MicroRNA-15a and microRNA-16 impair human circulating proangiogenic cell functions and are increased in the proangiogenic cells and serum of patients with critical limb ischemia

Spinetti, G. et al. (2013) MicroRNA-15a and microRNA-16 impair human circulating proangiogenic cell functions and are increased in the proangiogenic cells and serum of patients with critical limb ischemia. Circulation Research, 112(2), pp. 335-346. (doi: 10.1161/CIRCRESAHA.111.300418)

Full text not currently available from Enlighten.

Publisher's URL: http://dx.doi.org/10.1161/CIRCRESAHA.111.300418

Abstract

Rationale: Circulating proangiogenic cells (PACs) support postischemic neovascularization. Cardiovascular disease and diabetes mellitus impair PAC regenerative capacities via molecular mechanisms that are not fully known. We hypothesize a role for microRNAs (miRs). Circulating miRs are currently investigated as potential diagnostic and prognostic biomarkers.<p></p> Objective: The objectives were the following: (1) to profile miR expression in PACs from critical limb ischemia (CLI) patients; (2) to demonstrate that miR-15a and miR-16 regulate PAC functions; and (3) to characterize circulating miR-15a and miR-16 and to investigate their potential biomarker value.<p></p> Methods and Results: Twenty-eight miRs potentially able to modulate angiogenesis were measured in PACs from CLI patients with and without diabetes mellitus and controls. miR-15a and miR-16 were further analyzed. CLI-PACs expressed higher level of mature miR-15a and miR-16 and of the primary transcript pri–miR-15a/16-1. miR-15a/16 overexpression impaired healthy PAC survival and migration. Conversely, miR-15a/16 inhibition improved CLI-PAC–defective migration. Vascular endothelial growth factor-A and AKT-3 were validated as direct targets of the 2 miRs, and their protein levels were reduced in miR-15a/16–overexpressing healthy PACs and in CLI-PACs. Transplantation of healthy PACs ex vivo–engineered with anti–miR-15a/16 improved postischemic blood flow recovery and muscular arteriole density in immunodeficient mice. miR-15a and miR-16 were present in human blood, including conjugated to argonaute-2 and in exosomes. Both miRs were increased in the serum of CLI patients and positively correlated with amputation after restenosis at 12 months postrevascularization of CLI type 2 diabetes mellitus patients. Serum miR-15a additionally correlated with restenosis at follow-up.<p></p> Conclusions: Ex vivo miR-15a/16 inhibition enhances PAC therapeutic potential, and circulating miR-15a and miR-16 deserves further investigation as a prognostic biomarker in CLI patients undergoing revascularization.<p></p>

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Meloni, Dr Marco
Authors: Spinetti, G., Fortunato, O., Caporali, A., Shantikumar, S., Marchetti, M., Meloni, M., Descamps, B., Floris, I., Sangalli, E., Vono, R., Faglia, E., Specchia, C., Pintus, G., Madeddu, P., and Emanueli, C.
College/School:College of Medical Veterinary and Life Sciences > School of Cardiovascular & Metabolic Health
Journal Name:Circulation Research
ISSN:0009-7330

University Staff: Request a correction | Enlighten Editors: Update this record