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ABSTRACT

Cytosines at cytosine-guanine (CG) dinucleotides
are the near-exclusive target of DNA methyltrans-
ferases in mammalian genomes. Spontaneous
deamination of methylcytosine to thymine makes
methylated cytosines unusually susceptible to
mutation and consequent depletion. The loci
where CG dinucleotides remain relatively enriched,
presumably due to their unmethylated status during
the germ cell cycle, have been referred to as CpG
islands. Currently, CpG islands are solely defined by
base compositional criteria, allowing annotation of
any sequenced genome. Using a novel bioinformatic
approach, we show that CG clusters can be
identified as an inherent property of genomic
sequence without imposing a base compositional
a priori assumption. We also show that the CG
clusters co-localize in the human genome with
hypomethylated loci and annotated transcription
start sites to a greater extent than annotations
produced by prior CpG island definitions. Moreover,
this new approach allows CG clusters to be
identified in a species-specific manner, revealing
a degree of orthologous conservation that is
not revealed by current base compositional
approaches. Finally, our approach is able to identify
methylating genomes (such as Takifugu rubripes)
that lack CG clustering entirely, in which it is
inappropriate to annotate CpG islands or CG
clusters.

INTRODUCTION

Several observations have converged to focus attention on
cytosine-guanine (CG) dinucleotide clusters in mamma-
lian genomes. Digestion of genomic DNA with HpaII
allowed the isolation of loci where these restriction sites
cluster and are unmethylated in cis, defining a population
of loci referred to as HpaII tiny fragments (1). Upon
sequencing, these loci were found to be unusually rich in
CG dinucleotides and (G+C) content when compared
with other sequences in the 1985 Genbank database (2).
The CpG island base compositional criteria now used
for genomic annotation are derived from this original set
of experiments.

With the appreciation that methylcytosine is unusually
susceptible to mutation through deamination to thymine
(3), a logical conclusion was that the absence of
methylation at cytosines in CpG islands protected them
from mutational decay during evolution. The implicit
assumption is that these loci are universally unmethylated
in normal cells but can be the target of abnormal
methylation in cancer, or in unusual epigenetic regulatory
processes such as genomic imprinting or X chromosome
inactivation (4,5). CpG islands have proven valuable
in focusing the study of the widespread genomic changes
that occur in these processes, and are commonly used
in designing custom microarrays for that purpose. CpG
islands have also been used as a foundation for bioinfor-
matic analyses such as finding gene promoters (6) and
identifying sequence features that distinguish imprinted
genes (7).

Despite its proven utility, there are problems with the
original definition of CpG islands, including its lack of
specificity. Using base compositional criteria alone, CpG
island annotations identify over 350 000 sites in the
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human genome (Table 1), many of which are in repetitive
sequences. Recognizing this problem, other groups have
modified the original base compositional criteria (8) or
the analytical approach used (9) in order to increase
the stringency for CpG islands identification, greatly
reducing the number of repetitive sequences annotated
while preserving most CpG islands located at promoters.
However, the more common approach, used by genome
browsers such as that at UCSC (http://genome.ucsc.edu/)
(10), is simply to remove all repetitive sequence prior to
annotating CpG islands.

CpG island annotations are meant to identify constitu-
tively unmethylated sites in the genome. However, the
traditional CpG island criteria mostly identify repetitive
sequences, as we show in Table 1, and these repeats are
generally highly methylated (11). Furthermore, when we
(12) and others (13) performed high-throughput cytosine
methylation studies, even the annotated unique sequence
CpG islands were subject to methylation at non-imprinted
autosomal loci from normal tissues. It follows that the
original base compositional criteria by themselves are not
sufficient to predict methylation status.

Rather than modify existing base compositional criteria
further, we decided to focus on the single characteristic of
CG dinucleotides in which we had confidence: that they
cluster at certain loci. We sought to identify whether such
loci form a distinctive population within the genome as a
whole. This approach allowed us to develop a new means
of defining what we call CG clusters, and for the first time
allows a species-specific definition that reveals the pattern
of preservation of CGs to be genome specific and more
conserved at orthologous loci than previously recognized.
As CpG islands have been used as fundamental predictors
of functionally important sites such as promoters (6),
and we show that the CG cluster annotation has a
substantially better positive predictive value for annotated

transcription start sites than do CpG islands, it is likely
that prior bioinformatic studies based on using CpG
islands will be greatly improved by the use of CG clusters
instead. We also show that the potential utility of CG
clusters extends beyond sequence analysis alone, with
demonstration of epigenetic predictive capacity, identify-
ing substantially more hypomethylated sites than CpG
islands in human CD34+ and embryonic stem cells.
Because CpG islands are used as a basis for microarray
studies of methylation changes, particularly in cancer (14),
the use of CG clusters is likely to improve the sensitivity
of such studies.

MATERIALS AND METHODS

CG cluster generation

The CG cluster annotation was generated using a set
of custom PERL, R (http://www.r-project.org/) and shell
scripts (available at http://greallylab.aecom.yu.edu/
cgClusters/). Initially, the locations of every CG dinucleo-
tide in the human genome were extracted from raw
genomic DNA sequences (human May 2004 assembly
hg17, http://genome.ucsc.edu/). Using these positions,
every overlapping sequence fragment Sn ¼ fSn

1,S
n
2, . . .g

containing a fixed number of CGs (n=5,10, . . . 100) and
having variable length was identified. For each number
n of CGs, the frequency of each fragment length was
recorded and the distribution of fragment lengths
was examined using the R statistical package for
the presence of a short, CG-dense population
Cn ¼ fSn

i

�
�lengthðSn

i Þ4�ng distinct from the longer frag-
ments Cn0 ¼ fSn

i

�
�lengthðSn

i Þ4�ng. The threshold for each
CG number �n (maximum fragment length) was defined
to be the location of the local minimum in the frag-
ment length histogram, estimated by identifying zero

Table 1. The total numbers of CpG islands and CG clusters in human and mouse, using unmasked sequence that contains repetitive elements, the

UCSC CpG island track (generated from sequence in which transposons have been masked) and CG clusters excluding those with 427 CGs derived

from unique sequence (24 for mouse, the minimum number needed to define a CG cluster in each species).

All Sequence feature
conserved at
orthologous locus

Overlap with refSeq
transcription start site

CpG islands (original definitiona) Humanb 350 201 42 445 (12.1%) 17 209 (4.9%)
Mousec 165 379 47 139 (28.5%) 11 822 (7.1%)

CpG islands (UCSC annotationb) Human 27 801 14 452 (52.0%) 14 121 (50.8%)
Mouse 15 974 14 057 (88.0%) 9114 (57.1%)

CG clusters Human 44 165 19 410 (44.0%) 16 822 (38.1%)
Mouse 42 971 18 970 (44.2%) 11 859 (27.6%)

CG clusters (non-transposon)d Human 31 225 19 071 (61.1%) 16 690 (53.5%)
Mouse 21 587 17 614 (81.6%) 11 677 (54.1%)

The exclusion of transposon-derived CG clusters creates an annotation that is comparable to the UCSC CpG island annotations. We show the
numbers and percentages of total for each sequence feature in terms of conservation of that sequence feature at the orthologous locus in the other
species. We also quantify the numbers and proportions overlapping refSeq gene transcription start sites in each genome. Comparison of annotation
performance in unmasked sequence shows CpG islands to suffer from excessive non-specificity, while the performance for non-repetitive sequences
shows comparable proportional but quantitatively greater identification of conserved CG-dense regions or refSeq promoters using the CG cluster
annotation in both human and mouse.
aUsing cpgi130 program (4) (http:// http://cpgislands.usc.edu/) using parameters (G+C) 50.50, O/E CpG 50.60, window size 5200 bp.
bUsing hg17 assembly at the UCSC genome browser (http://genome.ucsc.edu/) (11).
cUsing mm7 assembly at the UCSC genome browser.
dRemoving CG clusters for which 427 CGs are contributed by unique sequence (24 CGs for mouse).
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values of the first derivative of a cubic spline fit. Plots of �n

against the number of CGs (n) exhibited a nearly linear
relationship.
Mapping the CG-dense fragments in Cn back to the

genomic sequence produces an annotation track where
each annotated locus is a conglomeration of one or more
overlapping fragments of variable length. However,
the exact number, length and location of the annotated
regions vary with the number of CGs per fragment (n).
As the basis for choosing the optimal track in an objective
manner, we noted that the fragments tended to aggregate
and overlap to a greater extent in genomic regions of
higher CG density. Because these types of regions are the
major source of the CG-dense subpopulation, we used the
number of overlapping fragments at locus j, ðjOn

j jÞ, as a
parameter for evaluating the information content of an
annotated locus. To normalize for the length dependence
of this value, we divided it by the maximum fragment
length �n. To choose the track with maximal fragment
overlap per locus, we compared genomic averages of this
metric ð

P
j jO

n
j j=�

nÞ for different numbers of CGs per
fragment (n). This allowed us to choose the species-specific
optimal number of CGs per fragment for the final
annotation. These annotations were then formatted for
visualization in the UCSC genome browser and are
available for download (human and mouse genomes) at
http://greallylab.aecom.yu.edu/cgClusters/
Annotation track features including CpG islands and

repetitive elements were examined using a local mirror of
the UCSC genome browser MySQL database through the
PERL DBI interface. The Takai and Jones (8) and
Gardiner-Garden and Frommer (2) CpG island annota-
tion tracks were generated using the cpgi130 program (8)
(http://cpgislands.usc.edu/), and loaded into the database
to facilitate analysis. The CG cluster annotation was also
loaded into the database.
Analysis of CpG island and CG cluster promoter

prediction was performed using a highly restrictive set of
criteria. Only refSeq genes were considered, and promoter
prediction was defined as strict overlap of the transcrip-
tion start site. Non-transposon CG clusters were defined
by quantifying the number of CG dinucleotides derived
from transposon and unique sequences, identifying those
for which unique sequence contributed less than the
minimum number of CGs required for a CG cluster in
each species and removing them from consideration. For
the comparisons of CpG islands and CG clusters at
orthologous promoters in human and mouse at the
23 loci, we used the same approach as in the original
analysis (15), scoring conservation when the promoter of
the gene had any overlap with the sequence feature. For
the corresponding genome-wide analysis of CpG island
and CG cluster conservation, we defined orthologous
annotations in human and mouse using the mouse net
(netMm7) track from the UCSC Genome Browser (16).
Promoter hits were defined as strict overlap with
transcription start sites of refSeq genes, while overlap of
the annotation from one species with the annotation in
the other species at orthologous sequences defined
conservation of the CG-dense region.

Cytosine methylation analysis using the HELP (HpaII tiny
fragment enrichment by ligation-mediated PCR) assay

Two normal human cell types were chosen for analysis,
human embryonic stem cells and hematopoietic stem and
progenitor cells. The H1 human embryonic stem cells
(hESCs; NIH code WA01 from Wicell Research Institute,
Madison, WI, USA) were cultured on P51R [hESC-
derived MSCs (17)], plated at 75 000 cells per cm2 or on
matrigel (BD Biosciences, San Diego) at 378C, 5% O2 and
5% CO2. The hESC medium contained DMEM/Ham’s
F-12, 20% Knockout Serum Replacer (KSR), 2mM
L-glutamine, minimal essential medium nonessential
amino acid solution (NEAA), 0.1mM penicillin–
streptomycin 1% (all from Gibco, Grand Island, NY,
USA), 4 ng/ml basic fibroblast growth factor (or 100 ng/ml
for cells on matrigel, R&D Systems Inc., Minneapolis; or
ProSpect-Tany, Technogene, Rehovot, Israel) and 0.1mM
1-thioglycerol (Sigma–Aldrich, St Louis). The culture
medium was changed daily, and the cells were passaged
once weekly.

The hESCs were harvested using TrypLETM EXPRESS
(Gibco), washed and re-suspended in staining buffer
[Dulbecco’s phosphate-buffered saline (DPBS)+5%
KSR] at a concentration of 107 cells/ml and stained with
mouse anti-human SSEA-4 antibody (DHSB) or isotype
control (eBioscience, San Diego). Secondary staining
was performed using rat anti-mouse IgG (H+L) immu-
noglobulin conjugated to fluorescein isothiocyanate
(eBioscience). Based on fluorescence, positive cells
for SSEA-4 were sorted using Moflow Cell-Sorter
(DakoCytomation, Glostrup, Denmark). Genomic DNA
was extracted from 1.5 to 2.5� 106 cells using proteinase
K digestion, phenol–chloroform extraction, dialysis
against 0.2� SSC and concentration by surrounding the
dialysis bag with PEG 20 000 to reduce water content by
osmosis.

CD34+ cells were selected from bone marrow samples
of healthy adult donors using a Miltyeni (Auburn, CA,
USA) LS immunoabsorption column. Genomic DNA
was extracted from 2 to 3� 106 cells following a standard
phenol–chloroform protocol followed by an ethanol
precipitation and re-suspension of the DNA pellet in
10mM Tris pH 8.0.

To identify hypomethylated loci, HELP analysis
was performed (12) using a custom microarray
representing HpaII-amplifiable sites at gene promoters
(NimbleGen Systems). We used a categorical approach
for the output of the assay, as our outcome of interest
was defined in terms of methylated or hypomethylated
loci. Methylated loci were identified by their inability
to amplify from HpaII representations of genomic
DNA (measured by the median microarray fluorescence
intensities for the oligonucleotides representing each
HpaII-amplifiable fragment, when median HpaII
signal intensity was below the level of background
signal, defined as 2.5 median absolute deviations
above the median of random probe signal intensities),
despite amplification in the corresponding MspI
representation (signal intensity above the background
calculated in the same way for the MspI channel).
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The hypomethylated loci represented the remaining subset
that was amplified in both channels (HpaII and MspI
signal intensities above the levels of background signals).
Overlap of each methylated or hypomethylated locus with
CpG islands and CG clusters was quantified using a set of
custom PERL scripts, and the results were analyzed by
SQL query following their entry into a MySQL database.

RESULTS

We pursued the hypothesis that there is a subpopulation
of sequences in the genome defined solely by their
clustering of CG dinucleotides. This clustering is a result
of the genome-wide decay of CG dinucleotide content,
with preservation of CG density at certain regions. By
measuring the distance spanned by a fixed number of CG
dinucleotides for every such group genome-wide, we
observed that there are two populations of loci with
distinctive CG clustering densities (Figure 1a and b).
Using the first local minimum in the distribution of
spanned sequence fragment lengths as the boundary of the
short, CG-dense population, we identified the maximum
fragment length for each cluster corresponding to a fixed
number of CGs. In analyzing these cutoffs, we defined a
linear relationship between CG dinucleotide number and
the associated maximum fragment length (Figure 1c).

The clear differentiation of CG-dense fragments from
the rest of the genome provides a means of mathematically
defining CG-dense regions and can therefore be used as a
robust foundation for computational genomic annotation.
Given a fixed number of CGs, the CG-dense fragments
below the maximum fragment length could be identified
and mapped back onto the genome. But, as Figures 2a
and b show, each of the fixed number of CGs generates
different annotations. Using fewer CGs and correspond-
ingly smaller fragments, many small CG clusters are
identified, whereas by using a greater number of CGs
and correspondingly larger fragments, fewer clusters are
identified, but each extends into large flanking regions
of lower CG density.

We were able to optimize the criteria when we
recognized that at any individual CG-dense locus, a
given number of CGs generates multiple overlapping
fragments. More CG-dense clusters require a greater
number of fragments to span all of the CGs they contain.
Accordingly, the more overlapping fragments that repre-
sent a given locus, the more likely it is to be significantly
CG-dense. For each number of CGs, we calculated the
number of overlapping fragments per cluster. We obtained
a representation of information content for each CG
number by summing this total across all loci in the genome
and dividing by maximum fragment length. We then
determined the optimal number of CGs per fragment
using the maximum value obtained (Figure 2c). For the
human genome, this optimum corresponds to 27 or more
CG dinucleotides in a sequence of no more than 531 bp
in length. This new means of identifying CG clusters
is neither constrained by (G+C) content nor by the
associated observed/expected CG dinucleotide ratio.
In Figure 3, we show that the thresholds imposed by

even the least stringent original base compositional
criteria (2) cause many CG-dense loci in the genome to
be missed. However, even though we are annotating the
entire sequenced genome, including repetitive DNA, we
identify only a small fraction of the �350 000 CpG islands
predicted by these old criteria (2) (Table 1).
We compared the functional significance of CpG islands

and CG clusters in two ways—testing their relative

Figure 1. The analytical technique used to define CG clusters. First, a
fixed number of CG dinucleotides is chosen, as illustrated in the
example using six CGs (a). The first CG is identified in a chromosome,
then the sixth, allowing the number of nucleotides between them to be
recorded. The second and seventh CGs are then identified and the
distance recorded and so on until the data for the entire genome is
collected. When this analysis is performed for the entire human genome
using 30 CGs at a time, the resulting lengths can be represented as a
frequency histogram as shown in panel (b). Two populations are
apparent—the peak on the left with short fragment lengths for this
number of CGs, and the remainder of the genome where CGs do not
cluster. The maximum fragment length for the clustered CGs is shown
as a vertical red line. When the analysis is repeated for 5, 10, 15, . . . 100
CGs genome-wide, different maximum fragment lengths for each
number of CGs are derived, with a near-linear relationship between
these variables as shown in panel (c). The arrowhead refers to the
observation made for 30 CGs illustrated in panel (b).
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frequency co-localizing with promoters and with hypo-
methylated loci. A major use of the CpG island annota-
tion has been to predict the location of transcription start
sites in the genome. Approximately 40% (18) to 50% (6)

of human promoters have been found to co-localize with
CpG islands, while promoters of housekeeping genes have
been described to have a near-universal association with
CpG islands (18). We cross-correlated our CG clusters
and the CpG island locations annotated at the UCSC
Genome Browser with transcription start sites of refSeq
genes from the same database, finding CpG islands to
overlap 57% of refSeq transcription start sites, 79% of
a published list of housekeeping genes (19) and 38% of
a published list of tissue-specific genes (20). In contrast,
the proportion of refSeq transcription start sites asso-
ciated with CG clusters is substantially higher (68%, an
additional 11% or 2701 refSeq transcription start sites),
with 45% of the tissue-specific genes and 91% of
housekeeping genes co-localizing with these CG clusters
(Figure 4a; Table 1). As the UCSC CpG island annotation
is of non-repetitive sequence and our CG cluster annota-
tion was generated without this filter, we were concerned
that the comparison was unfairly penalizing the UCSC
CpG island annotation, so we tested the relative propor-
tions of refSeq promoter overlaps for two other annota-
tions, the 350 201 CpG islands that occur in the genome as
a whole, and the 31 225 CG clusters that are not defined
due to substantial overlap with transposable elements. In
Figure 4b, we show that the performance of the CG
cluster annotation is stronger for both unfiltered sequence
(positive predictive values of 0.381 compared with 0.049)
and non-transposon sequence (0.535 compared with
0.508) in identifying refSeq promoters. Similar patterns
are found for the mouse genome (Table 1). Given that

Figure 2. Creating a CG cluster annotation for the human genome. For a given number of CGs, significantly CG-dense fragments are defined as
being shorter than the maximum fragment length. When these fragments are mapped back to the genome, some loci have multiple overlapping
fragments, indicating that they are more likely to be CG-dense. These conglomerations define a genomic annotation track for each number of CGs
used. Fewer CGs per fragment produces an annotation that is highly sensitive to local changes in CG density, defining a large number of small CG
clusters, as shown in panel (a). On the other hand, a high number of CGs per fragment defines fewer CG clusters, but can extend far into flanking
CG-poor regions (b). To find the intermediate optimum, we calculated the average number of fragments per CG cluster genome-wide. When
recalculated relative to maximum fragment length, this measure of information content per CG cluster generated a peak at 27 CGs per fragment (c).
This value is associated with a maximum fragment length value from the regression line in Figure 1c of 531 bp.

Figure 3. The base compositional characteristics of CG clusters (black)
are shown in terms of observed to expected CG dinucleotide densities
(O/E CG ratio) on the x-axis with (G+C) content on the y-axis. The
dashed lines illustrate the relatively non-stringent thresholds of the
original CpG island definition (3). Any points to the left of the vertical
threshold or below the horizontal threshold show how many CG-dense
loci would fail to be identified using base compositional criteria alone.
The arrowhead illustrates extremely (A+T)-rich, CG-dense alpha
satellite DNA sequences.
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CpG islands have been used as a component of algorithms
for predicting promoters in the genome (6), CG clusters
should offer a more powerful resource for this and
comparable purposes.

We tested the relative ability of CG clusters to detect
hypomethylated sites by performing the HELP assay (12)

on human embryonic stem cells and CD34+ hematopoi-
etic stem and progenitor cells. A microarray representing
HpaII-amplifiable fragments located near transcription
start sites in the human genome was used for two
biological replicates of each cell type. While similar
proportions of loci at CpG islands and at CG clusters

Figure 4. (a) CG clusters (white bars) overlap more refSeq transcription start sites than the CpG island annotations of the UCSC genome browser
(black bars). CG clusters overlap the presumed promoters of a substantially higher proportion of genes overall (left), including both housekeeping
and tissue-specific genes. In panel (b) we add in (in black) the number of loci that do not overlap refSeq promoters (white) to demonstrate the ‘false
positive’ rate for the categories shown in panel (a), as well as the 350 201 CpG islands found when all genomic sequence is tested without removing
repetitive elements and the CG clusters that are not defined by transposable elements. The positive predictive value for CpG islands and CG clusters
(bold) are also shown, quantifying the relative performance of each of these annotations.
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demonstrated hypomethylation (Figure 5a), the absolute
number of hypomethylated loci differed (Figure 5b), as the
hypomethylated CpG islands represent a subset of the
larger group of hypomethylated CG clusters. The CG
clusters identify �50% more hypomethylated loci than do
CpG islands. We conclude that the CG cluster annotation
is not only identifying more transcription start sites,
it is also defining loci with comparable epigenetic
characteristics.
We next addressed the question of why CpG islands

are often not conserved between human and mouse
(16,22). This is a puzzling issue if the CG-rich nature of
the promoter is of functional importance, for example
conferring the ubiquitous expression patterns that define
housekeeping genes (18). It would be expected that such
functional promoter characteristics would be conserved
between species despite differences in overall CG dinu-
cleotide content [observed/expected (O/E) CG ratios of
0.19 and 0.24 for mouse and human, respectively (22)].
It is therefore surprising that the total number of CpG
islands in mouse is only �58% of the number annotated
for the human genome (Table 1).
When we performed the CG clustering analysis of the

mouse genome, we found it also generates two popula-
tions with distinct CG density characteristics, but that the
optimal CG cluster definition for the mouse genome is
different from that of the human, corresponding to 24 or
more CG dinucleotides in a sequence of no more than
585 bp in length (Figure 6). By comparison, human CG
clusters consist of 27 CGs in no more than 571 bp. When
we calculated the total number of CG clusters for the
mouse genome, it was strikingly similar to that for the
human (42 971 and 44 165, respectively, Table 1). In
addition, when we re-analyzed a sample of 23 loci
originally published to demonstrate the failure of CpG
island conservation between these species (15), we found
that while only 18 conserve CpG islands, 22 out of 23
conserve CG clusters, the single exception in this limited
sample being the alpha globin orthologs (HBA1/Hba-a1).
We extended this study to test conservation of each
annotation genome-wide. Of all of the 27 801 CpG islands
annotated at the UCSC Genome Browser, 14 452 have
orthologous sequences with CpG islands in the mouse
genome, while there exist 19 410 sites of conserved CG
clustering (Table 1). When studied using our genome-
specific annotations, clustered CG dinucleotides are
demonstrably much more conserved between species
than previously appreciated.
We extended the CG clustering histogram analysis to

eight more genomes, including other organisms that are
known to methylate their genomes, those that do so only
transiently (Drosophila melanogaster) (23), and those that
do not methylate at all. The surprising result of these
analyses is that the fugu (Tiger Blowfish, Takifugu
rubripes) genome, which has been described to methylate
its DNA (24), does not exhibit uniquely CG-dense regions.
What may explain this difference is that the degree of
decay of CG dinucleotide content in the fugu genome is
less than that of most genomes in which unique CG-dense
regions emerge (Figure 7). The zebrafish (Danio rerio)
genome, on the other hand, does display uniquely

CG-dense regions with only marginally greater CG
dinucleotide decay (O/E CG 0.53 as opposed to 0.57 in
fugu). The remaining major difference between these
genomes is that of size, the fugu genome being substan-
tially smaller than the other methylating genomes at only
365 Mb total (25), a variable already suggested to be
related to the evolution of cytosine methylation (26).
Our data demonstrate that while cytosine methylation

Figure 5. The HELP assay (13) was used on a custom promoter
microarray to test cytosine methylation patterns in two samples each of
CD34+ hematopoietic stem and progenitor cells (CD34) and human
embryonic stem cells (ES). In panel (a) it is apparent that similar
proportions of sites are categorized as hypomethylated for CG clusters
(C) and CpG islands (I). However, the absolute number of
hypomethylated sites detected by the CG cluster annotation is
markedly larger than that for the CpG island annotation [panel (b)].
We conclude that the CG cluster annotation is not only detecting larger
numbers of transcription start sites (Figure 4), it extends the ability of
the CpG island annotation to identify more hypomethylated sites in the
genome.
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Figure 7. CG cluster analysis of 10 different species. These CG fragment length frequency plots were generated using 30 CGs per fragment for each
species. Genomes containing CG clusters are defined by the distinct peak of short, uniquely CG-dense fragments. While the three non-methylating
organisms on the left (Saccharomyces cerevisiae, Caenorhabditis elegans and D. melanogaster) show no uniquely CG-dense peak, it was surprising to
find that fugu has similar characteristics despite the fact that it methylates its genome (25). Zebrafish, on the other hand, which also methylates its
genome, has a distinct CG-dense peak, as do the other vertebrate genomes on the right. There is more CG decay in zebrafish than fugu (O/E CG
ratios of 0.525 and 0.571, respectively), but this marginal difference does not appear sufficient to account for the emergence of CG-dense clusters
in zebrafish. Methylation of the genome is not, therefore, always accompanied by the presence of CG-dense loci that avoid mutational decay.
For a more detailed illustration of the CG cluster analysis of these genomes, see the Supplementary Data section.

Figure 6. The mouse genome has different CG clustering characteristics than those of the human genome. The optimization curve characteristics
for mouse are clearly different from those for human (a). The optimal mouse annotation contains fragments no longer than 585 nt with 24 or more
CGs per fragment, fewer CGs in a longer stretch of DNA than for the human genome. In panel (b) it is again apparent that base composition criteria
alone will fail to recognize a substantial proportion of CG-dense loci in this species.
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appears to be necessary for CG decay, it is not sufficient to
cause local preservation of clustered CG dinucleotides.
Furthermore, we can conclude that any annotation of the
fugu genome to indicate the presence of CpG islands or
CG clusters is inappropriate.

DISCUSSION

The approach of testing for CG clustering reveals the loci
at which CG dinucleotide decay occurred at a markedly
lower rate than it did in the rest of the genome. Unlike
CpG islands, CG clusters occur with a large range of
(G+C) content and O/E CG ratios, revealing the unusual
CG density of loci such as alpha satellite DNA sequences,
targets for the DNMT3B methyltransferase (27) that are
very (A+T)-rich and are consequently not defined as
distinctive using traditional CpG island base composi-
tional criteria. While this is an example of the CpG island
definition being excessively restrictive, the definition also
suffers from the problem of identifying a large number of
sites located within transposable elements. It is certainly
possible that these retroelements may have cis-regulatory
effects (28), but their overall tendency to be methylated
(11) diminishes the usefulness of the CpG island annota-
tion as a mark of unmethylated DNA in the genome, a
major use of the annotation in cancer epigenomics,
especially in defining the CpG island methylator pheno-
type (CIMP), which requires that methylation of a given
CpG island be distinctive in neoplastic cells (29). The
approach used in the creation of CpG island browser
tracks involves using sequences from which repetitive
elements have previously been removed, increasing the
likelihood of identifying constitutively unmethylated,
presumably cis-regulatory sequences, but even this
approach defines a number of sites that are methylated
in normal cells (12,13).
Our HELP data indicate that CG clusters perform

better than CpG islands at identifying unmethylated
sites in the genome. However, our data do not support
CG clusters being universally unmethylated, as we find
satellite DNA and young retrotransposons to encode CG
clusters, and these sequences are normally methylated
(11,27). We propose that what distinguishes clustered
from non-clustered CGs in the genome is the greater
stability of associated epigenetic marks, such as hypo-
methylation at gene promoters or methylation of alpha
satellite DNA.
CpG islands have recently been described to be located

at the bivalent domains of histone tail modifications
in embryonic stem cells (30), reinforcing the rationale
for using these loci as a means of identifying candidate
cis-regulatory sites in the genome. CpG islands represent
a foundation annotation of the genome on which other
annotations are built, for example contributing to algo-
rithms to identify gene promoters (31). However, we show
(Figure 3) that the CG cluster annotation performs
substantially better than the CpG island annotation in
localizing to known promoters (as represented by refSeq
transcription start sites), indicating that an improved

foundation annotation like CG clusters may improve the
performance of algorithms currently using CpG islands.

Because identical criteria have been used to define CpG
islands in different species, in which CG clustering can
have markedly different characteristics, CpG islands have
been thought to be poorly conserved between species,
especially with the focus on human/mouse comparisons
(21). We show that a species-specific definition of CG
clusters reveals an unexpected degree of conservation of
this annotation between human and mouse. We anticipate
that conserved CG clusters will represent a subset of loci
of exceptional functional importance in the genome.
However, it is also clear (Figure 7) that it is inappropriate
to annotate all methylating genomes for the presence of
CG-dense regions. Fugu is annotated at genome browsers
(UCSC and Ensembl) for the presence of CpG islands
despite the fact that it does not have a distinctive
population of loci maintaining CG content in an overall
genomic context of CG decay. Zebrafish, on the other
hand, with a similar degree of CG decay, manifests
the two populations of CG content. Interestingly, the
methylation of cytosines in the zebrafish genome includes
a substantial proportion at non-CG dinucleotide sites (32),
yet the selective preservation of CG content at a subset of
loci occurs in this genome.

CONCLUSIONS

We show that CG clusters, when present in a genome,
define themselves as a distinctive population of loci. This
novel annotation performs better at identifying promoters
and hypomethylated DNA than current CpG island
definitions, and allows a species-specific definition of CG
clusters that reveals a previously unsuspected degree of
conservation of this sequence feature. The species
specificity of what defines a CG cluster indicates that
CG dinucleotides only need to be enriched within the
context of their genome to be distinctive and presumably
functional. We expect that the annotations of CG clusters
will prove valuable to those studying the genome as well
as the epigenome, so we have provided the human and
mouse annotations as a resource for public use at http://
greallylab.aecom.yu.edu/cgClusters/

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

URLS

The UCSC Genome Browser (http://genome.ucsc.edu/),
the ENSEMBL Genome Browser (http://www.ensembl.
org/), the Greally lab CG cluster webpage (http://
greallylab.aecom.yu.edu/cgClusters/), the R project
(http://www.r-project.org/) and the CpG island searcher
website with the cpgi130 program (http://cpgislands.usc.
edu/).
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