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Paired and Altruistic Kidney Donation in the UK:

Algorithms and Experimentation∗

David F. Manlove† and Gregg O’Malley

School of Computing Science, University of Glasgow, Glasgow, UK.

Abstract

We study the computational problem of identifying optimal sets of kidney ex-
changes in the UK. We show how to expand an integer programming-based formula-
tion due to Roth et al. [2007] in order to model the criteria that constitute the UK
definition of optimality. The software arising from this work has been used by the Na-
tional Health Service Blood and Transplant to find optimal sets of kidney exchanges
for their National Living Donor Kidney Sharing Schemes since July 2008. We report
on the characteristics of the solutions that have been obtained in matching runs of the
scheme since this time. We then present empirical results arising from experiments on
the real datasets that stem from these matching runs, with the aim of establishing the
extent to which the particular optimality criteria that are present in the UK influence
the structure of the solutions that are ultimately computed. A key observation is that
allowing 4-way exchanges would be likely to lead to a moderate number of additional
transplants.

Keywords: domino paired donation chain, integer programming, kidney paired exchange,
multi-objective lexicographic optimization problem

1 Introduction

Transplantation is the most effective treatment that is currently known for kidney failure.
In the UK alone, as of 31 March 2012 there were 6633 patients waiting on the transplant
list for a donor kidney, with the median waiting time being 1168 days for an adult and
354 days for a child (based on patient registrations between 1 April 2005 and 31 March
2009). Kidneys used for transplantation can come from both deceased and living donors.
In the UK, around 36% of all kidney transplants between 1 April 2011 and 31 March 2012
came from living donors [44].

It is often the case that a patient requiring a kidney transplant has a willing donor,
but due to blood- and/or tissue-type incompatibilities, the transplant cannot take place.
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However, in the UK, the Human Tissue Act 2004 and the Human Tissue (Scotland) Act
2006 (HTA) introduced, among other things, the legal framework required to allow the
transplantation of organs between donors and recipients with no genetic or emotional
connection.

With the introduction of the HTA, a patient with an incompatible donor can now
“swap” their donor with that of another patient in a similar position, via “kidney ex-
changes” that involve two or more incompatible donor–recipient pairs. For example, a
pairwise (kidney) exchange involves two incompatible donor–recipient pairs (d1, r1) and
(d2, r2), where d1 is compatible with r2, and d2 is compatible with r1: d1 donates a kidney
to r2 in exchange for d2 donating a kidney to r1. 3-way exchanges extend this concept to
three pairs in a cyclic manner.

In a number of countries, centralized programmes (also known as kidney exchange
matching schemes) have been introduced to help optimize the search for kidney exchanges.
These include the USA [34, 35, 36, 1, 42, 43, 45], the Netherlands [21, 23, 19], South Korea
[24, 31, 30, 22] and Romania [27, 26].

Following the introduction of the HTA, in early 2007 the UK established what has now
become the National Living Donor Kidney Sharing Schemes (NLDKSS), administered by
the National Health Service Blood and Transplant (NHSBT) (formerly UK Transplant)
[20]. The purpose of the NLDKSS is two-fold: firstly to identify those pairs that are
compatible with one another and then subsequently to optimize the selected set of kidney
exchanges subject to certain criteria. It is the responsibility of NHSBT (and in particular
its Kidney Advisory Group) to supply the scoring system that is used to measure the
benefit of potential transplants, and the optimality criteria for the selection of kidney
exchanges.

In general, it is seen as logistically challenging to carry out the transplants involved in
a kidney exchange when the number of pairs involved in a single such exchange is large.
This is mainly because all operations have to be performed simultaneously due to the risk
of a donor reneging on his/her commitment to donate a kidney after their loved one has
received a kidney. But also, longer chains involve more participants, and therefore have a
higher risk that the whole chain will break down if one of the donors or recipients involved
in the cycle becomes ill. Mainly for these reasons, at the present time the NLDKSS does
not allow exchanges involving more than three pairs.

A kidney exchange matching scheme may also include altruistic (or non-directed)
donors [37], who do not have an associated recipient and who are willing to donate a
kidney to a stranger. An altruistic donor d0 can either donate directly to a recipient
(without a donor) on the Deceased Donor Waiting List (DDWL), or else can trigger a
domino paired donation chain (DPD chain) [29, 37, 5] involving one or more incompatible
donor–recipient pairs: here d0 donates to a recipient r1 in exchange for r1’s donor donating
to the recipient r2 in the next pair in the chain, and so on, with the final donor donating
to the DDWL. According to NHSBT terminology, a DPD chain is short (resp. long) if
it consists of one (resp. two) incompatible donor–recipient pairs). We remark that not
all the transplants on a DPD chain need to be carried out simultaneously, for if a donor
reneges, the next recipient in the chain should still have his/her willing donor, and can
participate in the next matching run (this is not necessarily true in the case of a cycle:
with non-simultaneous transplants, if a donor reneges, a recipient may fail to receive a
kidney, and moreover his/her willing donor may already have had a nephrectomy). At
present the NLDKSS allows short but not long chains. The concept of a DPD chain may
be generalised to a Non-Simultaneous Extended Altruistic Donor chain [33, 5, 4, 16] —
these are not currently permitted in the NLDKSS, but are discussed in further detail in
Section 6.
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Within the last decade, kidney exchange has received considerable attention in the
computer science and operations research [1, 2, 3, 6, 8, 10, 11, 13, 15, 16, 17, 32, 40],
economics [4, 7, 34, 35, 36, 41] and medical [5, 12, 18, 20, 21, 22, 23, 25, 26, 29, 30, 33,
37, 38, 39] literature, with many of these papers being inter-disciplinary in nature. It
has been observed that when only pairwise exchanges are permitted, an optimal solution
can usually (depending of course on the definition of optimality) be found in polynomial
time using maximum weight matching in a general graph (see e.g., [10] for more details).
However when pairwise and 3-way exchanges are allowed, the problem of finding a set of
exchanges that maximizes the number of transplants is NP-hard [1] and indeed APX-hard
[10].

Roth et al. [36] described two integer programming (IP)-based formulations of the
problem of finding a maximum weight set of kidney exchanges, when both pairwise and
3-way exchanges are permitted (here, the weights can measure the benefit of potential
transplants). Abraham et al. [1] showed that, due to scaling issues with the first of these
models (the so-called edge formulation), the second model (the so-called cycle formulation)
is the preferred way to model the problem using an IP. They implemented the cycle
formulation using a branch-and-price strategy [9], showing that their approach could clear
markets with up to 10,000 donor–recipient pairs.

1.1 Contribution of this paper

In this paper we present an application-driven case study, showing how the cycle formula-
tion can be extended in order to handle kidney exchange in the UK. In particular, we show
how to model a complex, hierarchical set of criteria that form the definition of an optimal
set of kidney exchanges. These criteria are quite natural, yet specific to the requirements
of the UK scheme. We have implemented the technique and it has been used by NHSBT to
find optimal sets of kidney exchanges for the NLDKSS since July 2008. Our contribution
in this paper is as follows:

1. We describe the IP constraints that are required in order to enforce the NLDKSS
optimality definition. The description could help inform decision makers in other
countries who are in the early stages of setting up a kidney exchange matching
scheme.

2. We report on our practical experience over a 4.5-year period of using the technique
to find optimal solutions for matching runs of the NLDKSS, which are carried out
approximately every quarter. Our implementation involves a branch-and-cut strat-
egy to compute solutions to the IP models. Extending the software to incorporate
a branch-and-price approach is discussed in Section 6.

3. We present empirical results arising from experiments conducted using a web ap-
plication, incorporating the IP-based algorithm, that is capable of automating the
experimental comparison of solutions according to a range of different optimality
criteria. Again, these results arise from real datasets and indicate the extent to
which the particular optimality criteria that are present in the UK influence the
structure of the solutions that are ultimately computed. A key observation is that
allowing 4-way exchanges would be likely to lead to a moderate number of additional
transplants.

1.2 Structure of this paper

The remainder of this paper is organized as follows. Section 2 defines important notation
and terminology, and lists the hierarchical set of criteria that constitute the UK optimality
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definition. Then, in Section 3, we describe the IP model, indicating the variables and
constraints involved, giving intuition for both. We also discuss two recent papers that
have presented alternative IP models for kidney exchange [19, 13]. Section 4 describes
the actual matching run results, whilst Section 5 presents the experimental evaluation of
alternative optimality criteria. Finally, Section 6 discusses some possible directions for
future work.

2 The NLDKSS optimality criteria

The problem of finding an optimal set of kidney exchanges essentially corresponds to
computing optimal cycle packings in weighted directed graphs. Suppose we have a set
SP of incompatible donor–recipient pairs involving a set SD = {d1, . . . , dnD

} of donors
of cardinality nD and a set SR = {r1, . . . , rnR

} of recipients of cardinality nR. That is,
SP ⊆ SD × SR. Let nP = |SP |.

Now suppose we have a set SA = {d′1, d
′
2, . . . , d

′
nA

} of altruistic donors of cardinality nA.
We associate with each altruistic donor d′i ∈ SA a dummy recipient r′i who is compatible
with every donor di ∈ SD and incompatible with every donor d′i ∈ SA. Let

S = SP ∪ {(d′i, r
′
i) : d

′
i ∈ SA}.

Then |S| = nP + nA. Let n = |S|.
Enumerate the pairs in S as {p1, . . . , pn}, where without loss of generality SP =

{p1, . . . , pnP
}. For each pk ∈ SP , where pk = (di, rj), let d(pk) denote di and let r(pk)

denote rj . Similarly, for each pk ∈ S\SP , where pk = (d′i, r
′
i), let d(pk) denote d′i and let

r(pk) denote r′i.
For each ri ∈ SR, define

SP (ri) = {pk ∈ SP : r(pk) = ri}.

Note that possibly |SP (ri)| > 1, i.e., ri has multiple willing but incompatible donors.
Similarly, for each di ∈ SD, define

SP (di) = {pk ∈ SP : d(pk) = di}.

Also, possibly (but more unusually and forbidden in the NLDKSS), |SP (di)| > 1, i.e., di
has multiple recipients for whom he/she is a willing but incompatible donor.

We model the kidney exchange problem by forming a weighted directed graph (digraph)
D = (V,A), where V = {v1, . . . , vn}: here vk corresponds to pk (1 ≤ k ≤ n). Moreover
(vi, vj) ∈ A if and only if d(vi) is compatible with r(vj). In this way, 2-cycles and 3-
cycles in D not involving an altruistic donor correspond to pairwise and 3-way exchanges
respectively, whilst 2-cycles and 3-cycles in D involving an altruistic donor correspond to
short and long chains respectively, where in practice the final donor in the chain donates
a kidney to the DDWL. (Note that our model handles both short and long chains, despite
the NLDKSS allowing only short chains at present.)

An arc (vi, vj) where d(pj) ∈ SD has a real-valued weight w(vi, vj) > 0 that arises from
a scoring system employed by NHSBT to measure the potential benefit of a transplant
from d(pi) to r(pj). Factors involved in computing this weight include waiting time for
r(pj) (based on the number of previous matching runs that r(pj) has been unsuccessfully
involved in), r(pj)’s sensitisation (based on calculated HLA antibody reaction frequency),
HLA mismatch levels between d(pi) and r(pj) (which roughly speaking corresponds to
levels of tissue-type incompatibility) and points relating to the difference in ages between
d(pi) and d(pj) (see [20] for more details).
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(       )d2,r2(       )d3,r3

Figure 1: Example of a 3-cycle containing a back-arc and an embedded 2-cycle.

An arc (vi, vj) where d(pj) ∈ SA has weight w(vi, vj) = 0 (a discussion of this is given
towards the end of Section 3.1). The weight of a cycle C in D is the sum of the weights
of the individual arcs in C.

A set of exchanges in D is a permutation π of V such that (i) for each vi ∈ V , if
π(vi) 6= vi then (vi, π(vi)) ∈ A, and (ii) no cycle in π has length > 3. If π(vi) 6= vi then vi
is said to be matched, otherwise vi is unmatched. A pair pi ∈ P is matched if vi is, and pi
is unmatched otherwise.

Suppose some vk ∈ V is unmatched. Assume that pk ∈ SP . Let di = d(pk) and let
rj = r(pk). If all pairs in SP (di) (respectively SP (rj)) are unmatched then di (respectively
rj) is said to be unmatched and will not participate in a kidney exchange. Now assume that
pk ∈ S\SP . Then d(pk), an altruistic donor, is said to be unmatched, but in practice he/she
will donate directly to the DDWL. For this reason, we define the size of π (corresponding
to the number of transplants yielded by this set of exchanges) to be the number of vertices
matched by π plus the number of unmatched vertices corresponding to altruistic donors.

Given a 3-cycle C in D with arcs (vi, vj), (vj , vk), (vk, vi), we say that C contains a
back-arc if without loss of generality (vj, vi) ∈ A. In such a case we say that C contains
an embedded 2-cycle involving arcs (vi, vj), (vj , vi). A 3-cycle with a back-arc and an
embedded 2-cycle is illustrated in Figure 1. An effective 2-cycle is either a 2-cycle or a
3-cycle with at least one back-arc.

A back-arc can be seen as a form of fault-tolerance in a 3-cycle. To understand why,
consider the 3-cycle in Figure 1. If either d3 or r3 drops out (for example due to illness),
then the pairwise exchange involving (d1, r1) and (d2, r2) might still be able to proceed. On
the other hand, if either of the pairs (d1, r1) or (d2, r2) were to withdraw, then this pairwise
exchange would have failed anyway. Thus the risk involved with a 3-way exchange, due
to the greater likelihood (as compared to a pairwise exchange) of the cycle breaking down
before transplants can occur, is mitigated with the inclusion of a back-arc.

We now present the definition of an optimal set of exchanges for the NLDKSS, as
determined by the Kidney Advisory Group of NHSBT.

Definition 1. A set of exchanges π is optimal if:

1. the number of effective 2-cycles in π is maximized;

2. subject to (1), π has maximum size;

3. subject to (1)-(2), the number of 3-cycles in π is minimized;

4. subject to (1)-(3), the number of back-arcs in the 3-cycles in π is maximized;

5. subject to (1)-(4), the overall weight of the cycles in π is maximized.

We give some intuition for Definition 1 as follows. The first priority is to ensure
that there are at least as many 2-cycles and 3-cycles with embedded 2-cycles as there
would be in an optimal solution containing only 2-cycles. This is to ensure that the
introduction of 3-way exchanges is not detrimental to the maximum number of pairwise
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Figure 2: There are two sets of exchanges, each of size 9 and containing 3 effective 2-cycles:
(i) choose the three 3-cycles at the bottom, or (ii) choose three 2-cycles at the bottom and
the 3-cycle at the top.

exchanges that could possibly take place. Subject to this we maximise the total number
of transplants (this is the number of unmatched altruistic donors, plus twice the number
of pairwise exchanges and short chains, plus 3 times the number of 3-way exchanges1).
Subject to this we minimize the number of 3-way exchanges. Despite Criterion 1, this
is still required: for example an optimal solution could either comprise (i) three 3-way
exchanges, each with a back-arc, or (ii) three pairwise exchanges and one 3-way exchange
(each of solutions (i) and (ii) has size 9 and contains three effective 2-cycles) – see Figure 2
for an illustration. Solution (ii) is preferred by NHSBT because of the additional logistical
difficulty of carrying out 3-way exchanges compared to pairwise exchanges (this solution
has two fewer 3-way exchanges than solution (i)). Next the number of back-arcs in 3-
way exchanges is maximized (note that a 3-way exchange could contain more than one
back-arc). Finally we maximize the sum of the cycle weights.

3 Finding an optimal solution

3.1 Our solution methodology

In this section we describe an algorithm that uses a sequence of IP formulations to find
an optimal set of kidney exchanges with respect to Definition 1. After each run of the
IP solver, we use the optimal value calculated at that iteration to enforce a constraint
that must be satisfied in subsequent iterations. This ensures that once Criteria 1..r in
Definition 1 have been satisfied by an intermediate solution, they continue to hold when
we additionally enforce Criterion r + 1 (1 ≤ r ≤ 4). At the outset, an IP formulation,
called the basic IP model, is created. This extends the cycle formulation of Roth et al. [36]
in order to enable unmatched altruistic donors to be quantified (and to handle recipients
with multiple donors, and donors with multiple recipients).

Let C = {C1, C2, . . . , CnC
} denote the set of all possible cycles of lengths 2 and

3 in the digraph D. Without loss of generality, suppose that the 2-cycles in C are
C1, . . . , Cn2

, the 3-cycles in C are Cn2+1, . . . , Cn2+n3
, and the 3-cycles with back-arcs in C

are Cn2+1, . . . , Cn2+nb
3

(so nC = n2 + n3).

Let x be an (nC + nA) × 1 vector of binary variables x1, x2, . . . , xnC+nA
, where for

1 ≤ j ≤ nC , xj = 1 if and only if Cj belongs to an optimal solution, and for 1 ≤ j ≤ nA,
xnC+j = 1 if and only if altruistic donor d′j is unmatched.

The basic IP model then contains the following constraints (in what follows, for a
donor or recipient a ∈ SA ∪ SD ∪ SR, we use the abbreviation a ∈ Cj as shorthand for the

1The size should also include take into account long chains if they are permitted.

6



case that a = d(pk) or a = r(pk) for some pk ∈ S where vk belongs to Cj):
∑

Cj∈C:ri∈Cj

xj ≤ 1 (1 ≤ i ≤ nR) (A)

∑

Cj∈C:di∈Cj

xj ≤ 1 (1 ≤ i ≤ nD, |SP (di)| > 1) (B)

xnC+i +
∑

Cj∈C:d
′
i∈Cj

xj = 1 (1 ≤ i ≤ nA) (C)

Now let c be a 1×(nC+nA) vector of values corresponding to the coefficients of current
objective criterion, e.g., for 1 ≤ j ≤ nC , cj could be the length of Cj. The objective of the
basic IP model is to solve max cx subject to (A)-(C).

We now provide some intuition for the model above. Constraint (A) ensures that
each recipient can be involved in at most one cycle in any solution, whilst Constraint
(B) does likewise for the donors. Note that these constraints appear separately in order
to model the possibility of recipients having multiple donors and donors having multiple
recipients. In the case of Constraint (B), we need only range over the donors who have
multiple recipients, since the corresponding constraint for donors with a single recipient
is already enforced by Constraint (A). Constraint (C) states that if no cycle containing a
given altruistic donor is selected, then that donor is set to be unmatched.

We now describe the sequence of steps that is used in order to compute an optimal set
of exchanges in D according to Definition 1. Item r in the following list corresponds to
the step in the algorithm that enforces Criterion r (together with Criteria 1 . . . r − 1) in
the optimality definition. At each iteration we indicate the additional constraints that are
added to the basic IP model and also the objective function used at each iteration (where
appropriate).

1. The number of effective 2-cycles is maximized.
Construct an undirected graph G = (V,E) corresponding to the underlying digraph
D, where the vertices in G and D are identical, and an edge in G corresponds to a
2-cycle in D (i.e., {vi, vj} ∈ E if and only if (vi, vj) ∈ A and (vj , vi) ∈ A). Compute
N2, the size of a maximum cardinality matching in G using the Micali-Vazirani
implementation of Edmonds’ algorithm [28].

2. Subject to (1), the size is maximized.
To enforce Condition (1) in Definition 1, we add the following constraint to the basic
IP model:

n2+nb
3

∑

j=1

xj ≥ N2. (D)

To enforce Condition (2), we add the objective max cx, where cj = 2 (1 ≤ j ≤ n2),
cj = 3 (n2 + 1 ≤ j ≤ n2 + n3) and cj = 1 (n2 + n3 + 1 ≤ j ≤ n2 + n3 + nA). That
is, for r ∈ {2, 3}, each variable representing an r-cycle has coefficient r, and each
variable representing an altruistic donor has coefficient 1, where the objective is to
maximize. Let N denote the optimal value computed for the IP.

3. Subject to (1)-(2), the number of 3-cycles is minimized.
To enforce Conditions (1) and (2) in Definition 1, we add the following constraint
to the basic IP model together with Constraint (D):

2

n2
∑

j=1

xj + 3

n2+n3
∑

j=n2+1

xj +

n2+n3+nA
∑

j=n2+n3+1

xj ≥ N. (E)
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To enforce Condition (3), we add the objective min cx, where cj = 0 (1 ≤ j ≤ n2),
cj = 1 (n2 + 1 ≤ j ≤ n2 + n3) and cj = 0 (n2 + n3 + 1 ≤ j ≤ n2 + n3 + nA).
That is, each variable representing a 3-cycle has coefficient 1, whilst all others have
coefficient 0. Let N3 denote the optimal value computed for the IP.

4. Subject to (1)-(3), the number of back-arcs in the 3-cycles is maximized.
To enforce Conditions (1)-(3) in Definition 1, we add the following constraint to the
basic IP model together with Constraints (D) and (E):

n2+n3
∑

j=n2+1

xj ≤ N3. (F)

To enforce Condition (4), let bj be the number of back-arcs in cycle Cj (n2 + 1 ≤
j ≤ n2 + nb

3). and define the objective max cx, where cj = 0 (1 ≤ j ≤ n2), cj = bj
(n2 + 1 ≤ j ≤ n2 + nb

3) and cj = 0 (n2 + nb
3 + 1 ≤ j ≤ n2 + n3 + nA). That is,

each variable corresponding to a 2-cycle, or to a 3-cycle with no back-arc, or to an
altruistic donor, has coefficient 0, whilst each variable xj representing a 3-cycle with
at least one back-arc has coefficient bj . Let NB denote the optimal value computed
for the IP.

5. Subject to (1)-(4), the overall weight is maximized.
To enforce Conditions (1)-(4) in Definition 1, we add the following constraint to the
basic IP model together with Constraints (D)-(F):

n2+nb
3

∑

j=n2+1

bjxj ≥ NB. (G)

To enforce Condition (5), let wj denote the weight of cycle Cj (1 ≤ j ≤ n2 + n3),
and define the objective max cx, where cj = wj (1 ≤ j ≤ n2 + n3) and cj = 0
(n2 + n3 + 1 ≤ j ≤ n2 + n3 + nA). That is, each variable corresponding to a cycle
has coefficient equal to the weight of that cycle, whilst each variable corresponding
to an altruistic donor has coefficient 0. A solution to this final IP is an optimal set
of exchanges relative to Definition 1.

Recall that the weight of an arc (vi, vj), where vj corresponds to an altruistic donor
vertex, is 0. We give a brief discussion of this choice of arc weight. Clearly it is difficult
for the arc weight to depend on the particular choice of recipient from the DDWL that
d(pi) would donate to in practice, since the identity of this recipient is unknown when an
optimal solution is constructed. If, say, a large positive constant arc weight of W were
to be applied to (vi, vj) (representing the fact that a recipient from the DDWL who is
an excellent match with d(pi) is very likely to be found) then, for fairness, an unmatched
altruistic donor should also contribute a weight of W to the overall solution (which could
be achieved in practice via a self-loop with weight W on the corresponding vertex). But
then every optimal solution contains a contribution of nAW to the weight (i.e., W from
each altruistic donor) and hence the particular choice of W is irrelevant. Thus, to avoid
the need to include self-loops on vertices corresponding to altruistic donors, we just assume
that W = 0.

8



3.2 Alternative techniques and models

Considering the overall solution technique, we remark that an alternative to solving a series
of IP formulations would be to solve a single IP relative to a weight function that captures
the various criteria in the optimality definition (together with their priority levels) by
assigning weights of successively decreasing orders of magnitude starting from Criterion
1 downwards. This is however impractical: due to the size of the datasets in practice,
it would be computationally infeasible to work with such weights. For example, in the
case of the October 2012 dataset, weights could be of the order of 1019. Double-precision
(64-bit) arithmetic can represent decimals using at most 16 significant figures, and hence
numbers requiring a larger number of significant figures will be represented with some loss
of precision, meaning that they cannot be compared accurately.

Another approach would be to abandon the lexicographic optimality definition and
instead consider the five criteria defined in Definition 1 as separate objective functions in
a multi-objective optimization problem [14]. We return to this issue in Section 6. However
we remark here that the optimality definition given in Definition 1 as agreed by the Kidney
Advisory Group of NHSBT is primarily driven by clinical considerations. We also point
out that the Netherlands [19] and South Korea [22] employ multi-objective lexicographic
optimization, as in our case.

Two recent papers have presented different IP models for kidney exchange problems.
Glorie et al. [19] presented an IP model for the Dutch kidney exchange matching scheme.
The criteria comprising the lexicographic objective function involve maximizing the num-
ber of transplants, maximizing the number of blood-type identical transplants, minimizing
the length of the longest cycle or chain, and matching the recipient with the longest wait-
ing time, among others. The problem is solved by formulating a series of IPs, each dealing
with the separate parts of the optimality definition. These IPs essentially extend the cycle
formulation of Roth et al. [36]. The authors employ a branch-and-price approach to solv-
ing the IPs. They developed a novel pricing strategy based on the Bellman-Ford algorithm
and showed that it performs well when searching for optimal solutions involving cycles of
length up to 4 and DPD chains of length up to 6 in pools with up to 1000 donor–recipient
pairs.

Constantino et al. [13] presented two new IP formulations for kidney exchange, under
the assumption that the objective is to maximize the overall weight of the selected trans-
plants (for some appropriate weight function). Each model is compact, i.e., the number
of variables and constraints is polynomial in the size of the problem instance. Note that
neither the cycle formulation nor the edge formulation proposed by Roth et al. [36] is com-
pact: in the former case, the number of variables is exponential in the input size in general,
whilst in the latter case the same is true for the number of constraints. The new models
of Constantino et al. [13] developed the edge formulation of Roth et al. [36]; the authors
referred to them as the extended edge assignment formulation (EA) and the extended edge
formulation (EE). A computational analysis, based on branch-and-cut implementations
of the models, demonstrated that EE performed better than EA, and indeed for dense
instances (i.e., with a relatively large proportion of potential donations between donors
and recipients), EE was capable of out-performing the cycle formulation.

4 Results obtained from the NLDKSS

Prior to our involvement, NHSBT used an in-house algorithm that identified only pairwise
exchanges. With the need to find both pairwise and 3-way exchanges, a new software
application was developed based on the algorithm outlined in Section 3. At its heart
the application uses the COIN-Cbc IP solver to solve each of the IP problems involved.
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COIN-Cbc was chosen due to its open licence agreement and the need to deploy the
application commercially. Speed improvements obtained using IBM ILOG CPLEX and
Gurobi Optimizer were minimal with the current size of the datasets.

The application can be extended via a plugin architecture that allows constraints to be
created, added or removed in a straightforward manner. This added flexibility allows our
software to be easily adapted for use in other kidney exchange matching schemes, whether
that involves simply changing the order of constraints or adding completely new ones.

The application can either be accessed programatically through a web API or alter-
natively manually via a web interface2. The former version (along with several earlier
prototypes) has been used by NHSBT to find an optimal solution for each of the matching
runs (occurring at roughly quarterly intervals), since July 2008. Table 1 summarizes the
input to, and output from, each matching run between July 2008 and October 2012. In
each case an optimal solution3 was returned within a second (on a Linux Centos 5.5 ma-
chine with a Pentium 4 3GHz single core processor with 2Gb RAM) despite a gradually
increasing pool of donors.

The table shows key attributes, for each matching run, organized into three categories,
concerning: (i) the underlying digraph D, (ii) the solution identified by the algorithm,
and (iii) the actual transplants arising from this solution. In Category (i), we indicate
the number of vertices and arcs in D, the number of altruistic donors (which contribute
towards the vertex count), and the numbers of 2-cycles and 3-cycles in D. In Category
(ii) we break the identified solution down into the numbers of 2-cycles, 3-cycles, effective
2-cycles (denoted by N2) and short chains, showing the overall size and weight. (Note
that altruistic donors were not included in matching runs prior to January 2012.) Finally
in Category (iii), we show the numbers of short chains, pairwise and 3-way exchanges
that actually occurred, together with the total number of actual transplants. Note that
the total numbers of transplants shown in Categories (ii) and (iii) for the 2012 matching
runs include the number of unmatched altruistic donors (as they donate directly to the
DDWL).

The numbers of arcs in 2012 increased for a combination of reasons: (a) the intro-
duction of altruistic donors (leading to the automatic inclusion of arcs of the form (vi, vj)
where d(vi) ∈ SD and d(vj) ∈ SA, (b) the relaxation of a previous requirement that donors
of blood type O could only donate to recipients of the same blood type, and (c) the fact
that all potential arcs are now included, whereas previously arcs not part of any cycle
were suppressed. The number of arcs alone does not, however, reveal the complexity of
the underlying optimization problem: this is more accurately represented by the numbers
of 2-cycles and 3-cycles (which account for the variables in the underlying IP). The total
number of 2-cycles and 3-cycles tends to fluctuate considerably, and was largest in the
July 2009 dataset.

Table 2 shows the minimum, maximum, average and median values taken over each
of the rows of Table 1. In the case of the rows corresponding to the numbers of altru-
istic donors, identified short chains and actual short chains, we consider 2012 data only
(as altruistic donors were only introduced into the NLDKSS from January 2012) when
computing these values. The maximum number of identified transplants (36) arose in the
January 2011 matching run, with the maximum number of actual transplants (22) coming
from the October 2012 run. In general not all transplants identified by the software will
lead to operations in practice: one reason is that more detailed cross-matching between
each donor and recipient identified for transplant takes place after the matching run, which

2See http://kidney.optimalmatching.com.
3Note that the optimality criteria were slightly different from July 2008 to July 2009. See the Appendix

for a more detailed discussion of this issue.
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Table 1: Results arising from matching runs between July 2008 and October 2012.
Matching run 2008 2009 2010 2011 2012

Jul Oct Jan Apr Jul Oct Jan Apr Jun Oct Jan Apr Jun Oct Jan Apr Jun Oct

#vertices 83 123 126 128 141 147 150 158 152 191 202 176 189 197 195 190 187 215
Properties #alt. donors 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 1 4
of D #arcs 628 1406 1256 1413 1926 1715 1527 1635 1310 1943 2366 1701 2130 2007 2902 2494 2190 3315

#2-cycles n2 2 14 17 20 55 4 17 23 4 20 19 9 34 18 115 21 22 35
#3-cycles n3 0 116 72 71 166 4 33 77 1 39 145 27 101 73 87 46 33 77
n2 + n3 2 130 89 91 221 8 50 100 5 59 164 36 135 91 202 67 55 112

#2-cycles 1 6 5 5 4 0 3 2 3 3 3 0 5 7 1 0 2 6
#3-cycles 0 3 1 2 7 2 1 6 0 2 10 4 4 5 6 5 2 5

Identified N2 1 6 5 5 10 2 4 8 3 5 10 4 9 10 6 6 4 13
solution #short chns 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 4

size 2 21 13 16 29 6 9 22 6 12 36 12 22 29 24 20 11 35
weight 6 930 422 618 1168 300 135 782 261 473 1328 464 794 1094 2882 1872 1175 3599

#pairwise 1 4 5 2 3 0 2 4 0 3 2 0 2 6 1 1 0 6
Actual #3-way 0 0 0 0 2 2 0 3 0 1 5 2 4 3 2 4 1 1
transplants #short chns 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 3

total 2 8 10 4 12 6 4 17 0 9 19 6 16 21 10 18 4 22
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Table 2: Statistical overview of matching runs between July 2008 and October 2012.
Minimum Maximum Average Median

Value Dataset Value Dataset

#vertices 83 Jul-08 215 Oct-12 164 167
Properties #alt. donors 1 Jun-12 4 Oct-12 3 3
of D #arcs 628 Jul-08 3315 Oct-12 1881 1821

#2-cycles n2 2 Jul-08 115 Jan-12 25 20
#3-cycles n3 0 Jul-08 166 Jul-09 65 72
n2 + n3 2 Jul-08 221 Jul-09 90 90

#2-cycles 0 Apr-12 7 Oct-11 3 3
#3-cycles 0 Jun-10 10 Jan-11 4 4

Identified N2 1 Jul-08 13 Oct-12 6 6
solution #short chns 0 Jun-12 4 Oct-12 2 2

size 2 Jul-08 36 Jan-11 18 18
weight 6 Jul-08 3599 Oct-12 1017 788

#pairwise 0 Apr-11 6 Oct-11 2 2
Actual #3-way 0 Jun-10 5 Jan-11 2 2
transplants #short chns 0 Jan-12 3 Oct-12 1 1

total 0 Jun-10 22 Oct-12 10 10

may lead to new incompatibilities being identified; also a donor or recipient may become
ill between the date of the matching run and the date of the operation.

In total 325 potential transplants were identified, comprising 56 pairwise and 65 3-way
exchanges, 8 short chains and 2 unmatched altruistic donors. These resulted in 188 actual
transplants. This total comprised 42 pairwise and 30 3-way exchanges, 4 short chains and
6 unused altruistic donors, implying that roughly 58% of identified potential operations
proceeded to transplant.

5 Data analysis software and empirical results

5.1 Introduction

Due to the complex nature of the optimality criteria used by the NLDKSS, it became
obvious that there was a need to analyze the effect of each constraint. Furthermore, as
the NLDKSS evolves it is likely that the maximum length of a DPD chain and/or the
maximum length of cycle allowed in a solution will increase. In turn, these developments
might lead to additional constraints being required. The effect of such changes is often
difficult to quantify, as carrying out experimental comparisons can be time-consuming due
to the significant development work required, and the execution of simulations.

To this end a web application4 (referred to as the toolkit) was developed that allows
NHSBT staff to examine the impact of adding/removing constraints, allowing longer DPD
chains, and increasing the maximum cycle length. The output from the application can
give information such as the size and weight of an optimal set of exchanges, the number
of each type of exchange (i.e., pairwise, 3-way, etc.), and the number of DPD chains. This
information can be downloaded in the form of a spreadsheet.

In this section we report on an empirical analysis, undertaken using the toolkit, of
the 18 matching runs that have taken place between July 2008 and October 2012. The
aim was to determine the effect (in terms of the overall size or weight) of (i) prioritizing

4See http://toolkit.optimalmatching.com.
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pairwise exchanges, (ii) minimising the number of 3-way exchanges and maximising the
number of back-arcs, (iii) allowing 4-way exchanges in the optimality definition, and (iv)
allowing long DPD chains.

Again, a Linux Centos 5.5 machine with a Pentium 4 3GHz single core processor with
2Gb RAM was used, and every optimal solution was computed in under two seconds.

When undertaking these experiments we adopted a strategy whereby the dataset for
the first matching run (July 2008) was used to find an optimal set of exchanges with
respect to some optimality criteria, and then the dataset for each subsequent matching
run was constructed by taking the original dataset for that run (that is the dataset used
for the matching run when it originally took place) and removing all those donor–recipient
pairs that were matched in previous runs. This strategy makes the assumption that those
donor–recipient pairs belonging to an optimal set of exchanges never come back into the
matching scheme, which in reality is not the case (due to some identified transplants not
proceeding). However, a more complex model introduces problems. One such problem
is selecting the people who should re-enter the matching scheme when their transplant
identified at a previous run fails to proceed. Choosing people who should re-enter has
a significant effect on the characteristics of a solution output in a subsequent round,
and leads to inconsistent results that do not reflect what happens in the real matching
scheme. Furthermore, those donor–recipient pairs who were previously matched in a
given dataset under the current optimality criteria, but who are unmatched using a new
set of optimality criteria are problematic, as we do not possess the data to allow us to
calculate the compatibilities between these pairs and any new pairs entering the scheme
in subsequent runs. Indeed, for any such newly-arriving donor–recipient pairs, we only
add in their compatibilities that were known from previous runs for patients who are still
involved in the matching scheme. Therefore, in order to provide a fair comparison when
applying a different optimality criterion using the strategy above, we also use this same
strategy with the current optimality criteria to get base figures with which to compare the
new results.

5.2 Prioritising (effective) 2-cycles

First we examined the effect on the size of an optimal set of exchanges π in three cases
concerning whether to prioritize 2-cycles or effective 2-cycles:

(A) when Definition 1 is unchanged;

(B) when Criterion 1 is omitted from Definition 1;

(C) when Criterion 1 is replaced by “maximize the number of 2-cycles”.

Figure 3 shows the size of an optimal solution, and Table 3 shows the total number of
transplants over each of the 18 matching runs. These reveal that when we relax the need to
first maximize the number of 2-cycles or effective 2-cycles (case B from the above list) we
obtained only a single extra transplant over all 18 matching runs. In contrast, if we require
the number of pairwise exchanges alone to be maximized as first priority, then we would
see 27 fewer transplants in total. In many cases obtaining one additional transplant could
make it worth changing the criteria, however in this case, given the desirable properties of
embedded 2-cycles, the extra risk involved for a single extra transplant is unlikely to be
justified.
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5.3 Effect of Criteria 3 and 4

We next analyzed the effect on an optimal solution when we first apply Criteria 1 and 2
from Definition 1, then decide whether or not to apply Criteria 3 and 4 (i.e., minimize the
number of 3-cycles and maximize the number of back-arcs respectively), and subsequently
maximize the total weight. This gives four cases that correspond to the combinations of
including / excluding Criteria 3 and 4.

It turns out that in these four cases, the solutions output are different in only a single
matching run (January 2012). In the matching run where the solutions are different,
only the constraint to maximize the number of back-arcs had any effect, i.e., posting the
constraint to minimize the number of 3-ways exchanges had no effect on any solution. It
appears that enforcing Criterion 1 (to maximize the number of effective 2-cycles) results
in a very small set of candidates for a solution that is optimal overall. If we no longer
insist that Criterion 1 is enforced, then variations on the weight of an optimal solution are
observed in the four cases over many of the matching runs. Prior to January 2012 it would
have been natural to ask whether Criteria 3 and 4 should be removed. However, given that
Criterion 4 was shown to be discriminating, it seems reasonable to assume that Criterion
3 may also have an impact in the future as the size of the datasets grow. Furthermore,
considering that the additional time required to find a solution that satisfies Criteria 1-5
(as opposed to satisfying only Criteria 1, 2 and 5) is minimal (a solution is found in both
cases in under two seconds for each dataset) it seems sensible to retain both constraints.

5.4 Increasing the maximum cycle length

We next determined the effect of increasing the maximum cycle length. Initially the
NLDKSS allowed only pairwise exchanges in an optimal solution, but 3-way exchanges
were permitted from April 2008 (subject to the condition that the number of effective
2-cycles is first maximized). Clearly extending the solution to allow for 4-way exchanges
ought to increase further the number of transplants, but this must be set against the
greater risk of such exchanges not proceeding.

In Figure 4 we show the total number of transplants at each of the 18 matching runs
(with the sums of the these numbers of transplants shown in Table 4) if an optimal set of
exchanges π is defined as follows:

(A) maximize the size of π, allowing only 2-cycles;

(B) first maximize the number of effective 2-cycles, then subject to that maximize the
total number of transplants, allowing only 2-cycles and 3-cycles;

(C) first maximize the number of effective 2-cycles, then subject to this maximize the
size of π, allowing 2-cycles, 3-cycles and 4-cycles.

As expected allowing 4-way exchanges leads to an increased number of transplants.
Over all of the 18 matching runs we would have obtained an 19 extra transplants by

Table 3: Total number of transplants
when prioritizing pairwise exchanges
Case Total number of transplants

A 246

B 247

C 219

Table 4: Total number of transplants
when increasing the maximum cycle
length
Case Total number of transplants

A 192

B 246

C 265
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Figure 3: Effect of prioritizing pairwise ex-
changes

Figure 4: Effect of increasing the maximum cycle
length
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allowing pairwise, 3-way and 4-way exchanges compared to allowing only pairwise and
3-way exchanges. This number is smaller than the increase observed when allowing both
pairwise and 3-way exchanges (compared to allowing only pairwise exchanges) where we
would have obtained an extra 54 transplants over all the matching runs to October 2012.

The additional 19 transplants in the former case is likely to be a lower bound for
the true increase, since the donor–recipient pairs for whom we had limited compatibility
information in the experiments may in reality be involved in many additional cycles (this
issue does not affect the 246 transplants computed for case (B), where pairwise and 3-way
exchanges are permitted, since this case corresponds to the original optimality criteria and
thus we had full compatibility information for all donor-recipient pairs).

In simulations, Roth et al. [36] observed that the benefit (in terms of the number of
transplants) obtained from allowing 4-way exchanges (in addition to pairwise and 3-way
exchanges) was small. Our results would seem to contradict this, however one explanation
is that the NLDKSS datasets are sparser than those generated by the Saidman dataset
generator [38], which was used by Roth et al. [36] in their simulations. Ashlagi and Roth
[7] observed that in general the Saidman generator [38] underestimates the percentage of
highly sensitized recipients in the population and thus produces datasets that are denser
than those occurring in reality. Ashlagi et al. [5] argued that, in sparser pools, longer
exchanges and cycles can lead to a tangible benefit in terms of the number of transplants,
which is consistent with our findings. This issue was also discussed by Glorie et al. [19].

5.5 Allowing long chains

Finally we observed the effects of including altruistic donors in the dataset. Altruistic
donors were introduced into the NLDKSS in January 2012. Using the data from the four
matching runs involving such donors to date, we undertook experiments to allow us to
understand both the impact (in terms of increased numbers of transplants) of including
altruistic donors, and also the benefits of including only short chains or both short and
long chains (subject to the optimality criteria in Definition 1).

The tests (whose results are presented in Table 5) showed that if altruistic donors were
not included in the NLDKSS, we would have obtained in total 8 fewer transplants over
all the matching runs between January 2012 and October 2012 – we assume that each
unused altruistic donor counts as a single transplant in this case (as they would donate
to the DDWL). In contrast, if we allowed both short and long chains, there is in fact no
difference in the number of transplants identified. The fact that introducing long chains
had no effect is surprising and is likely to be due to the fact that several of the altruistic
donors included so far have been incompatible with a significant number of patients. We
also note that in two of the matching runs (April 2012 and June 2012) it was in fact
beneficial, in terms of the number of transplants that could be achieved, to not use one of
the included altruistic donors in a short or long chain in each of these runs.

Table 5: Total number of transplants when altruistic donors are included in the dataset
Case Total number of transplants

No altruistic donors 74

Allowing only short chains 82

Allowing short and long chains 82
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6 Future work

Our case study has been driven by a particular practical application, and as such the
empirical evaluation in Section 5 was based on real datasets (spanning a period of 4.5
years). However further experiments are required on artificially generated data which
will facilitate both a larger number of trials and bigger datasets. (The generator should
of course construct datasets that aim to reflect various properties, such as blood-type
prevalence, inherent in the real datasets.) This will provide important information on how
far the software, in its current form, is likely to scale. Furthermore, using these datasets
may provide greater insight into the effect a particular constraint has on the system.

In what follows we describe a number of challenges that future work on algorithms for
paired and altruistic kidney donation in the UK context may need to address:

• Scalability : it is important to ensure that the algorithms described in this paper can
scale up, to cope with both larger and denser datasets. Larger datasets will arise as
participation in the NLDKSS increases, and denser datasets will follow as a result of
increased numbers of altruistic donors, and the potential introduction of long chains
and 4-way exchanges. Although the branch-and-cut strategy described in this paper
copes comfortably with the current size of NLDKSS datasets, it may not scale to
much larger datasets involving, say, 500 donor–recipient pairs. Work is currently
under way to extend the algorithm described in this paper using branch-and-price
techniques, along the lines of those described by Abraham et al. [1], in order that
we can continue to meet the needs of the NLDKSS in the future.

• Non-simultaneous Extended Altruistic Donor chains (NEAD chains) [33, 5, 4, 16]:
these are similar to DPD chains, in that they are triggered by an altruistic donor.
They consist of c smaller sub-chains s1, . . . , sc, for some c > 0. Each sub-chain sr
(1 ≤ r ≤ c) is identified during a single matching run, and the operations associated
sr need not be performed simultaneously. Essentially sr is similar to a DPD chain,
except that, if r < c, rather than donating directly to the DDWL, the final donor d
in sr is called a bridge donor, who triggers sub-chain sr+1, typically after a period
of several months. Thus d will play the role of an altruistic donor in the matching
run in which sr+1 is constructed, considering sr+1 as a DPD chain. Of course, in the
period between d’s recipient receiving a kidney and d donating a kidney themselves,
d might become ill, or renege. This risk (and indeed the similar risk of other donors
in a sub-chain dropping out) is taken into account when estimating the likely benefit
of NEAD chains over DPD chains [5]. The final donor in sub-chain sc donates to the
DDWL. NEAD chains have been used successfully in the US [33] and there are strong
arguments for increasing their use in the future [4]. Were they to be introduced in the
UK, the algorithm described in this paper would need to be adapted if the maximum
length of an individual sub-chain were to exceed that of a long chain.

• Compatible pairs [18]: recently it has been proposed that compatible donor–recipient
pairs should participate in kidney exchange matching schemes such as the NLDKSS,
in addition to incompatible donor–recipient pairs. This would enable a recipient
r with a willing and compatible donor d to potentially obtain a kidney that is an
even better match for them than the kidney that r would receive directly from
d. Moreover the inclusion of such pairs would widen the available pool of donors
and could enable a recipient with a willing but incompatible donor to participate
in a kidney exchange or a DPD chain that would not otherwise have existed. Of
course, if a recipient r with a willing and compatible donor d is not involved in a
kidney exchange or DPD chain, then there is always the fall-back position that d can
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donate to r directly. In practice, as noted by Constantino et al. [13], this option can
be represented in D with the aid of a self-loop involving the vertex corresponding to
(d, r). The introduction of compatible pairs could potentially give rise to a major
increase in the size of datasets in future, providing further motivation for the work
on scalability as discussed above.

• Dynamic kidney exchange [8, 41, 2, 15]: the optimization problem studied in this
paper is static in nature: that is, matching runs occur at approximately quarterly
intervals, and whilst new donor–recipient pairs may arrive in between matching runs,
they must wait for the next run to determine whether they have been identified for
inclusion in a kidney exchange or DPD chain. The length of delay between matching
runs is chosen to achieve a balance between, on the one hand, allowing a sufficiently
large pool of donors and recipients to build up, in order to ensure that a reasonable
number of good quality kidney exchanges and DPD chains can be identified, and on
the other hand, ensuring that donors and recipients do not have too long to wait
before the next run occurs. Another option is to process a new donor–recipient pair
(d, r) as soon as they arrive: the mechanism should determine whether to try to
match this pair within a chain or exchange immediately, or else keep the pair in
the pool in order to obain a greater subsequent benefit. More work is needed to
understand the potential benefits of dynamic kidney exchange versus static kidney
exchange in the UK context. This could involve measuring attributes such as average
waiting time, number and quality (as measured by a weight function) of identified
transplants using both methods, on both real and simulated data, over a period of
several years.

• Modelling failure probabilities [12, 17, 25, 32]. Recently a number of papers have fo-
cused on modelling the probability of “failure” of vertices and/or arcs in the underly-
ing digraph D for the kidney exchange problem. For example, the failure of a vertex
could represent a donor or recipient becoming too ill for nephrectomy or transplant,
whilst the failure of an arc could represent the existence of a positive crossmatch
that had not been previously determined. Either event would cause a cycle or chain
containing the affected vertex or arc to fail. With the aid of such probabilities, a
possible goal, then, could be to maximise the expected number of transplants over
all possible sets of exchanges. When following this approach [12, 17, 25, 32], the
expected utility of a cycle can take into account back-arcs, and thus the potential
for an embedded 2-cycle contained in a 3-cycle to proceed if the 3-cycle fails. This
represents an alternative approach to explicitly prioritizing cycles with back-arcs, as
we have done here.

• Multi-objective optimization [14]. As discussed in Section 3.2, the current hierarchical
optimality definition as given by Definition 1 (and the consequent lexicographic
optimization strategy) is motivated primarily by clinical requirements. However
clinical priorities evolve over time and it may be that, in the future, the individual
objective functions from Definition 1 should no longer be optimized in a lexicographic
fashion. This brings us into the realm of multi-objective optimization [14] where
we could seek a Pareto optimal solution by, for example, using a single objective
function of the form g(x) =

∑

5

i=1
zifi(x)/opti(x), where x is a vector of binary

variables arising from a problem instance, fi(x) is the individual objective value
corresponding to the ith objective in Definition 1 whilst opti(x) is the optimal value
of this objective function (when optimized according to this single objective only)
and zi is some constant. An advantange of such a strategy is that desirable but
potentially conflicting objectives (such as maximizing the number of back-arcs and
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Table 6: Results arising from matching runs from July 2008 to July 2009.
Matching run 2008 2009

Jul Oct Jan Apr Jul

Identified #2-cycles 1 6 5 5 4
solution #3-cycles 0 3 1 2 7
(Table 1) size 2 21 13 16 29

weight 6 1033 526 738 1257

Optimal #2-cycles 1 2 3 2 2
solution #3-cycles 0 7 5 5 9
(Definition 1) size 2 25 15 19 31

weight 6 930 422 618 1168

minimizing the number of 3-way exchanges) can be traded off against one another.
A key problem, of course, is to find suitable zi values, and future work could address
this by means of experimental trials on both real and generated data, measuring
gains and losses against objective values obtained from lexicographic optimization
and from optimizing objectives individually.

We close by remarking that recent work [3, 6, 11, 40, 7] has investigated incentives for
a hospital h participating in a kidney exchange matching scheme to withhold its easiest-
to-match pairs and deal with them internally, whilst reporting only its hardest-to-match
pairs (e.g., involving highly sensitized recipients) to the centralized matching scheme.
Patients at other hospitals could be affected as they may lose out on a transplant if h does
not truthfully report all of its pairs to the scheme. Although such considerations are of
course important in general, it is worth mentioning that, at least at present in the UK,
there is no legal framework allowing a hospital to undertake operations associated with
kidney exchanges or DPD chains internally and outside of the NLDKSS, due to the tight
regulation of these types of organ transplants by the Human Tissue Authority.

Appendix

Between July 2008 and July 2009, the criteria used for an optimal solution in the NLDKSS
were different from those in Definition 1. Essentially, the previous definition dropped
effective from Criterion 1, and omitted Criteria 3 and 4 the current definition. The results
in the “Identified Solution” rows in Table 1 are those for the optimality criteria that were in
force at the time of the given matching run. However, for comparison purposes, we present
in Table 6 an indication of the structure, size and weight of an optimal solution, had the
present definition been used in each of matching run between July 2008 and July 2009.
Not surprisingly, the table indicates that a solution with a bigger size and weight could
have been identified, since 3-cycles with embedded 2-cycles are now allowed to contribute
to the count of the cycles identified in Criterion 1.
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