Insights into the mechanism of action of the arbitrium communication system in SPbeta phages

Gallego del Sol, F., Quiles-Puchalt, N., Brady, A., Penadés, J. R. and Marina, A. (2022) Insights into the mechanism of action of the arbitrium communication system in SPbeta phages. Nature Communications, 13, 3627. (doi: 10.1038/s41467-022-31144-3) (PMID:35750663) (PMCID:PMC9232636)

[img] Text
274020.pdf - Published Version
Available under License Creative Commons Attribution.

3MB

Abstract

The arbitrium system is employed by phages of the SPbeta family to communicate with their progeny during infection to decide either to follow the lytic or the lysogenic cycle. The system is controlled by a peptide, AimP, that binds to the regulator AimR, inhibiting its DNA-binding activity and expression of aimX. Although the structure of AimR has been elucidated for phages SPβ and phi3T, there is still controversy regarding the molecular mechanism of AimR function, with two different proposed models for SPβ. In this study, we deepen our understanding of the system by solving the structure of an additional AimR that shows chimerical characteristics with the SPβ receptor. The crystal structures of this AimR (apo, AimP-bound and DNA-bound) together with in vitro and in vivo analyses confirm a mechanism of action by AimP-induced conformational restriction, shedding light on peptide specificity and cross regulation with relevant biological implications.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Penades, Prof Jose R and Brady, Aisling
Authors: Gallego del Sol, F., Quiles-Puchalt, N., Brady, A., Penadés, J. R., and Marina, A.
College/School:College of Medical Veterinary and Life Sciences > School of Infection & Immunity
Journal Name:Nature Communications
Publisher:Nature Research
ISSN:2041-1723
ISSN (Online):2041-1723
Copyright Holders:Copyright © 2022 The Authors
First Published:First published in Nature Communications 13: 3627
Publisher Policy:Reproduced under a Creative Commons License

University Staff: Request a correction | Enlighten Editors: Update this record

Project CodeAward NoProject NamePrincipal InvestigatorFunder's NameFunder RefLead Dept
170721Molecular biology of the PICIs, a novel and widespread family of mobile genetic elements involved in bacterial virulenceJose R PenadesMedical Research Council (MRC)MR/M003876/1III - Bacteriology - Dr J Penades
304055Deciphering Gram-negative phage-inducible chromosomal island strategies for spreading in natureJose R PenadesMedical Research Council (MRC)MRS00940X/1III - Bacteriology
172242Understanding a novel mechanim involving pathogenity islands in the transfer of unlinked chromosomal virulence genesJose R PenadesBiotechnology and Biological Sciences Research Council (BBSRC)BB/N002873/1Institute of Infection, Immunity & Inflammation
302971Helper and satellite pathogenicity islands: the discovery of two novel subcellular elements with a huge impact on bacterial pathogenesis and evolutionJose R PenadesBiotechnology and Biological Sciences Research Council (BBSRC)BB/S003835/1III - Bacteriology
172321DUT-SignalJose R PenadesEuropean Research Council (ERC)670932Institute of Infection, Immunity & Inflammation
173671Prof. R. Fitzgerald. Wellcome Trust Award 201531/Z/16/Z - Understanding bacterial host adaptation to combat infectious diseasesJose R PenadesWellcome Trust (WELLCOTR)R44516 - WT 201531/Z/16/ZInstitute of Infection, Immunity & Inflammation