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Abstract

Infants and adults frequently observe actions performed jointly by more than one person. Research in action perception,
however, has focused largely on actions performed by an individual person. Here, we explore how 9- and 12-month-old
infants and adults perceive a block-stacking action performed by either one agent (individual condition) or two agents (joint
condition). We used eye tracking to measure the latency of participants’ gaze shifts towards action goals. Adults anticipated
goals in both conditions significantly faster than infants, and their gaze latencies did not differ between conditions. By
contrast, infants showed faster anticipation of goals in the individual condition than in the joint condition. This difference
was more pronounced in 9-month-olds. Further analyses of fixations examined the role of visual attention in action
perception. These findings are cautiously interpreted in terms of low-level processing in infants and higher-level processing
in adults. More precisely, our results suggest that adults are able to infer the overarching joint goal of two agents, whereas
infants are not yet able to do so and might rely primarily on visual cues to infer the respective sub-goals. In conclusion, our
findings indicate that the perception of joint action in infants develops differentially from that of individual action.
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Introduction

Practically from birth, infants observe the behaviour of the

people around them, and they learn to anticipate the goals of

others’ actions during their first year of life (e.g., [1]). Recently,

interest in how infants passively perceive others’ interactions
emerged, that is, actions performed jointly by more than one

person (e.g., [2]). It is as yet an unsolved question whether the

perception of joint action is essentially consistent with individual

action, or whether they follow different developmental trajectories.

For example, if a 12-month-old infant is able to understand an

action performed by one agent, does he or she understand the

exact same action if it is performed by two agents? The present

research aimed to investigate this question by presenting infants

and adults with a block-stacking action that was either performed

by one or two agents.

An important aspect of one’s own performance, as well as action

perception, is the anticipation of the future end state of the action

[3]. The occurrence of anticipatory gaze shifts indicates that an

observer has built a representation of the observed action goal that

allows one to predict the outcome of the action before it is

completed, and it is typically modulated by infants’ production

skills with the respective action (e.g., [4]). The anticipation of

actions has been investigated extensively both in adults [5–9] and

infants [1,4,10–12]. In these studies, the perception of individually

performed manual actions was assessed such as reaching-to-grasp

an object [4,11], moving an object into a container [1], or eating

[13]. Depending on the task, infants start to anticipate action goals

at around 6 months [14,15], and by the end of their first year of

life, infants are able to anticipate the goal of many manual actions

(e.g., [1,4]). However, in our social world, actions are often

performed jointly by more than one person. These joint actions

vary from involving two interaction partners (e.g., in a face-to-face

conversation) to a multitude of cooperating or competing

interaction partners (e.g., in musical or sport performances).

Although frequently observed in everyday life, little research has

addressed the question of how infants and adults passively perceive

these interactions.

1.1. Joint action in adults and infants
Adults generally coordinate their actions easily to achieve a joint

goal such as preparing a dinner together (for an overview see [16]).

To do so, adults represent and predict not only their own actions,

but also their interaction partner’s actions [16,17]. Performance of

simple tasks is often improved if another person is present, a

phenomenon called social facilitation (e.g., [18]), whereas having
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more than one person involved in more complex tasks can lead to

performance impairment [19]. Studies on task sharing have also

demonstrated more specific interferences in situations where two

adults acted according to complementary task rules (e.g., [20,21]).

In general, adults are exceptionally capable of actively engaging in

coordinated joint action.

Infants participate in parent-child exchanges practically from

birth (for an extensive overview of the first two years see [22]).

During the first months of life, these face-to-face interactions

become increasingly coordinated with respect to their timing and

structure [23]. Importantly, in early interactions, infants are not

required to represent the interaction partner’s intentions or goals

[22]. In the second half of the first year of life, the adult-infant

dyads include external objects and events, which is referred to as

joint attention [24]. Around their first birthday, infants also begin

to initiate joint action [24], and between 14 and 18 months

children begin to autonomously engage in coordinated joint action

with adults [25–27]. Thus, during the first year of life, infants

participate in joint action, but it is only by the second year of life

that they actively coordinate their actions with others.

1.2. Perception of nonverbal and verbal interactions
Infants do not only engage in joint action with their parents or

their siblings. Given their limited motor repertoire in the first year

of life, they also observe interactions between other people without

being directly involved. For example, most infants have ample

opportunity to observe their parents having a conversation, or

helping each other in the kitchen. It remains a largely unexplored

question how infants in their first year of life perceive jointly

performed actions, at an age when they are not yet able to engage

in coordinated joint action themselves.

In one of the few studies that investigated the perception of a

nonverbal interaction, 6- and 12-month-olds were presented with

videos of one agent feeding another [28]. The 12-month-olds

anticipated the goal of the feeding action (i.e., that food would be

brought to the mouth of the second agent), whereas the 6-month-

olds did not. By contrast, 6-month-old infants anticipated that food

would be brought to the mouth if one agent fed herself [13]. These

studies suggest that 6-month-olds are able to anticipate an

individually performed feeding action, but not yet an interactively

performed one. It is important to note, however, that these results

have to be compared carefully due to different visual and timing

aspects of the stimuli (e.g., position of goals, pace of movements,

etc.), which occur naturally in unrelated studies. A further aspect

that has been investigated is the role of infants’ experience when

observing manual interactions. Comparable to infants’ anticipa-

tion of individual actions, their perception of interactions seemed

to depend on their own active experience with the manual action

[2]. Regarding experience with joint action, it has been

demonstrated that 10-month-olds were able to infer the joint goal

of two collaborative partners if they actively experienced the joint

action prior to observing it in a habituation paradigm [29].

Without this active experience, the joint goal could only be

inferred by 14-month-olds [30]. It has also been shown that 14-

month-old infants formed expectations about communicative

gestures and subsequently performed interactions [31]. Further-

more, 18-month-olds inferred a joint goal that two agents

performed sequentially [32]. It is also noteworthy that, in the

related field of verbal interactions (i.e., conversations between two

agents), it has been demonstrated that infants anticipated the

course of a conversation at least to some extent [33,34]. Although

the above described studies investigated the perception of

interaction, they do not answer the question of whether the

perception of joint action is essentially different from that of

individual action in infants and adults. In order to investigate just

this, we conducted a study in which we systematically manipulated

the number of agents involved.

1.3. The present study
In the present study, we presented infants and adults with an

action that can easily be performed by one or two agents and that

is familiar to infants: building a tower of wooden blocks, or ‘‘block-

stacking’’. We tested 9- and 12-month-old infants, when practi-

cally no coordinated joint action capabilities are present (see [22]),

and adults who are typically very skilled at coordinating their

actions with others (e.g., [16]). These age groups were chosen to

contrast participants with very little and very much experience in

joint action in a first attempt to systematically answer the research

question. The participants observed videos of a toy tower being

built by either one agent (individual condition) or alternately by

two agents taking turns (joint condition). We analysed the arrival

of participants’ gaze shifts at goals (gaze latency). If infants were

able to anticipate an action performed jointly as soon as they are

able to anticipate the same action performed individually, there

should be no difference in gaze latency between conditions. If,

however, the perception of individual and joint action developed

differentially, for example, depending on their own experience,

infants should show earlier gaze latency in the individual

condition. We did not expect gaze latency differences between

conditions in the adult group, because adults are exceptionally

capable of coordinating their actions with others.

1.4. Joint action and visual attention
A secondary aim of the present study was to analyse gaze

characteristics that indicate overt visual attention. Individual and

joint actions naturally differ with respect to the visual complexity

of the observed scene; with an increasing number of agents the

complexity of the visual scene increases as well. To investigate the

effect of visual complexity, we used two measures to explore the

participants’ attention during the perception of the actions. It has

been shown that fixation duration decreases with visual complex-

ity, whereas the number of eye movements increase [35–37].

Thus, shorter fixation durations and more eye movements in the

joint condition than the individual condition would indicate an

effect of visual complexity on eye movements. This, in turn, could

affect participants’ gaze latency towards action goals. Apart from

these general measures of visual attention, we analysed how much

time participants spent looking at the agent(s) or the goal areas to

further support the interpretation of gaze latency results.

Method

2.1. Participants
The final sample consisted of 23 9-month-old infants (M=9

months 6 days; range: 9; 2 to 9; 12; 12 female), 23 12-month-old

infants (M=12 months 2 days; range: 11; 15 to 12; 15; 11 female),

and 14 adults (M=23.4 years; range 21 to 28; 6 female). Seven

more 9-month-olds and seven more 12-month-olds were tested but

did not complete enough trials to be included in the analyses due

to fussiness in one or both conditions. One additional adult

participant had to be excluded from analyses due to a technical

error. All infants were born at full term. Infants received a toy for

their participation, and adults received monetary compensation.

2.2. Ethics statement
The study was approved by the local ethics committee at the

University of Leipzig, and conducted in accordance with the

Perception of Individual and Joint Action
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Declaration of Helsinki. Written informed consent was obtained

from the adult participants and from infants’ parents.

2.3. Apparatus and stimuli
Two videos were recorded, showing how a tower of coloured

wooden blocks was stacked and unstacked by either one agent

(individual condition) or two agents (joint condition; see Figure 1).

In both conditions, the complete tower consisted of six blocks,

which were initially placed to the left and right of the base. The

agent(s) alternately reached for (and grasped) one block at a time

from the left and from the right, and placed it on the base

(‘‘stacking’’). Once the tower was complete, the blocks were

replaced in their initial position in reverse order (‘‘unstacking’’).

The presented action involved one overarching goal (to build a

tower) and a number of sub-goals (to reach for a block; to stack it).

For the analyses, a sub-goal was defined as the area that each

movement (either a reaching or a transport movement) was aimed

at. Participants’ gaze behaviour towards a total of 24 reaching and

transport movement sequences (i.e., sub-goals or trials) per video

was analysed. To increase the participants’ attention towards the

stimulus presentation, a ‘‘swooshing sound’’ was presented during

the transport sequences. During the recording session, a metro-

nome ticked at the rate of 1 Hz to pace the actors’ movements,

and to make the timing in the two conditions as similar as possible.

Accordingly, the tower was built rhythmically, and each move-

ment (reaching for a block; transporting a block) lasted approx-

imately 1 s (see Figure 1 for details). The difference in the mean

durations of movements between the two conditions was minimal

(10 ms, i.e., 0.5%). The length of each action sequence video was

approximately 40 s. Conditions only differed in the number of

agents; all other aspects (number and position of blocks, timing of

movements, background, lighting, etc.) were analogous.

Videos were presented on a 17-inch monitor and subtended a

visual angle of approximately 28.3u619.8u. Gaze was measured

using a remote corneal reflection eye tracker (Tobii 1750,

Stockholm, Sweden; sampling rate: 50 Hz; software: ClearView

2.7.1) with an infant add-on (precision: 1u, accuracy: 0.5u). We

used a 9-point-infant calibration.

2.4. Procedure
Written informed consent was obtained from the adult

participants and from infants’ parents prior to testing. After the

calibration sequence, which took approximately 30 s, videos of the

two conditions were presented. Order of conditions was counter-

balanced across participants. Before the start of each video, a

salient attention grabber was shown (videos of colourful toys that

moved and made sounds). After watching the action sequence

videos in both conditions, the presentation of each video was

repeated in order to collect more valid trials. This resulted in a

possible number of 48 trials per condition (96 in total), depending

on the participants’ attention. The stimulus presentation took

approximately 3 min.

2.5. Data analysis
Raw data files can be found in Data S1. Gaze data was analysed

using Matlab 7.1 (The MathWorks). Areas of Interest (AOIs)

surrounded the positions of the blocks as well as the tower (see

white boxes in Figure 1). AOIs for the block positions ranged from

4.8u to 5.1u horizontal visual angle and covered a vertical visual

angle of 2.2u. The tower AOI covered a visual angle of 4.7u64.9u.
We computed the arrival of gaze shifts at goal AOIs relative to

the arrival of the moving hand for each trial. Positive values

represented anticipatory gaze shifts whereas negative values

represented reactive gaze shifts. A gaze shift was classed as

anticipatory if the gaze reached the correct goal AOI before the

hand did. The time interval for anticipatory gaze shifts began with

the movement of the hand and ended with the arrival of the hand

at the goal area. At this point, the time interval for reactive gaze

shifts began; it ended 1 s after the movement was finished. An

individual trial was considered to be valid if a gaze shift was

preceded by a fixation at the previous AOI (i.e., the starting point

of the hand movement) for at least 100 ms [34]. This ensured that

actions were observed attentively. Only participants with at least

12 valid trials (6 per condition) were included in final analyses. On

average, 9-month-olds provided 40.6 (SD=13.4), 12-month-olds

50.3 (SD=21.2), and adult participants 70.6 (SD=22.2) valid

trials.

General measures that quantify visual attention are mean

fixation duration and ‘‘number of eye movements’’ [35–37]. First,

we calculated mean fixation durations using fixation data provided

by the data acquisition software (ClearView 2.7.1). Shorter fixation

durations have been shown to indicate an effect of increased visual

stimulus complexity on eye movements [35,37]. Second, the

number of eye movements was operationalized as number of

fixations because fixations and saccades usually alternate (cf. [38]).

Similarly to the measure of fixation duration, more fixations, and

therefore more eye movements, have been found to indicate an

effect of visual complexity [36,37]. Because there were differences

in the duration participants watched the videos, we calculated the

Figure 1. Snapshots of individual and joint conditions. The white boxes in the left panel illustrate AOIs for each goal area. The average
duration (and standard deviation) in the individual condition wereM= 970 ms (SD= 66 ms) for reaching movements, and M=987 ms (SD= 62 ms) for
transport movements. In the joint condition these were M= 990 ms (SD=39 ms) for reaching and M= 987 ms (SD=142 ms) for transport
movements.
doi:10.1371/journal.pone.0107450.g001
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number of fixations per second, including only the time that

participants looked at the screen.

We further analysed how much time participants spent looking

at the goal areas (tgoal) in relation to the time they spent looking at

the body areas (tbody). This ‘‘goal focus’’ was calculated as tgoal–

tbody/tgoal+tbody (cf. [39,40]). This resulted in an index of

normalised differences between 21 and 1, where positive values

indicated that participants looked longer at the goal area, whereas

negative values indicated they looked longer at the body area.

These normalised and normally distributed values could then be

used to perform an Analysis of Variance (ANOVA). In order to

make both conditions comparable, the size of the body areas was

identical.

Results

3.1. Gaze latency
Initial analyses did not suggest any evidence for a main effect or

interaction effects of video presentation order (all ps..32); those

data were thus collapsed. Infants’ and adults’ gaze behaviour was

anticipatory on average in both conditions (see Fig. 2 and

Table 1). Performed t-tests against zero confirmed that partici-

pants of all age groups shifted their gaze to the action goals

significantly ahead of the agent’s hand, both, in the individual

condition (9-month-olds: t(22) = 5.13, p,.001, d=1.07; 12-

month-olds: t(22) = 9.45, p,.001, d=1.97; adults: t(13) = 28.54,

p,.001, d=7.63) and in the joint condition (9-month-olds:

t(22) = 2.28, p= .03, d=0.48; 12-month-olds: t(22) = 4.73, p,
.001, d=0.99; adults: t(13) = 27.14, p,.001, d=7.25).

A 362 (Age [9 months, 12 months, adults]) 6 Condition

[individual, joint]) ANOVA with gaze latency yielded significant

main effects of age, F(2,57) = 167.89, p,.001, g2
G= .80, and

condition, F(1,57) = 4.50, p= .04, g2
G= .004, as well as a

marginally significant interaction between both, F(2,57) = 2.59,

p= .08, g2
G= .005 [generalised eta squared values are presented

to ensure comparability with other studies, see 41, 42]. The main

effect of age was caused by significant differences between all age

groups (all ps,.009, Bonferroni-corrected); participants anticipat-

ed action goals faster the older they were. Paired t-tests showed a

significant difference between the individual and the joint action

condition in 9-month-olds, t(22) = 2.40, p= .03, d=0.50, a

marginally significant difference in 12-month-olds, t(22) = 2.07,

p= .05, d=0.43, and no difference in adults, p..34. Thus, infants

showed faster gaze latencies in the condition with one agent,

whereas adults anticipated both conditions equally fast. This

pattern was confirmed non-parametrically: Eighteen 9-month-olds

showed faster anticipations in the individual condition, compared

with only 5 who did so in the joint condition, x2(1) = 7.35, p,.01.

In the group of 12-month-olds, 15 out of 23 children anticipated

actions faster in the individual condition, x2(1) = 2.13, p= .14, as

did 6 out of 14 adults, p= .59.

We further explored how the different types of stacking

direction (stacking vs. unstacking) and movement (reach vs.

transport) affected gaze latency. Stacking the blocks was antici-

pated faster than unstacking by all age groups (all ps,.003,

Figure 2b); and infants, but not adults, anticipated reaching faster

than transport actions (infants: ps,.05; adults: p= .67, Figure 2c).

Further analyses, for example, of condition and stacking direction

or movement type, were not recommended because not all

participants delivered data in the corresponding trials, and often

only a single trial was acquired; these limitations would lead to

highly unreliable results.

3.2. Analyses of overt visual attention
Figure 3B displays histograms of fixation duration in the

individual and joint condition for all age groups (along with the

spatial distribution of fixations illustrated in Figure 3A). A 362

(Age [9 months, 12 months, adults]) 6 Condition [individual,

joint]) ANOVA with mean fixation duration yielded a significant

main effect of age, F(2,57) = 3.29, p,.05, g2
G= .099, and no

further effects (all ps..24). Bonferroni-corrected post-hoc t-tests
between age groups showed that 12-month-olds had longer mean

fixation durations than 9-month-olds, p= .04, and no significant

differences between infants and adults (both p..74). Furthermore,

a 362 (Age6Condition) ANOVA with fixations per second (see

Table 2) yielded no significant main effects or interactions (both

effects with condition: ps..39; age effect: p..11).

The goal focus values for participants of all age groups were

positive, indicating that they looked longer at goal areas than body

areas (see Figure 4). A 362 (Age6Condition) ANOVA with goal

focus yielded a main effect of age, F(2,57) = 14.27, p,.001,

g2
G= .317, a main effect of condition, F(2,57) = 21.06, p,.001,

g2
G= .001, and no significant interaction (F,1). Bonferroni-

corrected post-hoc t-tests showed that the older the participants

the longer they looked at goal areas, with significant differences

between all age groups (all ps,.04). Furthermore, participants of

all age groups looked longer at the body area in the joint than in

the individual condition (all ps,.04).

Discussion

The aim of the current study was to explore how the perception

of individual and joint actions develops. Accordingly, we presented

infants and adults with the same block-stacking action that was

performed by either one or two agents. The main findings were

that 1) adults anticipated both conditions equally fast, and they

generally initiated gaze shifts towards action goals very quickly,

and 2) infants anticipated action goals in the individual condition

faster than the joint condition, and their gaze shifts towards goals

were initiated later than those of adults. Furthermore, general

measures of visual attention indicated no differences between

conditions. However, participants of all age groups spent more

Table 1. Mean values and standard deviations of gaze latency (in ms) in both conditions for infants and adults.

Individual Joint

M SD M SD

9 Months 115.47 107.85 48.12 101.25

12 Months 188.88 95.84 139.40 141.45

Adults 609.99 79.96 629.44 86.78

Positive values indicated that gaze shifts were anticipatory on average.
doi:10.1371/journal.pone.0107450.t001
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time looking at the agents in the joint condition than the individual

condition. One approach that can possibly explain the present

findings is that adults and infants represented the observed actions

on different hierarchical levels, namely the levels of overarching

goals or sub-goals [43]. On a higher level, the overarching goal of

our agent(s) was to alternately build a tower from the left and right,

and this was identical in both conditions. However, if the actions

were represented on the lower level of sub-goals, some differences

would arise between conditions. The sub-goals were performed by

either one agent or two different agents. The latter case resulted in

less certainty about which agent would act. Furthermore, there

was an inevitable increase in visual stimulus complexity in the joint

condition, which could possibly affect participants gaze behaviour,

particularly if no overarching goal representation was present.

Thus, depending on whether the observed action was processed on

the basis of the overarching goal or on the level of sub-goals, the

conditions were either comparable or quite different.

4.1. Adults are able to represent joint goals
The adults in our study did not show differential gaze behaviour

towards the action goals in the individual and joint condition. This

suggests that they inferred the overarching goal of the agent(s) to

build a tower of blocks. This higher-level representation could

then be used to quickly anticipate sub-goals in a top-down manner

in both conditions. It has been shown that adults usually make use

of higher-level information, such as goals and intentions, that

guide their anticipatory gaze shifts [44]. Such a higher-level

representation leads to a fast initiation of gaze shifts because the

location of the next sub-goal can be inferred before the agent has

started a movement. It is thus partly independent of low-level

visual information such as movement kinematics or visual stimulus

complexity. Remarkably, adults showed no difference in gaze

latency between conditions although their goal focus indicates that

they spent more time looking at the body area (i.e., the agents) in

the joint condition than in the individual condition. This can be

interpreted in favour of top-down processing: Because adults knew

in advance when and where to shift their gaze, they could spend

more time exploring the two agents in the joint condition but were

still able to anticipate the action goals equally well as in the

individual condition.

There is, however, an alternative explanation as to why adults

did not show differential gaze behaviour in the individual and joint

condition: Adults could have performed at ceiling because the

observed action was undoubtedly quite simple. This could have

covered up underlying differences between conditions. It cannot

be ruled out that adults would show delayed initiation of gaze shifts

if observing a more demanding joint action. This remains subject

to further research. However, adults are generally able to

represent overarching, joint goals [16], so that a comparable gaze

behaviour towards individual and joint action seems likely even in

a more demanding task.

4.2. Infants are able to represent individual sub-goals
The infants in our study anticipated individual action faster than

joint action. This suggests that the perception of joint action

develops differentially from that of individual action. One

interpretation to explain this finding is that infants could not

benefit from a representation of the overarching joint goal in the

same way as adults. Such an interpretation is supported by studies

showing that infants in their first year of life are usually not yet

able to infer [29] or anticipate joint action [2]. Without such a

representation, gaze could not be guided towards sub-goals in a

top-down manner. Instead, infants probably had to infer the sub-

goal of each reaching or transport movement in a bottom-up

manner while the actions were in progress, based on observable

information. Indeed, infants in their first year of life have been

found to represent the sub-goals of an action, instead of the

overarching goal [45]. Furthermore, if children aged 9 and 12

months learned the goal of an animated agent, they subsequently

anticipated the agent to choose a goal based on its previous

movement path, whereas children aged 3 years, and adults, made

predictions based on the agent’s previous goal [10]. Thus, infants

seem to rely primarily on low-level visual cues that need to be

analysed instantaneously, such as a path, or a trajectory [46–49],

or the hand aperture in reaching actions [12,50]. This would lead

to later initiation of gaze shifts in the joint condition for a number

of reasons. First, if no overarching goal representation was present,

infants could not know which agent would act, and this

uncertainty would delay the initiation of gaze shifts. Second,

related to the first point, the corresponding representation of the

agent and the agent’s goal could only be ‘‘activated’’ after she had

started moving, because the observer had to wait for the necessary

information to unfold. And third, such a switching between the

representations of the two agents would lead to a processing delay

that could affect gaze latency (e.g., [51]). Infants (and adults) spent

more time looking at the agents in the joint condition than in the

individual condition. For adults, this did not have consequences

for gaze latency because their top-down processing, using the

overarching goal, facilitated the anticipation of the next sub-goal.

For infants, however, who relied more on the bottom-up analysis

Figure 2. Mean gaze latency towards goals for all age groups. Mean gaze latencies are illustrated (A) in both experimental conditions, (B) for
stacking direction, and (C) for movement type (with standard errors). Grey line at zero displays arrival of the hand at goal areas. Positive values
indicated that gaze was anticipatory. Asterisks denote difference between a) individual and joint conditions, b) the two different directions, and c)
both movement types (**: p,.01; *: p,.05; (*): p,.10).
doi:10.1371/journal.pone.0107450.g002
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of agents’ behaviour, this would be likely to contribute to

prolonged processing times to detect where to look next. Taken

together, the present data suggest that infants’ gaze shifts were

guided predominantly bottom-up by low-level visual information

that allowed them to infer the agent(s) sub-goals. This led to a

generally later initiation of gaze shifts and a differential perception

of individual and joint action.

An alternative interpretation of the infants’ results is that slower

gaze latencies in the joint condition are solely a consequence of

increased visual distraction or longer processing times due to

increased visual complexity. We do not intend to exclude this

possibility altogether, but this interpretation seems unlikely for

three reasons: First, general measures of visual attention (fixation

duration and number of eye movements) did not indicate

differences between conditions. These measures have been shown

to be sensitive to visual stimulus complexity [35–37]. The fact that

participants showed neither shorter fixation durations nor more

eye movements in the joint condition suggests that the two agents

in the joint condition did not elicit visual distraction per se, and

visual complexity as such did not influence their eye movements.

Second, the infants, as well as the adults, looked longer at two

agents in the joint condition than at one agent in the individual

condition, but this resulted only in later gaze shifts in the joint

condition in the infant groups. This pattern suggests differential

processing in infants and adults, which can be accounted for by

low-level (bottom-up) processing in infants and higher-level (top-

down) processing in adults. And third, previous studies have shown

that infants with no coordinated joint action experience were

indeed unable to infer the joint goal of two agents (cf. [2,29]),

which is in line with our interpretation that infants’ gaze patterns

indicated a lack of inference concerning joint goals. Nonetheless,

to resolve the issue further it could be beneficial to test an

additional condition in future studies where two people sit next to

each other but only one of them performs the action.

4.3. From low-level to higher-level processing
In the present study, the infant groups anticipated goals in the

individual condition faster than in the joint condition, and this

difference was more distinct in the younger infant group. This

indicates differential developmental trajectories for the perception

of individual and joint action. As described previously, infants

probably could not make use of a representation of the

overarching joint goal of two agents, whereas adults could. These

findings suggest that the younger the infants, the more they

depended on observable visual information (e.g., movement

kinematics) to infer an action goal. This low-level visual

information is less important in top-down processing where the

goal is inferred before a movement has started. One of the key

reasons for the development from predominantly low-level to

higher-level processing is very likely experience with manual

actions on the one hand, and joint action on the other hand. Such

a link between anticipatory gaze shifts and experience has been

shown in infants [2,4,15] and adults (e.g., [52]). It is to be expected

that during their second year of life, children learn to anticipate

joint action as well as individual action because they become more

experienced in autonomously coordinating their actions with

others [22]. Indeed, this notion is corroborated by findings

showing that 14- and 18-month-olds could infer a joint goal [30–

32]. The 12-month-olds in our study already showed earlier gaze

latencies and a less distinct difference between conditions than the

9-month-olds. This suggests that the gaze latency measure reflects

a gradual progress (as opposed to an all-or-nothing principle) from

having no experience to being experienced. Due to their extensive

active experience, adults were able to infer overarching joint goals
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and were less dependent on low-level visual information. It is has

been shown, however, that adults still made use of low-level

information, when a priori predictions were not possible, for

example when they observed unusual or unpredictable actions [8].

Furthermore, an important factor that contributed to our results

is the general development of eye movement control. Different

types of eye movements, such as saccade latency or smooth

pursuit, improve continually during infancy [53,54] as well as

childhood [55,56], which is probably due to cortical maturation

[54,55]. Such a general improvement of eye movement control

very likely contributed to faster gaze latencies with age. However,

it cannot account for the differences between the individual and

joint condition in infants.

4.4. Influence of salience and experience on goal
anticipation
In another line of results, we found differences between the two

directions of stacking (stacking vs. unstacking), and the two

movement types (reach vs. transport). Stacking was anticipated

faster by all age groups than unstacking. During stacking, all sub-

goals were defined by salient goals (i.e., the coloured blocks during

reaching, and the tower during transport actions). During

unstacking, the blocks were replaced in their initial location but

there was no visible goal for these transport actions, which led to

later initiation of gaze shifts [57]. This result emphasises the

impact of salience on goal anticipation [11].

Furthermore, infants but not adults anticipated reaching faster

than transport actions. This was probably due to a lack of active

experience in infants, and the impact of experience on anticipatory

gaze (e.g., [4]). The ability to reach emerges at 3 or 4 months of

age [58], which means that the 9- and 12-month-old infants in our

study had had some experience with reaching actions. The ability

to stack blocks, however, develops at around 12 months (e.g., [59]),

which means that our infants had had little to no experience. This

difference in active experience between the movement types most

likely led to a differential perception of reaching and transport

actions. It is noteworthy that this experience with individual action
also seemed to affect the perception of joint action, which suggests

an interplay of different experience types during action perception

(see [2]). Adults had already gained extensive experience in

reaching and all sorts of manipulative behaviour, including block-

stacking, so they perceived these actions similarly.

An interesting detail of our results is that even the 9-month-olds

anticipated action goals on average. Usually, this gaze behaviour is

rarely found in infants below 12 months of age (but see [14,15]). In

our study, the rhythmic turn-taking nature of movements could

have supported infants’ anticipatory gaze shifts [60], because it

could have given an indication of which side of the screen was

Figure 3. Spatial and temporal distribution of fixations. (A) Screenshots of action sequence videos with spatial distribution of participants’
gaze fixations in both conditions for 9-month-olds (top row), 12-month-olds (middle row), and adults (bottom row). Each transparent dot displays a
fixation; its size indicates the fixation duration. The white boxes in the first row illustrate AOIs for goal areas and body areas. (B) Histogram of fixation
duration in both conditions for 9-month-olds (top row), 12-month-olds (middle row), and adults (bottom row). Bin size is 50 ms. Mean fixation
duration and standard deviations are indicated.
doi:10.1371/journal.pone.0107450.g003
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more likely to be relevant, thus narrowing location options to those

within that half of the screen.

It is further important to note the bystander nature of the

paradigm used in the present research. Participants observed the

actions passively without being involved. The obvious benefit of

this approach is that we were able to investigate infants that were

not yet capable of engaging in joint action themselves. At the same

time, infants might have been more attentive and motivated to

make sense of our block-stacking if they had been involved.

Conclusions

The perception of joint action in development is likely to be

influenced by a complex interplay between experience with

individual action and joint action on the one hand, and

characteristics of the stimuli, such as visual complexity and

salience, on the other hand. This leads to the finding that infants in

their first year of life anticipate individual and joint action

differentially. Infants might not yet be able to infer the overarching

joint goal of two agents and have to make use of low-level visual

information. Adults, by contrast, anticipate individual and joint

goals equally fast, possibly because they are able to infer the

overarching joint goal of two agents. This development from low-

level to higher-level processing is most likely due to first-hand

experience in coordinated joint action.
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