Items where Research Centre is "College of Science and Engineering > School of Physics and Astronomy > Institute for Gravitational Research" and Year is 2016

Up a level
Export as [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Group by: Authors | Item Type | No Grouping
Jump to: A | B | C | D | E | F | G | H | K | L | M | N | P | R | S | W
Number of items: 54.


Aasi, J. et al. (2016) First low frequency all-sky search for continuous gravitational wave signals. Physical Review D, 93(4), 042007. (doi: 10.1103/PhysRevD.93.042007)

Aasi, J. et al. (2016) Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers. Physical Review D, 93(4), 042006. (doi: 10.1103/PhysRevD.93.042006)

Abbott, B. P. et al. (2016) Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 116, 061102. (doi: 10.1103/PhysRevLett.116.061102) (PMID:26918975)

Abbott, B. P. et al. (2016) Astrophysical implications of the binary black hole merger GW150914. Astrophysical Journal Letters, 818(2), L22. (doi: 10.3847/2041-8205/818/2/L22)

Abbott, B. P. et al. (2016) Binary black hole mergers in the first advanced LIGO observing run. Physical Review X, 6(4), 041015. (doi: 10.1103/PhysRevX.6.041015)

Abbott, B. P. et al. (2016) Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data. Physical Review D, 94(4), 042002. (doi: 10.1103/PhysRevD.94.042002)

Abbott, B. P. et al. (2016) Directly comparing GW150914 with numerical solutions of Einstein’s equations for binary black hole coalescence. Physical Review D, 94(6), 064035. (doi: 10.1103/PhysRevD.94.064035)

Abbott, B. P. et al. (2016) GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Physical Review D, 93(12), 122003. (doi: 10.1103/PhysRevD.93.122003)

Abbott, B. P. et al. (2016) GW150914: implications for the stochastic gravitational-wave background from binary black holes. Physical Review Letters, 116(13), 131102. (doi: 10.1103/PhysRevLett.116.131102) (PMID:27081965)

Abbott, B. P. et al. (2016) GW150914: the advanced LIGO detectors in the era of first discoveries. Physical Review Letters, 116(13), 131103. (doi: 10.1103/PhysRevLett.116.131103) (PMID:27081966)

Abbott, B. P. et al. (2016) GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Physical Review Letters, 116, 241103. (doi: 10.1103/PhysRevLett.116.241103)

Abbott, B. P. et al. (2016) Improved analysis of GW150914 using a fully spin-precessing waveform model. Physical Review X, 6(4), 041014. (doi: 10.1103/PhysRevX.6.041014)

Abbott, B. P. et al. (2016) Localization and broadband follow-up of the gravitational-wave transient GW150914. Astrophysical Journal Letters, 826(1), L13. (doi: 10.3847/2041-8205/826/1/L13)

Abbott, B. P. et al. (2016) Observing gravitational-wave transient GW150914 with minimal assumptions. Physical Review D, 93(12), 122004. (doi: 10.1103/PhysRevD.93.122004)

Abbott, B. P. et al. (2016) Properties of the Binary Black Hole Merger GW150914. Physical Review Letters, 116(24), 241102. (doi: 10.1103/PhysRevLett.116.241102) (PMID:27367378)

Abbott, B. P. et al. (2016) The rate of binary black hole mergers inferred from advanced LIGO observations surrounding GW150914. Astrophysical Journal Letters, 833(1), L1. (doi: 10.3847/2041-8205/833/1/L1)

Abbott, B. P. et al. (2016) Search for transient gravitational waves in coincidence with short-duration radio transients during 2007–2013. Physical Review D, 93(12), 122008. (doi: 10.1103/PhysRevD.93.122008)

Abbott, B. P. et al. (2016) Supplement: “The rate of binary black hole mergers inferred from Advanced LIGO observations surrounding GW150914” (2016, ApJL, 833, L1). Astrophysical Journal Supplement Series, 227(2), 14. (doi: 10.3847/0067-0049/227/2/14)

Abbott, B. P. et al. (2016) Tests of general relativity with GW150914. Physical Review Letters, 116(22), 221101. (doi: 10.1103/PhysRevLett.116.221101) (PMID:27314708)

Abbott, B. P. et al. (2016) Upper limits on the rates of binary neutron star and neutron star–black hole mergers from advanced LIGO’s first observing run. Astrophysical Journal Letters, 832(2), L21. (doi: 10.3847/2041-8205/832/2/L21)

Abbott, B. P. et al. (2016) Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project. Physical Review D, 94(10), 102002. (doi: 10.1103/PhysRevD.94.102002)

Abbott, B. P. et al. (2016) Prospects for observing and localizing gravitational-wave transients with advanced LIGO and advanced virgo. Living Reviews in Relativity, 19, 1. (doi: 10.1007/lrr-2016-1)

Abbott, B. P. et al. (2016) All-sky search for long-duration gravitational wave transients with initial LIGO. Physical Review D, 93(4), 042005. (doi: 10.1103/PhysRevD.93.042005)

Abbott, B.P. et al. (2016) Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 33(13), 134001. (doi: 10.1088/0264-9381/33/13/134001)

Abbott, B.P. et al. (2016) First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors. Physical Review D, 94(10), 102001. (doi: 10.1103/PhysRevD.94.102001)

Abbott, B.P. et al. (2016) Supplement: "Localization and broadband follow-up of the gravitational-wave transient GW150914" (2016, ApJL, 826, L13). Astrophysical Journal Supplement Series, 225(1), 8. (doi: 10.3847/0067-0049/225/1/8)

Adrián-Martínez, S. et al. (2016) High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube. Physical Review D, 93(12), 122010. (doi: 10.1103/PhysRevD.93.122010)

Armano, M. et al. (2016) Constraints on LISA Pathfinder’s self-gravity: design requirements, estimates and testing procedures. Classical and Quantum Gravity, 33(23), 235015. (doi: 10.1088/0264-9381/33/23/235015)

Armano, M. et al. (2016) Sub-femto-g free fall for space-based gravitational wave observatories: LISA pathfinder results. Physical Review Letters, 116(23), 231101. (doi: 10.1103/PhysRevLett.116.231101)


Bassiri, R. et al. (2016) Order, disorder and mixing: The atomic structure of amorphous mixtures of titania and tantala. Journal of Non-Crystalline Solids, 438, pp. 59-66. (doi: 10.1016/j.jnoncrysol.2016.02.009)

Bond, C., Brown, D., Freise, A. and Strain, K. A. (2016) Interferometer techniques for gravitational-wave detection. Living Reviews in Relativity, 19, 3. (doi: 10.1007/s41114-016-0002-8) (PMID:28260967) (PMCID:PMC5315762)


Chwalla, M. et al. (2016) Design and construction of an optical test bed for LISA imaging systems and tilt-to-length coupling. Classical and Quantum Gravity, 33(24), 245015. (doi: 10.1088/0264-9381/33/24/245015)

Clark, C., Bassiri, R., Martin, I. W. , Markosyan, A., Murray, P. G. , Gibson, D., Rowan, S. and Fejer, M. (2016) Comparison of single-layer and double-layer anti-reflection coatings using laser-induced damage threshold and photothermal common-path interferometry. Coatings, 6(2), 20. (doi: 10.3390/coatings6020020)

Courtial, J. , Gray, N. , O'Donnell, R., MacSporran, R., Oxburgh, S., Hendry, M. and Cowie, E. N. (2016) Photography at relativistic speeds. Proceedings of the SPIE: The International Society for Optical Engineering, 9948, 994808. (doi: 10.1117/12.2237850)


Davies, G. S., Pitkin, M. and Woan, G. (2016) A targeted spectral interpolation algorithm for the detection of continuous gravitational waves. Classical and Quantum Gravity, 34(1), 015010. (doi: 10.1088/1361-6382/34/1/015010)

Dooley, K.L. et al. (2016) GEO 600 and the GEO-HF upgrade program: successes and challenges. Classical and Quantum Gravity, 33(7), 075009. (doi: 10.1088/0264-9381/33/7/075009)


Edgar, M.P., Macarthur, J., Barr, B.W. , Hild, S., Huttner, S., Sorazu, B. and Strain, K.A. (2016) Demonstration of an optical spring in the 100g mirror regime. Classical and Quantum Gravity, 33, 075007. (doi: 10.1088/0264-9381/33/7/075007)


Fan, X., Chen, Y. and Messenger, C. (2016) Method to detect gravitational waves from an ensemble of known pulsars. Physical Review D, 94(8), 084029. (doi: 10.1103/PhysRevD.94.084029)


Grote, H. et al. (2016) High power and ultra-low-noise photodetector for squeezed-light enhanced gravitational wave detectors. Optics Express, 24(18), pp. 20107-20118. (doi: 10.1364/OE.24.020107) (PMID:27607619)


HART, M. J., Bassiri, R., Borisenko, K. B., Véron, M., Rauch, E. F., Martin, I. W. , Rowan, S. , Fejer, M. M. and MacLaren, I. (2016) Medium range structural order in amorphous tantala spatially resolved with changes to atomic structure by thermal annealing. Journal of Non-Crystalline Solids, 438, pp. 10-17. (doi: 10.1016/j.jnoncrysol.2016.02.005)

Haughian, K. , Chen, D., Cunningham, L. , Hofmann, G., Hough, J. , Murray, P.G. , Nawrodt, R., Rowan, S. , van Veggel, A.A. and Yamamoto, K. (2016) Mechanical loss of a hydroxide catalysis bond between sapphire substrates and its effect on the sensitivity of future gravitational wave detectors. Physical Review D, 94(8), 082003. (doi: 10.1103/PhysRevD.94.082003)


Key, J. S. and Hendry, M. (2016) Defining gravity. Nature Physics, 12(6), pp. 524-525. (doi: 10.1038/nphys3786)

Killow, C. J., Fitzsimons, E. D., Perreur-Lloyd, M. , Robertson, D. I. and Ward, H. (2016) Mechanisation of Precision Placement and Catalysis Bonding of Optical Components. In: International Conference on Space Optics — ICSO 2016, Biarritz, France, 18-21 Oct 2016, 105623W. (doi: 10.1117/12.2296078)

Killow, C. J., Fitzsimons, E. D., Perreur-Lloyd, M. , Robertson, D. I. , Ward, H. and Bogenstahl, J. (2016) Optical fiber couplers for precision spaceborne metrology. Applied Optics, 55(10), pp. 2724-2731. (doi: 10.1364/AO.55.002724) (PMID:27139678)


Lieser, M. et al. (2016) Construction of an optical test-bed for eLISA. Journal of Physics: Conference Series, 716, 012029. (doi: 10.1088/1742-6596/716/1/012029)


Martynov, D. V. et al. (2016) Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy. Physical Review D, 93(11), 112004. (doi: 10.1103/PhysRevD.93.112004)

Middlemiss, R. P. , Samarelli, A., Paul, D. J. , Hough, J. , Rowan, S. and Hammond, G. D. (2016) Measurement of the Earth tides with a MEMS gravimeter. Nature, 531(7596), pp. 614-617. (doi: 10.1038/nature17397) (PMID:27029276)


Nikukar, H., Childs, P. G., Curtis, A. S., Martin, I. W. , Riehle, M. O. , Dalby, M. J. and Reid, S. (2016) Production of nanoscale vibration for stimulation of human mesenchymal stem cells. Journal of Biomedical Nanotechnology, 12(7), pp. 1478-1488. (doi: 10.1166/jbn.2016.2264)


Pitkin, M. , Messenger, C. and Wright, L. (2016) Astrophysical calibration of gravitational-wave detectors. Physical Review D, 93(6), 062002. (doi: 10.1103/PhysRevD.93.062002)

Powell, J., Gossan, S. E., Logue, J. and Heng, I. S. (2016) Inferring the core-collapse supernova explosion mechanism with gravitational waves. Physical Review D, 94(12), 123012. (doi: 10.1103/PhysRevD.94.123012)


Reid, S. and Martin, I. W. (2016) Development of mirror coatings for gravitational wave detectors. Coatings, 6(4), 61. (doi: 10.3390/coatings6040061)


Steinlechner, J. and Martin, I. W. (2016) High index top layer for multimaterial coatings. Physical Review D, 93(10), 102001. (doi: 10.1103/PhysRevD.93.102001)

Steinlechner, J., Martin, I. W. , Bassiri, R., Bell, A. , Fejer, M. M., Hough, J. , Markosyan, A., Route, R. K., Rowan, S. and Tornasi, Z. (2016) Optical absorption of ion-beam sputtered amorphous silicon coatings. Physical Review D, 93(6), 062005. (doi: 10.1103/PhysRevD.93.062005)


Woan, G. (2016) Gravitational waves found again: here’s how they could whisper the universe’s secrets. Conversation, 2016, Jun 15.

This list was generated on Fri Dec 8 03:20:54 2023 GMT.