
and labor-intensive process (1–3). Robotic chemistry platforms promise to accelerate dis-
covery by performing experiments with unprecedented reproducibility and through-
put (4–9), but in the absence of a mechanism to formulate experiments and interpret 
their results, automated systems can only reduce the manual burden (10). When equipped 
with online analytics and chromatography, these platforms have the hardware components 
necessary for chemical discovery in a closed loop by accumulating a body of knowledge 
from successive experiments (11). However, the chemical insight required to close the 
loop must still be supplied by a human expert, who is easily overwhelmed by the volume 
of information (12, 13), while also introducing implicit and unmeasurable bias to the 
discovery process (14–16). The result is that discovery efforts fail to communicate the 
assumptions and chain of reasoning leading to key findings (17). As chemical space is 
vast (18), it is critical to document the evolving constraints imposed on the experimental 
space—such as the choice of starting materials and process variables, for discovery to build 
on a planned experimental trajectory rather than pure serendipity (19, 20).

Seeking to eliminate the dependence on human input, various machine learning models 
have been proposed to predict the outcome of chemical reactions (21–25). Such systems 
rely on deep neural networks or other regression models to predict experiment outcomes 
from the robot’s input, typically formulation and experimental process variables such as 
reaction temperature (26). This approach has shown promise for reaction optimization 
and replaced lengthy design of experiments (DOE) procedures in many cases, but progress 
so far has been limited to accelerating the search for reactivity irrespective of its source (27). 
Recent approaches to discovery seek to eliminate human bias to maximize the novelty of 
potential discoveries (28, 29), but any connection between the algorithm’s understanding 
of chemistry and human intuition necessarily introduces bias. Rather than eliminating or 
reducing bias, our aim was to maintain the grounding of discovery results in hypotheses, 
a powerful connection that has been explored in earlier work (30), while specifically 
eliminating hidden/implicit bias. To this end, we sought to couple an autonomous chem-
ical system with an expert-defined digital model of chemical reactivity that makes all 
sources of human bias explicit and quantifiable, Fig. 1A.

We present a Bayesian Oracle that acts as an interpreter for robotic chemistry platforms. 
Within the Oracle, the chemist’s understanding of chemistry can be encoded as a probabilistic 
model connecting the reagents and process variables in each experiment to observed quantities, 
such as spectroscopic evidence of reactivity. The qualitative relationship between entities is 
captured by their connectivity within the probabilistic model. Additionally, the quantitative 
interdependence of observed and latent quantities is described using prior probability distri-
butions that describe existing beliefs and are continuously refined as the robot attempts dif-
ferent experiments and uses online analytics to make observations (Fig. 1B). Bayes’ theorem 
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provides a sound theoretical framework for realizing probabilistic 
models (31) amenable to high-performance numerical implementa-
tion using Markov chain Monte Carlo (MCMC) (32–34) as well as 
variational inference techniques (35, 36).

The Oracle interfaces with a robotic chemistry platform designed 
to perform combinatorial experiments from a set of starting mate-
rials and assess reactivity via a set of online analytical instruments. 
Using these data as observations, the probabilistic model can for-
mulate a general concept of chemical reactivity for the reagents and 
answer queries relating to past and future experiments. Furthermore, 
by computing the likelihood of each experimental outcome, the 
system is able to assess the significance of the results seen so far and 
highlight experiments with surprising outcomes. The shortlist of 
unexpected reactivity can be utilized by an expert chemist for val-
idation and, with the product isolated, formulation of new reac-
tivity types and mechanisms. The expert can modify or refine their 
theory, instantly updating the workflow, Fig. 1C.

We initially validated our system in silico with the simulated 
discovery of two historical named reactions (Diels–Alder and 
Passerini reactions) before using it in conjunction with our robotic 
platform to acquire experimental data from a rich chemical space. 
Analyzing reaction outcomes via high-performance liquid chro-
matography (HPLC), nuclear magnetic resonance spectrometry 
(NMR), and mass spectrometry (MS) from a rich chemical space 
allowed us to simulate the discovery of nine historically important 

reactions. The data were processed to extract relevant reaction 
information, and the probabilistic model was able to inde-
pendently interpret and assess the novelty of the outcomes corre-
sponding to the named reactions. This experiment confirms that 
our probabilistic workflow can be used by chemists as a quantita-
tive framework for assessing the significance and mechanistic 
consequences of new experimental findings.

Probabilistic Model

Current attempts to automate discovery take an ad hoc approach 
to the problem of finding novelty (10, 37). The search in chemical 
space is often guided by predicted reactivity, but the desired out-
come is often making a discovery, i.e., reactivity that appears 
unlikely according to previous knowledge. We sought to create a 
framework wherein expert chemists can describe their theories—
including any bias from their training and experience—quantita-
tively as a probabilistic model. This quantitative description makes 
it possible to define discoveries formally in terms of the state of 
beliefs before and after a set of experiments.

As a very simple example of a probabilistic theory of chemistry, 
we postulated each compound to be capable of having one or more 
abstract properties to varying degrees, indicated by a number rang-
ing continuously between 0 and 1. The assignment of these 
abstract properties could be equally interpreted as partitioning the 

A

C

B

Fig. 1. (A) Progress in discovery workflows. The most primitive form of automation simply replaces the human for labor-intensive operations. AI-powered robotic 
reactivity search using online analytics has recently become possible but normally operates as a black box without clear input or interpretability by the expert. 
True hybrid AI-human discovery relies on human intuition to enable generalizing interpreting and interrogating discoveries as well as the assumptions leading to 
them. (B) Abstract representation of probabilistic discovery. Expert knowledge expressed in terms of a quantitative probabilistic model corresponds to a single 
point in hypothesis space. Evaluating the current hypothesis and its remaining gaps, new experiments can be formulated—in this case, specified as reagents, 
conditions, and observation method—for execution automatically by the robot or manually if necessary. The outcome of each experiment (observation) updates 
the model’s priors, taking exploration a step forward in hypothesis space. (C) Integration of probabilistic interpretation into a closed-loop robotic discovery 
platform. The experimental platform iterates over the remaining experiments, picking the most “interesting” reaction as recommended by the Oracle in each 
iteration. Acquired data from the experiments are processed by the Oracle, resulting in a shortlist of surprising reactions to be further investigated by expert 
chemists in order to discover new compounds or amend existing theories. Actions involving interaction with the expert are shown in italic type.
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compounds in chemical space into overlapping fuzzy sets (38). A 
prior distribution is also selected for the reactivity between each 
set of compounds (Fig. 2A). Combining these two distributions 
gives the joint probability distribution for compounds α and β to 
belong to mutually reactive sets A and B and react as a result 
(Fig. 2B). This formulation can be extended to 3 and 4 component 
reactions (detailed mathematical formulation in SI Appendix).

In Silico Verification Using Simulated 
Discovery

Before using our system in an experimental setup, we simulated 
its behavior when given artificial reactivity data. This validation 
step served to ensure that the output reflected the basic intuition 
underlying our model. We first looked at the Diels–Alder reac-
tion, notable for motivating the formulation of pericyclic mech-
anisms. As the Diels–Alder reaction could not be explained using 
the existing properties known at the time, e.g., acid and base, 
the labels diene and dienophile had to be devised in order to 
describe the structural features of its participants. We looked at 
reactions within a small chemical space of molecules known at 
the time to test whether the model would be able to make the 
same deduction (Fig. 3A). A typical sample from the model after 
revealing the reactivity data in Fig. 3A is shown in Fig. 3B. 
Cyclopentadiene is seen to possess two mutually reactive prop-
erties distinct from those of all other compounds. We were 
encouraged by this finding since the two properties in question 
have direct analogues in organic chemistry, i.e., diene and dieno-
phile. In line with the use of a conservative prior distribution 
for properties, only the minimum (namely four) needed to 
explain the reactivity observations were used, in accordance with 
Occam’s razor.

The assignment of molecules to sets does not preclude the use 
of molecular structures. It is possible to create an alternative prob-
abilistic model that reasons about the chemical structure of mol-
ecules by representing each molecule as a vector indicating the 
presence or absence of certain structural features. These bit string 
representations, known as molecular fingerprints, are a well-studied 
subject within the field of cheminformatics (39), and there are 
several widely used algorithms available (40, 41), notably extended 
connectivity fingerprints based on the Morgan algorithm (42) and 
substructure query sets such as MACCS keys (43). Given a suit-
able bit vector representation, simply adapting the model to assign 
memberships to each fingerprint bit instead of each molecule 
enables reasoning about reactivity in terms of structural motifs 
(see SI Appendix for implementation details).

To validate the use of probabilistic reasoning about structural 
features using structural fingerprints, we constructed an artificial 
chemical space consisting of 36 two- and 84 three-component 
combinations between the compounds in Fig. 3C (see SI Appendix 
for observations in this dataset). The model was seeded with the 
outcome of the 36 binary reactions as initial knowledge and tasked 
with exploring the chemical space by randomly picking one of the 
remaining experiments at each step. Following this exploration 
phase, the model was able to infer a three-component reactivity 
mode, the Morgan fingerprint bits for which correspond to the 
isocyanide, carboxylic acid, and carbonyl motifs, i.e., the Passerini 
reaction. Likewise, a binary reactivity mode was inferred related 
to the carboxylic acid and amine groups (Fig. 3C).

By tracking the likelihood of observations—that is, how prob-
able or unsurprising each observation is, whether reactive or non-
reactive—as the model explores this chemical space, it is possible 
to pinpoint when anomalous observations are made and at what 
point these observations are interpreted as a discovery rather than 

A

B

Fig. 2. (A) Description of a simple probabilistic model used to validate our system. Compounds are hypothesized to possess varying degrees of a set of properties, 
with each property showing varying degrees of reactivity toward other properties. Reactivity observations are used to infer likely allocations of properties and 
mutual reactivities. (B) Combination of membership Mαβ and reactivity R matrices for compounds α and β to yield the probability component matrix PαβIJ, which 
expresses the probability that α and β will react as a result of belonging to sets I and J, respectively. The ⊗ and ⊙ symbols represent the matrix multiplication 
and Hadamard (elementwise) product operators, respectively.
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anomaly (Fig. 3D). Once the empirical outcome of an experiment 
is known, it is possible to compare the likelihood before and after, 
that is, a priori versus a posteriori. The top graph in Fig. 3D shows 
the model’s degree of surprise to the outcomes before (indicated 
by the logarithm of observation likelihood) any observations have 
been revealed to it. As the exploration progresses (middle plot), 
the model revises its beliefs, accepting the Passerini reaction as 
predictably reactive rather than anomalous. At the end of the 
exploration, no observation is indicated as anomalous, meaning 
the model’s final interpretation is consistent with all outcomes.

Integration with Robotic Chemistry Platform

Probabilistic interpretation is most versatile in combination with a 
robotic chemistry platform, such as the Chemputer-based setup 
(Fig. 4A). This platform is composed of a set of syringe pumps and 
valves for liquid handling, dispensing chemicals, moving the reaction 
mixtures, and cleaning the robot. It is capable of mixing reagents 
from a pool of up to 24 stock solutions to prepare reactions in 20 
concurrent experiments kept under inert atmosphere (Fig. 4D).

To control the platform, we also expanded χDL5 (a program-
ming language for digital execution of chemistry) to permit a 
nonlinear sequence of operations, collection of online analytical 
data such as 1H NMR, and real-time decision-making based on 
the outcome of previous reactions. The current system implements 
real-time flow benchtop NMR, mass spectrometer, and HPLC. 
All instruments are remotely controlled using Python libraries that 
we developed to interface with manufacturer APIs using χDL steps 
(e.g., “Acquire HPLC”, “Shim NMR”) (Fig. 4B). Reaction 

temperature can also be adjusted using remote-controlled hot-
plates, allowing each reaction to proceed at constant temperature. 
χDL can perform the sequence of operations required for reaction 
setup and analysis in parallel, so the platform is capable of ana-
lyzing the contents of one reactor every hour (Fig. 4C).

Experimental Discovery of Historical Chemical 
Reactions

As a starting point for validating the probabilistic approach to 
discovery in an experimental setting, we studied the system’s 
behavior while operating in a chemical space containing a set of 
historically significant chemical reactions (44–51). The goal was 
to verify whether the Oracle is able to identify these discoveries 
and quantify their significance without referring to prior infor-
mation from the literature. To this end, nine landmark name 
reactions (listed in Table 1) from a range of periods in the history 
of synthetic chemistry were considered, and a corresponding set 
of 11 compounds, which participate in these reactions were 
selected to use as reagents in our robotic platform (Table 1). We 
deliberately selected a chemical space with known discoveries so 
that the oracle’s interpretation could be directly compared and 
validated against current understanding of these reactions.

A simplification used so far and commonly encountered in 
systems interfacing robotic platforms with machine-learning algo-
rithms is the use of binary reactivity observations (52, 53)—that 
is, the outcome of each experiment is simply described as reactive 
or nonreactive (0 or 1). This restriction prevents reasoning in sit-
uations where the precise mode of reactivity is of interest. For 

A C

B D

Fig. 3. Simulated discovery of the Diels–Alder and Passerini reactions. (A) A simple chemical space and associated reactivity observations which could indicate 
the Diels–Alder reaction. Missing connections indicate combinations whose reactivity has not yet been investigated. (B) Compound properties and reactivities 
inferred by the model by observing the reactivity pattern in A. (C) Compounds used in the study. Two- and three-component reactions between these compounds 
made up the chemical space explored. Inferred structural motifs corresponding to reactive fingerprints for the Passerini reaction (reactivity mode 1) and the 
acid–base reaction between amines and carboxylic acids (reactivity mode 2), (D) Evolution of model beliefs throughout the exploration process. The horizontal 
axis shows the progress of chemical space exploration as consecutive reactions attempted, and the vertical axis represents the degree of surprise (defined as 
the inverse logarithm of each observation’s likelihood). Observing the Passerini reaction is highly unlikely in prospect at the outset, i.e., a priori (gray trace), but 
is discovered as a rule by the end of the exploration process, i.e., a posteriori (blue trace).
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instance, with reaction outcomes stored independently as binary 
labels, it is not possible to know whether A + B + C: 1 signifies a 
three-component given A + B: 1 also. The Bayesian Oracle is not 
inherently limited to binary observations, so in the next stage, we 
devised a multibit vector that allows the description of different 
types of reactivity. Specifically, we binned the HPLC-DAD reten-
tion times of the reactants (prior to the reaction) and final reaction 
mixture into a set of regions and compared. The presence of new 
peaks in each region is recorded as a reactivity vector used as the 
outcome (Table 1 and SI Appendix).

Results and Discussion

We used our system to perform and interpret the outcome of 550 
reactions between two, three, or four reactants. At the start of each 
iteration, the probabilistic model was conditioned on the outcome 
of all previous reactions, and the most “disruptive” combination—
that is, the combination whose outcome would most radically 
change expected reactivity for the remaining unexplored portion 

of the chemical space—was selected to perform next. To under-
stand how these historical reactions were discovered and interpreted 
by the model, we asked whether they were perceived as unexpected 
when discovered—that is, at the point during exploration when 
first observed—and whether they seemed justified in retrospect 
once all reactions had been performed.

Examining the relative likelihood of each discovery (Fig. 5) 
reveals that the model can make inferences about related reactions. 
Based on the prior distributions used in this case, all entries are 
initially seen as highly unlikely. The model quickly learns about 
the Heck, Buchwald–Hartwig, and Sonogashira coupling reac-
tions following the discovery of the Suzuki reaction at step 24. 
The Wittig reaction shows a similar dependence on the Wittig–
Horner reaction (discovered at step 12); only the first to be dis-
covered is found surprising.

The theories of chemistry demonstrated so far have been sim-
plified to illustrate the types of insight enabled by automated 
Bayesian interpretation, but we envision that the greatest utility 
will be possible within a workflow where theories of much greater 

A B

C

D

Fig. 4. Organization of the robotic chemical platform. (A) Physical setup used for discovery. (B) Schematic representation of the discovery platform in χDL.  
(C) Experimental workflow for autonomous discovery. Reagents are combined as recommended by the probabilistic algorithm transferred to any available (empty 
and clean) reactor. Following a set reaction time, the first mixture past the set reaction time is analyzed, and the reactor is cleaned. (D) The robotic platform is 
made of a reagent module holding up to 24 starting materials, a reactor module with 20 flasks and an analysis module. The reagents are mixed into the reactors, 
heated under inert atmosphere, and analyzed with NMR, MS, and HPLC with diode-array detection (HPLC-DAD).
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detail can be defined and evaluated by domain experts (54). To 
facilitate and formalize this workflow, we have created Delphi, a 
platform for hosting and interrogating Bayesian theories, Fig. 6A. 
An arbitrary number of hypotheses can be deposited in the Delphi, 

which assigns them unique identifiers so they can be iteratively 
refined and derivatized. The same set of results can be interpreted 
under multiple theories, providing a quantitative and objective 
means of evaluating the relative merit of rival theories (55–57). 

Table 1. Named reactions contained in the validated chemical space, reactants/reagents involved, and the detected 
reactivity vectors

Reaction Reactants/reagents Reactivity vector

Aldol condensation (44) 11 13 19 – 00000001
Buchwald–Hartwig amination (45) 11 12 18 19 00000100

Heck reaction (46) 10 11 18 19 00000100

Mannich reaction (47) 11 12 13 20 01000001
Sonogashira reaction (48) 11 14 18 19 00001100

Suzuki reaction (49) 11 17 18 19 00000110

Wittig reaction (50) 13 16 19 – 00000111

Wittig-Horner reaction (51) 13 15 19 – 00000010
Digits displayed in bold denote reactivity unique to the reaction in question, i.e., not observed when a subset of reactants/reagents are combined.

Fig. 5. Timeline showing probabilistic interpretation of landmark discoveries. A priori, all reactivities are interpreted as surprising, as shown by their low initial 
likelihood. During the course of exploration, the model interprets successive reactivity observations and starts to recognize the principal reactivity modes. For 
instance, the early encounter with the Wittig–Horner reaction is highly surprising, but the Wittig reaction is partially anticipated by the model based on accumulated 
evidence. Similarly, after discovering the Suzuki reaction, the system anticipates the Heck, Buchwald–Hartwig, and Sonogashira reactions, as evidenced by their 
high likelihood at the point of observation. The Oracle attempted the Wittig and Mannich reactions twice in order to ensure that they were not anomalies.D
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As a demonstration, we reinterpreted the robot’s experimental 
findings under an alternative theory that links structural motifs 
in participating reagent molecules (represented by their MACCS 
keys) to the number of unique product HPLC peaks in each 

reaction (rather than their location). The resulting interpretations 
are compared side by side in Fig. 6 B and C.

Founded upon recent progress in laboratory automation and 
online analytics, the long march toward digitizing chemical 

A

B

C

Fig. 6. Interpreting the same reactivity observations under different theories using Delphi. (A) Delphi’s role in the discovery workflow. (B) Visualization of inferred 
reagent sets and reactivity modes in a structure-free theory. Arrows show the connection between reactivity modes and events, in this case, observation of new 
HPLC-DAD peaks. (C) Visualization of primary structural motifs (as defined by MACCS patterns), the abstract properties conferred by each, and the reactivity 
modes associated with the interaction of various properties (colors denoting reaction arity). Each reactivity mode is defined by the observation of a unique new 
peak in the product HPLC-DAD chromatogram.
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discovery has passed a number of landmark developments involving 
varying degrees of reliance upon and interpretability by human 
chemists. With this work, we demonstrate that eliminating expert 
input is not a necessary condition for removing hidden bias or using 
modern hardware to reason about reactivity in large chemical 
spaces. Present probabilistic methods still present computational 
challenges when exploring hypothesis spaces parameterized by a 
large number of latent dimensions or discrete parameters. Defining 
bespoke probabilistic models to represent domain knowledge also 
requires familiarity with probability theory and the inference 
method used. We expect the steady improvement of both inference 
algorithms and probabilistic programming languages to lower the 
computational as well as cognitive barriers to wider adoption of the 
probabilistic paradigm. Meanwhile, progress toward a shared stand-
ard for describing the experimental space (inputs) and predictions 
(outputs) will allow systems like Delphi to act as repositories for 
reusable expert chemical knowledge, facilitating reproducible col-
laboration on discovery campaigns carried out around the globe.

Methods

Probabilistic Modeling. Inference is carried out using Hamiltonian Monte 
Carlo, specifically using the No-U-turn sampler (34) algorithm for sampling as 
implemented in the NumPyro probabilistic programming package (33, 58), 

early prototyping performed using the PyMC3 probabilistic programming pack-
age (59). The methodology for Bayesian model comparison was based on the work 
of Kamary et al. through a combination of candidate models into a mixture model 
and inspection of the posterior mixing distribution (57). SI Appendix contains 
plate diagrams as well as prior and likelihood distributions for all models used.

Robotic Platform. Full specification regarding individual devices and their 
organization within the robotic platform as well as vendor information for online 
analytics is provided in SI Appendix.

Data, Materials, and Software Availability. SI Appendix contains Materials 
and Methods, mathematical formulation of probabilistic model, software imple-
mentation of probabilistic Oracle and Delphi, and software implementation of 
the robotic platform. Our implementation of the Chemical Oracle is available 
online at https://github.com/croningp/chem_oracle. A dataset containing the 
experimental reactivity data in the explored chemical space is freely available 
on Zenodo: https://zenodo.org/record/6337271.
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