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Abstract
Background: The forests of the upper Amazon basin harbour some of the world's highest anuran
species richness, but to date we have only the sparsest understanding of the distribution of genetic
diversity within and among species in this region. To quantify region-wide genealogical patterns and
to test for the presence of deep intraspecific divergences that have been documented in some
other neotropical anurans, we developed a molecular phylogeny of the wide-spread terrestrial
leaflitter frog Eleutherodactylus ockendeni (Leptodactylidae) from 13 localities throughout its range
in Ecuador using data from two mitochondrial genes (16S and cyt b; 1246 base pairs). We examined
the relation between divergence of mtDNA and the nuclear genome, as sampled by five species-
specific microsatellite loci, to evaluate indirectly whether lineages are reproductively isolated
where they co-occur. Our extensive phylogeographic survey thus assesses the spatial distribution
of E. ockendeni genetic diversity across eastern Ecuador.

Results: We identified three distinct and well-supported clades within the Ecuadorean range of E.
ockendeni: an uplands clade spanning north to south, a northeastern and central lowlands clade, and
a central and southeastern clade, which is basal. Clades are separated by 12% to 15% net corrected
p-distance for cytochrome b, with comparatively low sequence divergence within clades. Clades
marginally overlap in some geographic areas (e.g., Napo River basin) but are reproductively
isolated, evidenced by diagnostic differences in microsatellite PCR amplification profiles or DNA
repeat number and coalescent analyses (in MDIV) best modelled without migration. Using Bayesian
(BEAST) and net phylogenetic estimates, the Southeastern Clade diverged from the Upland/
Lowland clades in the mid-Miocene or late Oligocene. Lowland and Upland clades speciated more
recently, in the early or late Miocene.

Conclusion: Our findings uncover previously unsuspected cryptic species diversity within the
common leaflitter frog E. ockendeni, with at least three different species in Ecuador. While these
clades are clearly geographically circumscribed, they do not coincide with any existing landscape
barriers. Divergences are ancient, from the Miocene, before the most dramatic mountain building
in the Ecuadorean Andes. Therefore, this diversity is not a product of Pleistocene refuges. Our
research coupled with other studies suggests that species richness in the upper Amazon is
drastically underestimated by current inventories based on morphospecies.
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Background
Species richness and genetic diversity within species are
proposed to co-vary and understanding the details of this
relationship is critical to unifying biodiversity theory [1].
Though the forests of the upper Amazon basin are a
renowned hotspot for amphibian species richness [2],
thus far there have been few explorations of the phyloge-
ographic and population-level patterns in the region's
amphibian taxa [3-9]. Consequently, we have only a pre-
liminary knowledge of the distribution of genetic diversity
from merely a handful of amphibian species in the
megadiverse upper Amazon. With the aim of augmenting
our understanding of spatial patterns of genetic diversity
and details of evolutionary history in this famously spe-
cies-rich area, we assessed the diversity in a widespread
upper Amazonian frog species across the upper Amazon
of Ecuador.

Historical and environmental characteristics of a region
influence multiple levels of diversity, both in its origin
and maintenance [1,10-12]. Numerous regional histori-
cal, topographical, and ecological factors of the Andes and
Amazon have been suggested as influential in the diversi-
fication of species, for example: riverine barriers [13-16];
large uninterrupted area [10,17]; an Andean "species
pump" promoted by complex, isolating montane topog-
raphy and vegetation [18]; Pleistocene forest refuges
[11,19-21]; complex biotic interactions [22,23]; ancient
ridges and other palaeogeographic features [4,24];
ancientness [25]; and relative youth of the Andes [26]. For
amphibians, complex topography may restrict vagility
and produce marked population subdivision, and ulti-
mately patterns of adaptive radiation or isolation patterns
that are potentially implicated in high local rates of speci-
ation [27]. There are many confounds in the upper Ama-
zon that make exclusive testing of any one of these factors
challenging because multiple causes at various historical
timescales are surely involved in the origination of diver-
sity [8,28]. Nonetheless, contributing temporal and geo-
graphical patterns of diversity in phylogeographic studies
allows us to discern among some of the diversification
hypotheses (e.g., ancientness versus youth, orogenesis
events versus recent climatic change). Assessing these pat-
terns is critical to disentangling the causes of within and
among species diversification and the genesis of anuran
biodiversity, especially as this region increasingly suffers
deforestation.

Here we use mitochondrial and nuclear DNA to quantify
the phylogeography and population structure of a terres-
trial upper Amazonian leaflitter frog, Eleutherodactylus ock-
endeni (Leptodactylidae). We sampled from 13 localities
across the species range in megadiverse eastern Ecuador to
develop a thorough regional phylogeographic survey. Fur-
ther, we used phylogenetic and multiple coalescent meth-

ods to estimate the depth of divergence among clades and
suggest temporal context for the divergence revealed by
our analyses.

Results
DNA sequences
We sequenced 105 individuals for cytochrome b (cyt b)
and 45 individuals for 16S, plus two outgroup taxa (Addi-
tional file 1). Ingroup base frequencies are similar to those
found in other frogs [29]: cyt b: A = 0.240, C = 0.313, G =
0.145, T = 0.301; 16S: A = 0.299, C = 0.251, G = 0.194, T
= 0.255. Ingroup cyt b sequences collapsed into 21 unique
haplotypes and 16S into 15 unique haplotypes. For the
16S-cytb data combined (32 individuals; 20 haplotypes
and two outgroup taxa; 1248 bp), 227 included characters
were parsimony informative.

Phylogenetic analyses
We found no conflicting phylogenetic signal between the
cyt b and 16S data (partition homogeneity test, P = 1.0),
justifying the use of the combined data partition in maxi-
mum parsimony (MP) analyses. Both MP and Bayesian
analyses of the 16S-cytb data produced well-supported
trees identical in all major topological details and with
three major clades: an Upland Clade (Figure 1 localities
Hola Vida, Santa Clara, EBJS, Llanganates, Cando, and
Chonta Yacu), a Lowland Clade (Yasuní, Puca Chicta,
EBJS, Serena, Auca 14, La Selva, and Cuyabeno); and a
Southeastern clade (Kapawi and Auca 14) (Figure 2). The
topology of the 16S-cytb trees is congruent with trees
resulting from separate analyses of the full 16S and cyt b
data (results not shown).

Population genetics
Corrected p-distances between E. ockendeni cyt b haplo-
types were high, ranging up to 20% between some haplo-
types (Additional file 2). Mean net divergence ± standard
error [30] between the Southeastern Clade and the
Upland Clade was 15.45% ± 1.83, between the Southeast-
ern Clade and the Lowland Clade was 15.26% ± 1.90, and
between Upland and Lowland Clades was 12.01% ± 1.72.
Average sequence divergence was low within the Upland
and Lowland clades, at 1.35 and 1.77% respectively, while
the Southeastern Clade, which has fewer haplotypes and
more geographically distant sampling, showed more
intraclade diversity at 5.34%.

For the cyt b data, the identity of haplotypes varied among
localities but seven of the 13 sites had only a single haplo-
type (Table 1). Nucleotide diversities within localities
range from 0 to 0.105 ± 0.079. However, high nucleotide
diversity within localities EBJS (5) and Auca 14 (7) is an
artefact of finding sympatric but genetically distinct clades
at those localities. When calculations of locality nucle-
otide diversity are separated by clade, the values range
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from 0 to 0.0030 ± 0.003 (Table 1). HKY+G was the best-
fit model of nucleotide substitution for cyt b as chosen by
hLRT.

The ratio of nonsynonymous to synonymous mutations
between all pairs of clades as calculated with a McDonald-
Kreitman test does not suggest that selection is responsi-

Map of sample localitiesFigure 1
Map of sample localities. Map of sample localities across eastern Ecuador: Chonta Yacu (1), Reserva Cuyabeno (2), Serena 
(3), Cando (4), Jatun Sacha Biological Station (EBJS) and surrounding area (5), Puca Chicta (6), Auca 14 Road near Dayuma (7), 
Parque Nacional Yasuní (8), Llanganates mountains (9), La Selva Lodge (10), canton Santa Clara (11), Fundación Hola Vida (12), 
Kapawi Lodge (13).
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ble for the cyt b divergence among lineages (Upland ver-
sus Lowland, P = 1.0; Upland versus Kapawi, P = 1.0;
Kapawi versus Lowland, P = 0.3). Overall non-significant
value of Tajima's D (0.255; P > 0.1) and within clades
(Upland Clade D = -1.707, P > 0.05, Lowland Clade D = -
0.834, P > 0.1, insufficient sample size to test Southeast-
ern Clade) also implies neutrality (Table 2).

A survey of five tetranucleotide microsatellite loci across
individuals of the Upland and Lowland clades in the
Napo River area (localities 3 – 11), including a locale
where both mitochondrial clades are present, shows that
microsatellite genotypes at all loci are very different
between Upland and Lowland clades. This implies com-
plete reproductive isolation. The microsatellite library was
developed based on Lowland Clade frogs. Consequently,
in individuals from the Upland Clade the microsatellite
loci are either non-functional (not amplifying after
repeated attempts) or allele sizes are non-overlapping or
have very different range of sizes, with the Upland Clade
always having the larger mean allele size (Table 3).
Sequences of large alleles from a subset of samples from
three of the five loci (Eloc-Batman&Robin, Eloc-Lau-
rel&Hardy, and Eloc-Thelma&Louise) demonstrate that
very large allele sizes in Upland Clade individuals are due
to an increase in the number of microsatellite repeats
(unpubl. data).

Estimating divergence and expansion
We used three different methods to estimate divergence:
the net divergence method to estimate species divergence
time; a Bayesian MCMC method to estimate lineage diver-
gence (time to most recent common ancestor, TMRCA);
and, a coalescent MCMC approach to estimate migration
and TMRCA. Of these, the net divergence method and the
Bayesian MCMC method (as implemented in the program
BEAST) gave similar temporal results. Divergence esti-
mates from coalescent analyses (as implemented in the
program MDIV) were typically less than half the age of the
other two estimates.

By the net divergence method, time of divergence between
the Upland and Lowland lineages using our slowest esti-
mated rate of evolution (0.6%/MYR) was 20.02 ± 2.87
mya (early Miocene) while the faster rate (1.0%/MYR)
estimates the same split at 12.01 ± 1.72 mya (mid-
Miocene) (Table 4). Southeastern Clade split from
Upland and Lowland clades approximately 25 ± 3 mya
(late Oligocene) at the slower substitution rate and 15 ± 2
mya (mid-Miocene) by the faster rate.

From BEAST, assuming a constant molecular clock and
rates of 0.6 and 1.0% substitutions per million years, we
estimated the TMRCA of the entire ingroup to be 24.39
mya (late Oligocene) and 14.61 mya (mid-Miocene),

respectively. For the TMRCA of the Upland and Lowland
clades, the constant clock TMRCA estimates 15.19 mya
(mid-Miocene) or 9.11 mya (late Miocene), respectively.
The uncorrelated, relaxed clock estimates were not sub-
stantially different: assuming mean substitution rates of
0.6 and 1.0%, the TMRCA estimates for the entire ingroup
were 27.01 and 15.10 mya, respectively, while those for
the Lowland/Upland clade were 15.23 and 9.03 mya,
respectively (Table 5).

Coalescent calculations (implemented in the program
MDIV) of the Upland and Lowland clade divergence
resulted in an average θ of 6.23 ± 0.13 and an average T of
8.78 ± 0.31 (Table 6). Estimates of TMRCA are 7.74 mya
assuming a substitution rate of 0.6%/MYR and 4.64 mya
assuming the faster substitution rate of 1.0%/MYR. In
models of Southeastern Clade versus Upland Clade diver-
gence, θ averaged 8.43 ± 0.27 and T 7.73 ± 0.52, suggest-
ing a TMRCA of 10.55 mya under the slower substitution
rate and 6.33 mya, with the faster rate. Models of South-
eastern versus Lowland clades identified an average θ of
9.45 ± 0.38 and an average T of 8.98 ± 0.69, or 9.99 mya
or 7.77 mya TMRCA, depending on substitution rate. For
all clade comparisons M modelled best as 0 suggesting
there is no gene flow among clades. The estimated time
since population divergence among all clades is less than
the TMRCA. MDIV estimates of TMRCA and species diver-
gence are non-overlapping with BEAST and the net diver-
gence method.

Estimating population expansion
We used four different methods to try and identify and
estimate the timing of population expansion. Based on
mismatch analyses, the sudden expansion model of pop-
ulation growth cannot be rejected for the Upland or the
Lowland clades, although the SSD probability was mar-
ginal for the Lowland Clade (P = 0.056) (Table 2). Using
a mutation rate of 1.0%/MYR and the peak of the mis-
match distribution, τ, to estimate the time of population
expansion suggests an Upland Clade expansion began in
the latter half of the Pleistocene (793 000 YBP), a Lowland
Clade expansion (if it occurred) somewhat later (154 000
YBP). The model of sudden population expansion is
rejected for the Southeastern Clade. Raggedness indices
suggest population expansion (curves are not significantly
different than smooth) in all three clades. Fu's F and
Tajima's D are not different than would be found under a
stable population size. Therefore, we have conflicting evi-
dence from different methods but some suggestion of
population expansion particularly in the Upland Clade.

Discussion
Phylogenetic and phylogeographic relationships
Divergence among the three strongly supported clades in
Ecuadorean E. ockendeni is deep and well supported (Fig-
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ure 2, Additional file 2). In contrast, there is relatively low
divergence within the three clades. The Southeastern
Clade is basal relative to the Upland and Lowland clades.
The timing of the divergences for all three lineages sug-
gests causal events that vastly predate the Pleistocene and
the latter phases of orogenesis in the northern Andes. We
discuss these below.

Five independent nuclear markers corroborate that the
Upland and Lowland clades are evolutionarily distinct.
The microsatellite loci were either non-amplifying or
composed of twice as many repeats in the Upland as Low-
land Clade, even in frogs from the same geographic local-
ity (Table 3). Such differentiation at microsatellite loci
between clades even when they are sympatric and the
potential for interbreeding exists provides strong indirect
support that these are reproductively isolated. Unfortu-
nately, we still know little of the mate recognition system
for this complex of species.

The major E. ockendeni clades are geographically restricted
and found in the east Andean uplands (approx. 400 to
1000 masl; Upland Clade), the central and northern low-
lands (220 to 500 masl; Lowland Clade), and the central
and southern lowlands (260 to 240 masl; Southeastern
Clade). Our sampling is limited to Ecuador and therefore
we cannot infer whether the clades are more broadly dis-
tributed. The headwaters of the Napo River appears to be
part of a lineage contact zone: at EBJS (locality 5) both the
Upland and Lowland Clade can be found; slightly upriver
at Serena (3) and Cando (4), the Lowland Clade is found
on the south side of the Napo River while the Upland
Clade is found immediately on the opposite side of the
river. Further east at Auca 14 Road (locality 7), again two
lineages can be found sympatrically (Upland and South-
eastern clades). At all other geographic localities sampled
we found only one of the three clades. Physalaemus petersi
was also found to have an upper Napo and lower Napo
genetic division and a basal southeastern lineage [7]. Fur-
ther, an upper and lower Napo basin phylogeographic
break has been suggested in Bolitoglossa salamanders [31].
Therefore, evidence from other amphibians may indicate
this to be a cryptic geographic break, as has been found in
other upper Amazon localities [4].

In E. ockendeni, the lack of haplotypic diversity at many
localities and general lack of haplotype sharing among
localities suggests fine-scale restricted gene flow (Table 1),
as might be expected from a small terrestrial amphibian
[27]. Population structure at finer geographic scales in the
upper Amazon has also suggested restricted gene flow in
this species [32].

We have included E. ockendeni from Cuyabeno (locality 2)
in northeastern Ecuador in the Lowland Clade; however,

they do display a notable genetic divergence from the rest
of the Lowland Clade (> 6% corrected p-distance; Addi-
tional file 2) in a group that is otherwise characterized by
low within-clade diversity. Further sampling from the sur-
rounding geographic area (e.g., northern Peru and south-
ern Colombia) and more molecular markers will either
strengthen our inclusion of Cuyabeno E. ockendeni in the
Lowland Clade or differentiate it as a separate clade.

Time of divergence
Our divergence estimates suggest that diversification
among the "species" E. ockendeni is ancient and predates
the Andes at their current height in Ecuador. Divergence
between the Southeastern and Upland/Lowland lineages
occurred in the late Oligocene or early Miocene and
between the Upland and Lowland Clade in the early, mid-
, or late Miocene, depending on substitution rate.

Of the three estimates, we consider the Bayesian phyloge-
netic-coalescent method (Table 5) to be the most accurate
because that method accommodates the greatest number
of parameters, incorporates molecular evolutionary com-
plexities such as rate heterogeneity, allows for differences
in rates among lineages, and allows for tests of the molec-
ular clock [33]. Interestingly, and in support of a long-
standing method, the much less complicated net diver-
gence method (Table 4) has yielded very similar species
divergence time estimates to the Bayesian method
TMRCA. We suggest that the MDIV coalescent method
(Table 6) is underestimating time of divergence in this
case, perhaps because there is not enough historical infor-
mation to suit a population coalescent method when spe-
cies are reciprocally monophyletic and deeply diverged, or
because MDIV does not accommodate rate variation
among sites.

Some studies have found the rate of molecular evolution
in the tropics to be equivalent to temperate areas [34,35]
while others have suggested a faster rate of molecular evo-
lution in the tropics [36-38]. Obviously, the timing of the
divergence among E. ockendeni clades will become
younger given the same genetic distance if true substitu-
tion rate is faster than we have estimated.

Historical population change
Across three different tests, there is weak and somewhat
conflicting suggestion of recent population expansion
under models of neutral evolution (Table 2). For the
Upland Clade, we cannot reject sudden expansion from
mismatch distributions or raggedness though Fu's F and
Tajima's D do not suggest population expansion. For the
Lowland Clade, we can probably reject population expan-
sion since mismatch and raggedness significance values
are only barely non-significant (P = 0.056 for mismatch, P
= 0.107 for raggedness) and F and D do not suggest expan-
Page 5 of 14
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Phylogenetic tree of Ecuadorean E. ockendeniFigure 2
Phylogenetic tree of Ecuadorean E. ockendeni. Bayesian phylogenetic tree of E. ockendeni samples and two outgroup 
taxa. Numbers in brackets correspond to localities in Figure 1. The topology and support were congruent with the MP tree. 
Posterior probabilities are labelled at nodes. The three major clades are noted.
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sion. In the Southeastern Clade, sample sizes are very
small (two localities, two haplotypes), but mismatch and
F do not suggest population expansion while raggedness
index does fit the expectation of expansion.

Our results give some support for an Upland Clade expan-
sion in E. ockendeni approximately 800 000 years ago. It is
difficult to determine historical population expansion;
inconclusive findings from multiple methods are not
unexpected because rate heterogeneity, the scale of histor-
ical population expansion if there were any, sample size,
and number of polymorphic sites are all influential fac-

tors [39]. If there has been expansion in the Lowland
Clade, this may have occurred 150 000 years ago. In upper
Amazonian clades of the terrestrial frog P. petersi, incon-
clusive results about a population expansion have also
been found and, like our results here, some support for an
Upper Napo clade expansion [7].

Geological history and its influence on phylogeographic 
patterns
The upper Amazon of Ecuador has a history of variations
in climate and dramatic geology. The northern Andes are
the youngest in the Andean chain: orogenesis occurred in

Table 1: Population cyt b diversities

Locality N n h π s Shares with Clade

Chonta Yacu 
(1)

5 1 0 0 0 none Upland

Hola Vida (12) 5 1 0 0 0 none Upland
Cando (4) 8 1 0 0 0 Llanganates, Sta 

Clara
Upland

Santa Clara (11) 5 4 0.9 ± 0.2 0.0028 ± 0.0022 4 Llanganates, Cando Upland
Llanganates (9) 2 2 1.0 ± 0.5 0.0030 ± 0.0036 2 Cando, Santa Clara Upland
EBJS (5) 55 6 0.6 ± 0.1 0.0171 ± 0.0088 69 Puca Chicta Upland and Lowland
Upland 4 1 0 0 0 none
Lowland 51 5 0.5 ± 0.7 0.0013 ± 0.0011 4 Puca Chicta
Puca Chicta (6) 2 2 1.0 ± 0.5 0.0028 ± 0.0035 1 EBJS, Serena Lowland
Serena (3) 5 1 0 0 0 Puca Chicta Lowland
Cuyabeno (2) 2 2 1.0 ± 0.5 0.0028 ± 0.0035 2 none Lowland
Yasuní (8) 5 1 0 0 0 none Lowland
La Selva (10) 3 1 0 0 0 none Lowland
Auca 14 (7) 3 2 0.7 ± 0.3 0.1051 ± 0.0790 102 none Lowland and Southeastern
Lowland 2 1 0 0 0 none
Southeastern 1 1 1.0 ± 0 0 0 none
Kapawi (13) 5 1 0 0 0 none Southeastern

Cyt b population diversity values: Locality (and corresponding number from Figure 1), number of individuals sequenced (N), number of haplotypes 
(n), haplotype diversity (h), nucleotide diversity (π), polymorphic sites (s), cyt b haplotype sharing, and clade (determined from phylogenetic 
analyses). Where more than one clade is found at a particular locality, analyses are shown combined and separated by clade.

Table 2: Historical population expansion by clade

Upland Lowland Southeastern

Mean (obs.) 11.796 5.858 10.000
τ 11.250 (5.356 – 22.945) 2.180 (0.534 – 4.627) 3.000 (0.430 – 3.160)
θ0 4.945 0.002 0.219
θ1 4.962 4.003 0.290

SSD 0.047 P = 0.458 0.044 P = 0.056 0.155 P = 0.030
Raggedness Index 0.045 P = 0.640 0.142 P = 0.107 0.667 P = 0.620

t (MYA) 0.793 (0.378 – 1.618) 0.154 (0.038 – 0.326) ------
Fu's F 2.686 P = 0.880 -1.547 P = 0.324 8.007 P = 0.99

Tajima's D -1.707 P > 0.05 -0.834 P > 0.01 ------

Mismatch analysis parameters by clade: mean number of observed differences; expansion parameter τ (with upper and lower bounds at α = 0.05); θ 
is the substitution rate before (0) and after (1) the expansion; SSD tests the validity of a stepwise expansion model based on the sum of squares 
deviations between the observed and expected mismatch, with probability values (P). Non-significant mismatch values suggest population expansion. 
Raggedness Index is calculated similarly, and with probability values (P). Non-significant raggedness values suggest population expansion. Time since 
lineage expansion (t) is calculated from τ = 2μt, where μ = 1.0%/MYR for 709 bp. Under a model of sudden population expansion, Fu's F and 
Tajima's D are expected to be significantly negative. Some parameters are not estimated for the Southeastern Clade because of small sample sizes.
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the Neogene (Miocene through Holocene) [40], with the
principle period of upheaval only in the past five million
years [40-42].

Throughout the Miocene there was a radical reorganiza-
tion of drainage patterns in northern South America. In
the early Miocene the fluvial system drained to the north-
west but by the late Miocene the effects of the rising East-
ern Cordillera shifted drainage eastwards, ultimately
allowing the Amazon River to reach the Atlantic [41]. Epi-
sodic marine incursions as a result of eustatic sea level
changes occurred throughout the Miocene [24,41]. In the
Pliocene, Pleistocene, and Holocene, fluvial deposits of
many sorts and very large alluvial fans (megafans) were
laid throughout the upper Amazon in the wake of Andean
tectonism, volcanism, and later glaciation ([41,43-45]
and references therein). These overlays and heterogeneity
often leave conflicting evidence and cause geological
events east of the Andes to be poorly dated [43,46].

Climate also has varied over time, with great fluctuations
throughout the Tertiary and Quaternary [47]. Alternating
wet and dry cycles in the Pleistocene and Holocene may
have caused forest contractions and expansions in some
areas, though there is disagreement on the extent of this
effect in the upper Amazon [21,47-49]. These forest con-
tracts are the source of the refuge hypothesis of Amazo-
nian diversification [20].

Clearly there are multiple possible ancient historical geo-
logical and climatic influences causing isolation and sub-
sequent expansion in E. ockendeni, ultimately resulting in
the speciation we see here. We can infer that diversifica-
tion between clades of E. ockendeni predates the altitude
and shape of the Andes as we know them. Instead, diver-
sification is much older, perhaps precipitated by dramatic
changes in the Miocene. For example, mountain-building
caused numerous thrust faults to develop and the eastern
Subandean Zone fault ([45] and references therein)
approximately matches the geographic location of our

Upland/Lowland break between clades of E. ockendeni
and may be historically relevant. Geological change in the
Miocene has recently been suggested as influential in
South American Eleutherodactylus frog diversification in
general [50]. Importantly, there is no obvious contempo-
rary barrier between the extant clades of E. ockendeni, such
as a major river as would be suggested by the river barrier
hypothesis [13-16]). The current lack of elevation differ-
ence in the distribution of two of the three clades suggests
that elevational gradient differences are not driving the
divergence (e.g., under an environmental gradient
hypothesis [51,52]). Contemporary complex topography
(as suggested by, for example [27,53]) does not seem to be
relevant to patterns of deep divergence among clades,
since divergence far predates existing topography, clades
are not isolated by major topographic features, and the
distribution of the Upland Clade extends through the
headwaters of at least three major river valleys (Agua Rico,
Napo, and Pastaza). Further, the genetic diversity in E. ock-
endeni dates from the Miocene and therefore cannot be
attributed to climatic and associated vegetation changes of
the past two million years, as has been suggested by pro-
ponents of the refuge theory [11,20,54]. However, recent
population expansion in the Upland Clade may coincide
with late Pleistocene climate change.

Cryptic species richness in E. ockendeni
Our findings show that the leaflitter frog species E. ockend-
eni is three distinct species with apparently extreme mor-
phological conservativism. Furthermore, this area is only
a portion of the species' range, which extends from south-
ern Colombia to southern Peru [52] and Bolivia [55], so
the actual species diversity and richness within "E. ockend-
eni" is likely much greater than that demonstrated here.
When the specimens were collected and catalogued for
museum deposition, there was no apparent morphologi-
cal difference among specimens and there has been no
published indication that there would be multiple cryptic
species within this species, except for a mention that E.
ockendeni from Cuisime (southern Ecuador) are smaller in
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Table 3: Microsatellite allele sizes

Locus Lowland Upland Comment

Eloc-Laurel&Hardy 166–262 --- Generally non-amplifying in Upland and twice the repeat 
length vs. Lowland

Eloc-Bert&Ernie 106–194 202–250 Non-overlapping allele sizes
Eloc-Thelma&Louise 151–247 243–443 Non-overlapping allele sizes except in two individuals
Eloc-Batman&Robin 208–282 300–404 Non-overlapping allele sizes (excluding four Lowland 

individuals with possible large alleles sizes, 376–464)
Eloc-Beauty&Beast 145–221 185–241 Unequal allele size ranges

Microsatellite profiles (in total fragment size) by locus examined in E. ockendeni from the Napo River area (localities 3 – 11). Microsatellite allele 
sizes (total fragment bp) were larger in the Upland than Lowland Clade. Using E. ockendeni primers [105], one locus exclusively amplified in the 
Lowland Clade, suggesting it is non-functional in the Upland Clade.
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snout-vent length than those collected in other areas of
Ecuador and Peru [56]. It is clear that the divergence
among each of the three clades is biologically real and not
an artefact of stochastic variance in mtDNA masking
recent gene flow [57] because our coalescent methods
model best with no gene flow among lineages (in MDIV
M = 0) and five nuclear microsatellite loci are significantly
different between the Upland and Lowland clades. Given
this new molecular information, a detailed morphologi-
cal revision of Ecuadorean E. ockendeni is underway
(Elmer and Cannatella, unpubl.).

Incidences of sympatric, parapatric, and allopatric cryptic
species have been recently discovered in southeast Asian
frogs ([58] and references within). Also, although there
are exceedingly few intraspecific molecular phylogenies of
neotropical amphibians, those that do exist tend to
encounter new species and/or previously unanticipated
species diversity ([9,59,60] and references within). These
findings together suggest that widespread species of
amphibians in the tropics have an evolutionarily history
that is much more complicated than suggested by mor-
phologies. Consequently, attempts at biological conserva-
tion according to current estimates of the number of
morphological "species" will drastically underestimate
the actual biodiversity in this already species-rich region.

Conclusion
We found deep phylogenetic divisions among clades in
this common leaflitter frog, E. ockendeni, suggestive of dis-
tinct species. Based on microsatellite genotype profiles for
distinct mitochondrial clades and modelling of historical
gene flow, we suggest that there is complete reproductive
isolation among these clades, even when they are sympat-
ric. These cryptic species have an ancient divergence esti-
mated to have originated in the Miocene. Diversification
among these clades coincides approximately with periods
of dramatic northern Andean orogenesis and predates the
Andes at their current height. Though multiple environ-
mental occurrences surely have been historically influen-
tial, Pleistocene climate change refuges as drivers of
allopatric speciation are not relevant to extant specific
diversification E. ockendeni. Our research strongly suggests
that current estimates for the renowned species richness in
the upper Amazon of frogs in general and Eleutherodactylus
in particular may be a substantial underestimate of the
actual phyletic diversity present.

Methods
Field and Laboratory Methodology
Eleutherodactylus ockendeni is a small terrestrial leaflitter
frog that is relatively abundant at many upper Amazon
localities [32,61,62]. Its range extends throughout the

Table 4: Time of divergence among E. ockendeni clades based on net divergence

Clade divergence MYA (± s.e.) at 0.6% MYA (± s.e.) at 1.0%

Upland and Lowland 20.02 (17.15 – 22.88) 12.01 (10.29 – 13.73)
Upland and Southeastern 25.75 (22.70 – 28.80) 15.45 (13.62 – 17.28)
Lowland and Southeastern 25.43 (22.27 – 28.60) 15.26 (13.36 – 17.16)

Time of divergence estimates among monophyletic clades in millions of years (mya) calculated from net divergence among clades (upper and lower 
standard error bounds) assuming 0.6% and 1.0%/MYR substitution rates.
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Table 5: Time of divergence among E. ockendeni clades based on Bayesian coalescent estimation

at 0.6%/MYR at 1.0%/MYR
clock TMRCA (mya) TMRCA (mya)

Ingroup relaxed 27.01 (15.46–39.01) 15.1 (9.65–20.96)
constant 24.39 (18.72–30.37) 14.61 (11.39–18.37)

Upland and Lowland relaxed 15.23 (9.39–21.80) 9.03 (5.79–12.32)
constant 15.19 (11.71–19.05) 9.11 (7.03–11.39)

Southeastern Clade relaxed 5.08 (1.79–8.62) 2.70 (1.19–4.81)
constant 4.53 (2.78–6.30) 2.72 (1.65–3.75)

Upland Clade relaxed 5.12 (2.44–8.45) 2.88 (1.52–4.49)
constant 6.25 (4.29–8.26) 2.70 (1.80–3.61)

Lowland Clade relaxed 6.59 (3.27–10.48) 3.82 (2.01–5.76)
constant 4.50 (3.09–6.11) 3.75 (2.59–4.94)

Time of divergence estimates among monophyletic clades in millions of years (mya) at 0.6% and 1.0%/MYR substitution rates calculated from 
Bayesian coalescent phylogenetic estimation of time to most recent common ancestor (with 95% highest posterior density), modelled assuming a 
relaxed or constant molecular clock (as implemented in BEAST).
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upper Amazon of Colombia, Peru, Ecuador, Brazil [63],
and Bolivia [55]. We collected from 12 localities across
eastern Ecuador (Figure 1) in 2001 and 2003. Inter-local-
ity distances ranged from 1 to 300 km apart (straight-line
distance) and included all major river basins in Ecuador.
Individuals were euthanized using MS-222 and tissue
samples for genetic analyses removed and stored in pure
ethanol. Specimens were fixed with 10% formalin and
stored in 70% ethanol. Vouchers are deposited at the
Museo de Zoología, Pontificia Universidad Católica del
Ecuador (QCAZ) (Additional file 1). Samples from the
Parque Nacional Yasuní locality were taken from the exist-
ing QCAZ collection.

Genomic DNA was extracted using either standard phe-
nol-chloroform methods [64] or a Qiagen DNEasy kit
according to the manufacturer's protocol. Two mtDNA
fragments were amplified: 16S rRNA with primers 16Sar-
L and 16Sbr-H (ca. 560 bp; numbers 88 and 96 in [65])
and cyt b with primers MVZ15L and MVZ16H (ca. 790 bp;
numbers 141 and 165 in [65]). Volumes for each PCR
reaction were 50 μL and contained: 0.3 μM of forward and
reverse primer, PCR enhancing buffer (2.5 mM MgCl2, 10
mM Tris pH 8.4, 50 mM KCl, 0.02 mg BSA, 0.01% gelatin;
adapted from [66]), 0.3 mM dNTP, 0.625 units taq DNA
polymerase (Fermentas Life Sciences), and approximately
1 to 3 ng stock DNA. All reaction sets included a negative
control. Cycling parameters for 16S were: 94°C for 2 min,
35 cycles of denaturing 94°C for 30 sec, annealing 60°C
for 20 sec and extending 72°C for 20 sec, a final extension
at 72°C for 5 min followed by extended cooling at 10 or
4°C. Cyt b parameters were: initial denaturing at 92°C for
3 min, 38 cycles denaturing 92°C for 1 min, annealing
51°C for 1 min and extension 72°C for 1 min, a final
extension of 72°C for 5 min followed by extended cool-
ing at 4 or 10°C. PCR product was cleaned for sequencing
using a Qiaquick Gel Extraction kit according to the man-
ufacturers' instructions for agarose electrophoresis-sepa-
rated fragments or Pall AcroPrep 96 Filter Plates for PCR
products that were not electrophoresed. Samples were
capillary sequenced using the BigDye Terminator version

3.1 Cycle Sequencing (Applied Biosystems) chemistry on
an Applied Biosystems 3100 or 3730XL Gene Analyzer.

Forty-seven individuals were sequenced for 16S: 23 in
both directions and the remainder only in the forward
direction. One hundred and seven individuals were
sequenced for cyt b: 41 in both directions and the rest only
in the forward direction (GenBank accession numbers:
16S EU130581 – EU130626, EU130579, EU130580; cyt b
EF581013–EF581063, EU130577, EU130578,
EU130627–EU130680). Detailed comparison by eye of
forward and reverse sequences in the overlapping regions
showed no discordance in the DNA sequence used in sub-
sequent analyses. Thirty-two individuals plus outgroup
taxa had sequences for both 16S and cyt b (hereafter, 16S-
cytb). In the 16S-cytb fragment, concatenated sequences
were trimmed to equal length (1248 bp), except for five
sequences that remained shorter (≥ 1197 bp). In the cyt b
fragment, all haplotypes were the same length (709 bp)
except three (≥ 647 bp). Terminal gaps were coded as
missing data.

Phylogenetic Analyses
Sequences were assembled in MACCLADE version 4.07
[67] and aligned in CLUSTAL X version 1.81 [68] using
default settings. A hyper-variable loop portion of the 16S
alignment could not be aligned with confidence, so nine
internal positions were excluded. Alignment of cyt b was
not problematic and included no internal gaps. The best-
fit models of nucleotide substitution of cytochrome b,
each codon position separately, and 16S were estimated
using MODELTEST version 3.7 [69] in PAUP* [70].

Because "intraspecific" diversity in these frogs is so high,
we analyzed these data using maximum parsimony (MP)
and Bayesian phylogenetic tree methods (rather than net-
work methods [71]). Before MP analysis, we performed a
partition homogeneity test [72] with 100 replicates and
10 random addition replicates per replicate in PAUP* [70]
to assess whether 16S and cyt b have congruent phyloge-
netic signal. The 16S-cytb fragment MP analyses were run

Table 6: Estimates of time since population divergence (Tpop) and time to most recent common ancestor (TMRCA), inferred using a 
coalescent MCMC approach to estimate migration and divergence

Coalescence Divergence Time (MDIV)
at 0.6%/MYR at 1.0%/MYR

Clade comparison mya mya

Upland vs. Lowland Tpop 6.45 ± 0.11 3.87 ± 0.07
TMRCA 7.74 ± 0.17 4.64 ± 0.10

Upland vs. Southeastern Tpop 7.68 ± 0.60 4.61 ± 0.36
TMRCA 10.55 ± 0.20 6.33 ± 0.12

Lowland vs. Southeastern Tpop 9.99 ± 0.64 5.99 ± 0.38
TMRCA 12.96 ± 0.66 7.77 ± 0.40

Time estimates are based on substitution rates of 0.6%/MYR and 1.0%/MYR.
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in PAUP* with outgroups Eleutherodactylus acuminatus and
Eleutherodactylus quaquaversus (unistrigatus group [73]),
using a heuristic search strategy with TBR branch-swap-
ping and 1000 random addition replicates. The shortest
tree was saved from each replicate. The topology of the 11
most parsimonious trees was tested with 1000 heuristic
search bootstrap pseudoreplicates, with 10 random-addi-
tion replicates each, and merged into a strict 50% consen-
sus tree. MP analyses were repeated with the full cyt b and
16S data sets separately. For our Bayesian phylogenetic
analyses, we used a two partition (16S and cyt b) analysis
in MRBAYES version 3.1.2 [74] with likelihood parame-
ters nst = 6, rates = gamma. Two independent MCMC
chains were run for 4.8 million generations with reduced
temperature difference among chains (t = 0.09) and trees
sampled every 100 generations. After assessing for appar-
ent convergence [75], 25 000 trees were discarded as burn-
in and a 50% majority-rule consensus tree was built.

Time of divergence estimates
We used cyt b to estimate divergence times because we had
more data for this fragment (individuals and haplotypes),
there are more published estimates of rate of evolution
available than 16S, and cyt b is less subject to inter-study
variation because of alignment-specific exclusion of
hyper-variable regions typical of rDNA alignments. Diver-
gence time among lineages or species was estimated in
three ways. First, net among clade divergence ([30] p. 276)
± standard error corrected with a TN model [76] of nucle-
otide substitution was calculated in MEGA3 [77]. This
method subtracts the intraspecific diversity from overall
divergence between two species and is unbiased when lin-
eages are reciprocally monophyletic and ancestral popula-
tion sizes is equal to the average of the two descendent
species [reviewed in [78]]. Species divergence time was
calculated from the net divergence estimate (net diver-
gence × substitutions/site/MYR). The TN model is a more
general case of the HKY model [79], which is imple-
mented in MDIV (below) and was selected as an appropri-
ate model of sequence evolution in MODELTEST.

Second, we estimated lineage divergence time, population
divergence, and migration rate between major pairwise
clades in MDIV [80] on CBSU Web Computing Resources.
Initial runs were tested under a finite sites (HKY) model of
evolution and default priors (M = 10, T = 5) to approxi-
mate the posterior distribution of scaled migration rate
(M) and time since divergence (T), while allowing MDIV
to estimate θ. Once appropriate parameter values to
bound a "well-behaved" posterior distribution [80] were
identified (M = 0, T = 30), we ran the MCMC for two mil-
lion generations with 500 000 generations discarded as
burn-in. Convergence was determined by evaluating the
consistency of model values for each of the three parame-
ters across five runs, which were then averaged to calculate
mean θ and T values ± standard deviation. Time of diver-

gence was calculated as (following [81]): tdiv = (Tθ/2L)/(1/
μ) where T (or TMRCA) and θ were estimated by the
height of the posterior distribution, L is the sequence
length analyzed (709 bp of cyt b), and μ is the mutation
rate (here, substitution rate). Substitution rates may be
less than mutation rates because neutral mutation rates
include population polymorphism that will not eventu-
ally be fixed in phylogenetic lineages (reviewed in [82,83]
but see [84]). Given the high levels of divergence among
lineages here, we consider substitution rate more realistic
than mutation rate.

As a third approach to calculating the timing of diversifi-
cation, we estimated time to most recent common ances-
tor (TMRCA) for various clades using a Bayesian approach
with the program BEAST version 1.4.1 [85]. All analyses
were performed using an HKY model of nucleotide substi-
tution with gamma distributed rate variation among sites
and six rate categories. We ran four separate sets of analy-
ses, first assuming a constant population size and a con-
stant global molecular clock (i.e. no rate differences
among lineages) of either 0.6 or 1.0%/MYR, and second
using an uncorrelated, relaxed clock again assuming con-
stant population size and mean clock rates of either 0.6 or
1.0%/MYR. Results from two independent runs
(10,000,000 generations with the first 1,000,000 dis-
carded as burn-in and parameter values sampled every
1000 generations) for each combination of settings were
combined and the effective sample size for parameter esti-
mates and convergence checked using the program Tracer
version 1.3 [86].

The substitution rate of E. ockendeni cyt b is unknown, so
for all three methods we used the same two estimates of
0.6 and 1.0 substitutions/site/100 MYR. We inferred our
substitution rate from two lines of evidence. First, the
mtDNA gene ND2 has been found to be consistent across
diverse poikilothermic vertebrate lineages (such as fish,
frogs, lizards, and salamanders [87]) and to have a substi-
tution rate similar to cyt b [88]. A mean ND2 substitution
rate of 0.957%/MYR has been suggested in Costa Rican
Eleutherodactylus inferred from Eurasian toads [89]. Sec-
ond, multiple calibrated salamander studies have found
cyt b substitution rates in the range of 0.6 to 0.8%/MYR
[90-92]. Frogs and salamanders share many characteristics
that might be important in determining molecular rates of
evolution (e.g., generation time, body size, ectothermy
[92-94] and constancy among taxa has been shown in
other mtDNA genes [87], so salamander substitution rate
can be considered a reasonable approximation for frog
substitution rate.

Population genetics analyses – mtDNA
We used a McDonald-Kreitman approach [95] to test for
selection among clades and calculated Tajima's D [96] to
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test for neutrality in DNASP version 4.10.4 [97]. Tajima's
D is also used for estimating population expansion.

Cyt b haplotypic (gene) diversity, number of polymorphic
sites, and nucleotide diversity [30] per locality were calcu-
lated in ARLEQUIN v. 2.000 [98]. Inter-haplotype TN cor-
rected p-distances were calculated in MEGA3 [77]. Cyt b
mismatch distributions and raggedness index (r) [99]
were calculated by clade in ARLEQUIN under a model of
sudden expansion using the parametric bootstrap
approach (α = 0.05; 1000 bootstraps) [100]. An empirical
mismatch distribution that does not deviate from a uni-
modal distribution of pairwise differences among haplo-
types and has a smooth distribution [99] suggests recent
population expansion [101,102]. The beginning of the
population expansion can be estimated from τ, the crest
of the mismatch distribution: τ = 2μt [102], where t is the
generation time (unknown, but estimated as 1 year [89])
and μ is the upper estimate divergence rate (1.0%/MYR ×
number of bp). As an alternative test of population expan-
sion, in ARLEQUIN we calculated Fu's F [103] and tested
its significant with 1000 bootstrap replications. Signifi-
cantly negative values of Fu's F suggest population expan-
sion [104].

Population genetics analyses – microsatellites
Five microsatellite loci (Eloc-Bert&Ernie, Eloc-
Beauty&Beast; Eloc-Thelma&Louise; Eloc-Laurel&Hardy
and Eloc-Batman&Robin) [105] were amplified for all
individuals in the Napo River area (localities 3 – 11 in Fig-
ure 1) for which we also have mtDNA sequences (n = 21
from Upland Clade; n = 76 from Lowland Clade). Sam-
ples were amplified and genotyped using published con-
ditions [105]. Amplification and scoring of a subset of
samples was repeated to confirm genotypes. Four samples
that resulted in large microsatellites in the loci Eloc-
Thelma&Louise and Eloc-Batman&Robin were sequenced
on an ABI 310 capillary sequencer using the microsatellite
primers to determine exact composition of the microsatel-
lite. A homozygous individual for locus Eloc-Lau-
rel&Hardy was amplified by PCR and cloned using
pGEM-T Vector System II kit (Promega) and the inserts
sequenced in an ABI 3100 sequencer using M13 primers.
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