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SUMMARY

Immune evasion genes help human cytomegalovirus
(HCMV) establish lifelong persistence. Without im-
mune pressure, laboratory-adapted HCMV strains
have undergone genetic alterations. Among these,
the deletion of the UL/b’ domain is associated with
loss of virulence. In a screen of UL/b’, we identified
pUL135 as a protein responsible for the character-
istic cytopathic effect of clinical HCMV strains that
also protected from natural killer (NK) and T cell
attack. pUL135 interacted directly with abl interactor
1 (ABI1) and ABI2 to recruit the WAVE2 regulatory
complex to the plasma membrane, remodel the actin
cytoskeleton and dramatically reduce the efficiency
of immune synapse (IS) formation. An intimate asso-
ciation between F-actin filaments in target cells and
the IS was dispelled by pUL135 expression. Thus,
F-actin in target cells plays a critical role in synapto-
genesis, and this can be exploited by pathogens to
protect against cytotoxic immune effector cells. An
independent interaction between pUL135 and talin
disrupted cell contacts with the extracellular matrix.

INTRODUCTION

Human cytomegalovirus (HCMV) is a clinically important path-

ogen, given that it is the leading infectious cause of congenital

disorders and frequently associated with severe morbidity and

mortality in immunocompromised individuals. HCMV exploits

an impressive arsenal of immune evasion genes in order to

establish lifelong persistence in its host; the virus is a paradigm

of viral immune evasion. The suppression of MHC-I expression

by at least four HCMV genes (US2, US3, US6, and US11) is
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well-characterized and promotes evasion of cytotoxic T lympho-

cytes. However, natural killer (NK) cells play a critical role in

controlling CMV infection. Given that MHC-I also constitute the

chief NK cell inhibitory ligands, their downregulation has the

potential to render infected cells vulnerable to NK cell attack.

Our understanding of human NK cell biology and HCMV patho-

genesis has been greatly enhanced by studies into how HCMV

systematically evades NK cell activation.

To counter NK cells, HCMV encodes a MHC-I homolog

(gpUL18), and a peptide derived from the signal peptide of

UL40 (SPUL40) stabilizes both gpUL18 and the nonclassical

MHC-I molecule HLA-E (Prod’homme et al., 2012; Tomasec

et al., 2000). gpUL18 binds the inhibitory receptor LIR-1 1,000-

fold more efficiently than endogenous MHC-I (Chapman et al.,

1999; Prod’homme et al., 2007), whereas the rescue of HLA-E

by SPUL40 provides an inhibitory signal via CD94/NKG2A+. NK

cells also respond to activating signals. The activating receptor

NKG2D binds eight stress proteins (MICA, MICB, and ULBP1–

ILBP6), and HCMV encodes at least five genes (US18, US20,

UL16, UL142, and miR-UL112) that suppress their cell-surface

expression (Fielding et al., 2014; Wilkinson et al., 2008). CD112

and CD155 become exposed when infection disrupts intercel-

lular contacts and serve as ligands for the activating receptors

CD226 and CD96, and gpUL141 suppresses cell-surface

expression of both (Prod’homme et al., 2010; Tomasec et al.,

2005). Moreover, the tegument protein pp65 binds directly to

NKp30, inhibiting NK cell cytotoxicity (Arnon et al., 2005). NK

cells can also kill target cells through direct ligation of death

receptors, and gpUL141 contributes toward NK cell evasion by

downregulating TRAIL receptor 2 (Smith et al., 2013).

HCMV laboratory-adapted strains have accumulated genetic

defects during in vitro passage (Dargan et al., 2010; Stanton

et al., 2010), the most extreme being a 15 kb deletion of

the UL/b’ region (genes UL133–UL150) in strain AD169. Loss of

UL/b’ correlates with greatly enhanced sensitivity to NK cell

attack (Cerboni et al., 2000; Tomasec et al., 2005; Wang et al.,

2002), which is ascribed in part to loss of UL141 and UL142. In
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Table 1. NK Clone Cytotoxicity

D3 NK Clones Activationa Inhibitionb No Changec No Killingd

RAd-UL141 4/28

(14.3%)

7/28

(25%)

10/28 (35.7%) 7/28 (25%)

RAd-UL135 0/28 (0%) 14/28

(50%)

5/28 (17.9%) 9/28 (32.1%)

D2 NK Clones Activation Inhibition No Change No Killing

RAd-UL141 3/29

(10.3%)

12/29

(41.4%)

9/29 (31%) 5/29 (17.2%)

RAd-UL135 0/29 (0%) 18/29

(62.1%)

6/29 (20.7%) 5/29 (17.2%)

All NK Clones Activation Inhibition No Change No Killing

RAd-UL141 7/57

(12.3%)

19/57

(33.3%)

19/57 (33.3%) 12/57 (21%)

RAd-UL135 0/57 (0%) 32/57

(56.1%)

11/57 (19.3%) 14/57 (24.6%)

Data show the number and percentage of NK clones isolated from

PBMC.
aActivated NK clones kill RAd-UL141/RAd-UL135-infected autologous

SF with specific lysis > 10% in comparison to RAd-Ctrl.
bInhibited NK clones kill RAd-Ctrl-infected SF with specific lysis > 10%

in comparison to RAd-UL141 or RAd-UL135.
cNK clones with no change kill RAd-UL141 or RAd-UL135-infected SF

with specific lysis < 10% in comparison to RAd-Ctrl.
dNK clones with no killing kill RAd-Ctrl-infected SF with specific

lysis < 10%.

Cell Host & Microbe

Actin Modification Impairs Immune Recognition
a systematic screen, we identified UL135 as a third NK cell

evasion function within UL/b’. pUL135 was unique in providing

efficient protection against not only an exceptionally broad range

of NK as well as T cells. Classically, NK cell modulatory functions

either promote cell surface expression of inhibitory ligands or

suppress activating ligands; however, pUL135’s mechanism of

action is different. Dynamic remodeling of the actin cytoskeleton

within effector cells plays a major role in organizing the immune

synapse (IS) and promoting degranulation in cytotoxic T lympho-

cytes (CTLs) and NK cells. Biochemical, genetic, and functional

studies performed on pUL135 identified an interaction with abl

interactor 1(ABI1) and ABI2, recruitment of the WAVE2 complex,

and subsequent actin depolymerization in target cells as critical

in evading NK cell recognition. Direct imaging identified an
Figure 1. UL135 Decreases NK Cell Cytotoxicity, Degranulation, and I

IFN-g Production

(A–E) Cytotoxicity assays were set up with the NKL cell line against HFFF-hC

IFN-a-activated T-cell-depleted PBMC against autologous skin fibroblasts (SFs;

against HFFF-hCAR (D) or autologous SF (E).

(F) Intracellular IFN-g stainings were set up with IFN-a-activated PBMC against

(G) Adhesion assays were performed with HFFF-hCAR infected with RAd-UL135

(H) T cell degranulation assays were set up with the 7E7 T cell clone against MRC

peptide are shown as controls.

(I–J) T cell intracellular IFN-g staining assays were set up with the D7IE1 (I) and D7p

and pulsed with peptide.

(K–L) NK cell degranulation assays were set up with IFN-a-activated PBMC agai

strains AD169, Merlin, MerlinDUL135, MerlinDUL141, MerlinDUL135/DUL141, or

(M) T cell degranulation assays were set up with a pp65-specific T cell line agains

(N) Adhesion assays were performed with HFFF infected with the indicated viruses

Results are means ± SD of triplicate (A–C, G, H, and N), duplicate (D–F), or quadru

(A–M). Two-way ANOVA test. *p < 0.05, **p < 0.01, ***p < 0.001.
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association between actin in the target cell and the IS in the

effector cell, andUL135 expression results in a reduced capacity

to organize the IS in the effector cell. This HCMV NK evasion

function implies that the actin cytoskeleton in target cells plays

a key role in IS formation and proposes another mechanism by

which infectious agents can evade immune recognition.

RESULTS

UL135 Inhibits NK Cells
Given that the HCMVUL/b’ region plays a major role in promoting

resistance toNKcell attack, 19genesencodedwithinUL/b’ region

were inserted into a replication-deficient adenovirus (RAd) vector,

and their expression was validated (Figure S1A available online).

Then, this expression library was systematically screened in

NK-cell-functional assays, and pUL135, gpUL141, and gpUL142

were identified as eliciting significant protection against NK-

cell-mediated cytolysis (Figure S1B). As recognized NK cell

modulatory functions, gpUL141 and gpUL142 served as positive

controls, whereas the protection elicited by pUL135 provided

evidence that this gene had an NK cell modulatory function.

The levels of protection elicited by pUL135 rivalled those

achieved with gpUL141. In a representative chromium release

assay, pUL135 reduced specific lysis by 64% at an E:T ratio of

40:1 with the immortalized NKL cell line (Figure 1A). In cytolysis

assays, pUL135 also elicited protection against a heterogeneous

primary NK cell population, irrespective of whether assays were

performed in an allogeneic (Figure 1B) or an autologous setting

(Figure 1C). In the autologous assay, pUL135 elicited 49.5%

inhibition of NK-cell-mediated cytolysis at an E:T ratio of 100:1.

Moreover, using a CD107-mobilization assay, protection was

elicited against IFN-a-activated NK cells from 13 different

donors. In allogeneic assays, NK cell degranulation of ten bulk

cultures was significantly inhibited by pUL135 expression with

a mean difference of 36.8% inhibition (Figure 1D). Efficient

pUL135-mediated inhibition was also observed in autologous

NK degranulation assays with peripheral blood mononuclear

cell (PBMC) bulk cultures from three other donors with an

average inhibition of 42.2% (Figure 1E). A panel of 57 NK cell

clones from two donors were expanded following single-cell

sorting (Table 1). In autologous assays, 25 of 57 clones were

either unable to kill target cells or not substantially affected by
FN-g Production and Adhesion as Well as T Cell Degranulation and

AR (A), IFN-a-activated T-cell-depleted PBMC against HFFF-hCAR (B), or

C). NK cell degranulation assays were performed with IFN-a-activated PBMC

HFFF-hCAR.

or empty control vector (RAd-Ctrl) and NK cells.

-5 pulsed with antigenic peptide. T cells incubated with PMA-iono or without

p65 (J) T cell lines against autologous SF infected with RAd-Ctrl or RAd-UL135

nst allogeneic HFFF-hCAR (K) or autologous SF infected for 48 hr with HCMV

RAd-UL135, RAd-UL141, and RAd-Ctrl (L).

t autologous SF either mock infected or infected with Merlin or MerlinDUL135.

and NK cells. Results from three experiments were normalized and combined.

plicate (I–M) samples and are representative of three independent experiments
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the expression of pUL135. The remaining NK cell clones (56.1%)

were all inhibited by pUL135. Although 33% of clones were

inhibited by gpUL141, 12.3% were still activated. In contrast,

pUL135 was exclusively associated with an inhibitory response

in this series of experiments. In addition to direct killing of target

cells by cell-mediated cytotoxicity, inflammatory cytokines

released by NK cells play a crucial role in suppressing virus

replication; IFN-g expression was suppressed when NK cells

were cocultured with targets expressing either pUL135 or

gpUL141 in comparison to vector control (Figure 1F). NK activa-

tion requires the establishment of cell:cell contact culminating in

formation of an IS, and UL135 reduced the efficiency of NK cells

adhesion to fibroblast targets (Figure 1G).

When expressed in isolation, pUL135 inhibited the NKL cell

line, primary NK cell cultures from >13 different donors, and

the majority of NK cell clones tested. Protection was observed

in both an allogeneic and autologous setting. Moreover, pUL135

suppressed NK-cell-mediated cytolysis, degranulation, IFN-g

expression, and adhesion to target cells.

UL135 Inhibits CD8+ T Cells
Next, we expanded the breadth of the study by investigating

whether pUL135 impacted T cell recognition. A HLA-A*0201-

restricted T cell clone specific for a human papillomavirus 16

E6 epitope was coincubated with MRC-5 fibroblasts (HLA-

A*0201) loaded with specific antigenic peptide (Figure 1H). The

proportion of CD107a+ T cells increased with the amount of

specific peptide loaded on target cells, and pUL135-specific

inhibition occurred in the presence of 0.1mg/ml peptide. To

further characterize this effect, IFN-g production was measured

from two HCMV-specific HLA-A*0201-restricted T cell lines

generated from a donor with tetramer detectable responses

against dominant IE1 and pp65 epitopes. At assay, the T cell

lines contained >70% tetramer-positive cells. When incubated

with autologous fibroblasts coated with specific peptide, there

was a strong pUL135-specific inhibition of IFN-g production

(Figures 1I and 1J). Therefore, pUL135 efficiently suppressed

both NK cell and T cell functions.

UL135 Functions during Productive HCMV Infection
An important test for any HCMV immune evasion gene is

whether it functions in the context of virus infection. The

HCMV strain AD169 lacks the UL/b’ sequence, and therefore

UL135, UL141, and UL142, and provides substantially less pro-

tection against NK cells than strain Merlin. Deletion of either

UL135 or UL141 from strain Merlin resulted in an increase in

NK cell degranulation, whereas deletion of both genes had

an additive effect. Comparable results were obtained when

primary NK cells from volunteer donors were tested against

allogeneic (Figure 1K) or autologous cells (Figure 1L). The ability

of pUL135 to protect against T cell degranulation was also

tested in the context of HCMV infection (Figure 1M). A particu-

larly active pp65-specific T cell line recognized autologous

HCMV-infected cells despite viral-mediated downregulation of

MHC-I, and deletion of UL135 from the HCMV genome resulted

in an increase in T cell degranulation. Merlin reduced the ability

of infected cells to form conjugates with NK cells, and this

ability was inhibited when UL135 was deleted from the genome

(Figure 1N). Whether expressed in isolation or during produc-
204 Cell Host & Microbe 16, 201–214, August 13, 2014 ª2014 The A
tive HCMV infection, pUL135 promoted evasion of both NK

and T cells.

UL135 Expression
UL135 exhibits a high degree of sequence conservation in char-

acterized HCMV strains and clinical isolates. An ortholog is pre-

sent in chimpanzee cytomegalovirus (CMV) but not CMV species

of the lower primates (Umashankar et al., 2011). pUL135 is

exceptionally proline-rich (60 of 308 amino acids [aa]), contrib-

uting to predictions that it contains 22 potential SH3 binding sites

and is 80% ‘‘structurally disordered.’’ pUL135 was expressed at

slightly higher levels from RAd-UL135 in comparison to HCMV

(Figure S2A) and was synthesized as two species with molecular

masses of 38kDa and 40kDa in comparison to a predicted size

of 33 kDa. During productive HCMV infection, pUL135 was

expressed during early phase (24 hr), but, unusually for an

HCMV gene, levels declined through the late phase (Figure 2A).

pUL135 is membrane associated (Umashankar et al., 2011) and

predicted to contain an N-terminal transmembrane domain and

two N- and 42 O-linked glycosylation sites. However, it was not

sensitive to PNGaseF or O-glycosidase, indicating these glyco-

sylation sites were not used (Figure S2B). In order to optimize

detection in the context of HCMV infection, a sequence

providing a C-terminal V5 tag was inserted into UL135. When

expressed in isolation from RAd-UL135,or in the context of

HCMV infection, pUL135 colocalized with markers of the Golgi

apparatus and at the plasma membrane (Figure 2B). Golgi

localization was more prominent when UL135 was expressed

in isolation, most likely because of the expression of other

HCMV genes and reorganization of the Golgi apparatus, during

infection. A monoclonal antibody raised to pUL135 was able to

detect the protein on cells only once they had been permeabi-

lized (Figure 2C). The data imply that pUL135 is anchored in

the Golgi and plasmamembranes via its N-terminal hydrophobic

domain with themain body of the protein exposed to the cytosol,

which is consistent with previous data (Umashankar et al., 2011).

This topological orientation in the plasma membrane would

make it difficult for pUL135 to act directly as an inhibitory ligand.

UL135 Remodels the Actin Cytoskeleton
Expression of pUL135 in fibroblasts consistently induced dra-

matic changes in cell morphology, and focal adhesions and

cell projections are lost as cells are rounded up (Figures 2D

and S2C). Even in the context of productive infection, pUL135

clearly influenced the HCMV-induced cytopathic effect. In

contrast to parental virus, cells infected with MerlinDUL135

were clearly ‘‘flatter’’ and more spread out, which is indicative

of enhanced adherence (Figures 2E and S2D). The actin cyto-

skeleton was stained with phalloidin; pUL135 expression re-

sulted in elimination of F-actin stress fibers from the cell center,

whereas the cortical actin matrix underlying the plasma mem-

brane appeared reinforced and colocalized with pUL135 (Fig-

ures 3A and S3A). During productive HCMV infection, F-actin

was lost from the center of infected cells, and UL135 colocalized

with cortical actin. However, in the absence of pUL135, a

substantial proportion of F-actin remained in the center of

infected cells (Figures 3B and S3B). In contrast, microtubules

and intermediate filaments were not overtly displaced by

pUL135 (Figures S3C–S3F).
uthors



Figure 2. Expression of UL135

(A) HFFF-hCAR were infected with RAd-UL135 or an empty control vector

(RAd-Ctrl) for 48 hr, and HFFF were mock infected (M) or infected with HCMV

strain Merlin or MerlinDUL135 for the indicated times. Proteins were separated

by SDS-PAGE, and western blot was performed for UL135 (V5 antibody) or

actin.

(B) HFFF-hCAR were infected with RAd-UL135 or RAd-Ctrl for 48 hr, and

samples were stained for UL135 (V5 antibody) and giantin (golgi marker). HFFF
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An Intact Actin Cytoskeleton Is Required for NK Cell
Recognition
pUL135 remodeled the actin cytoskeleton and inhibited both

NK and T cell activation. NK and T cell modulatory functions

generally act by either promoting cell-surface expression of

an inhibitory ligand or suppressing an activating ligand; how-

ever, pUL135 did not alter the expression of any candidate

ligands or adhesion molecules (Table S1). Therefore, we inves-

tigated whether pUL135’s capacity to remodel the cytoskel-

eton was involved in immune evasion. The inhibitor of actin

polymerization latrunculin A (LatA) reproducibly suppressed

NK cell activation against control cells in a concentration-

dependent manner, ultimately reaching levels comparable to

those achieved with pUL135 (Figure 3C). Comparable results

were obtained following HCMV infection in the presence or

absence of pUL135 (Figure 3D). Remarkably, in the presence

of pUL135, LatA did not suppress NK cell activation. The fact

that the effects of LatA and pUL135 were not additive sug-

gested that they exerted their effect via the same mechanism.

In support of this hypothesis, F-actin in cells expressing

pUL135 (Rad-UL135/Merlin) was unaffected by LatA treatment.

In contrast, cells lacking pUL135 (RAd-Ctrl/MerlinDUL135/

Mock) displayed progressive loss of central actin as LatA

concentrations increased until, at high concentrations, they

resembled pUL135-expressing cells; i.e., a rounded cell devoid

of central actin fibers (Figures 3E, S3G, and S3H).

Similar results were obtained with the actin-stabilizing drug

jasplakinolide. Treatment of fibroblasts with jasplakinolide led

to loss of stress fibers and the formation of an F-actin aggresome

(Figure S3I), which correlated with a reduction in NK degranula-

tion (Figure S3J). Treatment of cells expressing pUL135 with

moderate concentrations of jasplakinolide had little effect on

pUL135-mediated actin remodeling or NK degranulation. At

high concentrations, there was complete loss of stress fibers in

both control and pUL135-expressing cells, and NK degranula-

tion was equivalent in both.

Thus, actin is required for NK recognition of targets, and,

following modification of actin by LatA or jasplakinolide, control

cells inhibit NK degranulation to the same extent as pUL135-

expressing cells.
UL135 InteractswithMembers of theWAVE2Regulatory
Complex and Talin
Yeast two-hybrid assays and stable isotope labeling by amino

acids in cell culture (SILAC) immunoprecipitation experi-

ments were undertaken in order to identify pUL135-inter-

acting partners. In the yeast two-hybrid screen, ABI1 and

ABI2 were both identified in multiple clones. This finding was

consolidated and expanded when SILAC immunoprecipita-

tion experiments performed on pUL135-expressing fibroblasts
were infected with the indicated strains of HCMV for 48 hr and stained for

UL135 (V5 antibody) or IE1/IE2 (MerlinDUL135) and giantin.

(C) HFFF were infected with the indicated strains of HCMV and stained for

either surface or intracellular UL135 expression 48 hr later.

(D and E) Brightfield images of HFFF-hCAR infected with RAd-UL135 or

RAd-Ctrl (D) and HFFF (E) mock infected or infected with HCMV strain Merlin

or MerlinDUL135 for 48 hr.
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Figure 3. UL135 Modifies Actin Structure

(A–D) HFFF-hCAR were infected with RAd-UL135

or RAd-Ctrl (A and C), or HFFF were infected with

HCMV strain Merlin or MerlinDUL135 or mock

infected (B and D). Samples were stained 48 hr

postinfection for UL135 (V5 antibody) and actin

(phalloidin; A and B). Following infection, samples

were incubated with the indicated doses of LatA

(LatA; C and D).NK cell degranulation assays were

performed 48 hr postinfection with IFN-a-activated

PBMC. Results are mean ± SD and are represen-

tative of three independent experiments. Two-way

ANOVA test with post tests were performed be-

tween RAd-Ctrl and RAd-UL135 (C) or Merlin

and MerlinDUL135 (D). *p < 0.05, **p < 0.01, ***p <

0.001.

(E) Samples treated as in (C and D) were stained

for actin (phalloidin).
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identified WAVE2, ABI1, NAP1, CYFIP1, and talin-1 (Table S2).

Significantly ABI1, ABI2, NAP1, CYFIP1, and WAVE2 itself

are all components of the WAVE2 regulatory complex (WRC),

which regulates the actin nucleator Arp2/3 (Takenawa and

Suetsugu, 2007). The interaction with WAVE2, ABI1, ABI2,

NAP1, CYFIP1, and talin-1 were validated in conventional

immunoprecipitation experiments when pUL135 was ex-

pressed in both isolation and the context of HCMV infection

(Figure 4A).
206 Cell Host & Microbe 16, 201–214, August 13, 2014 ª2014 The Authors
ABI1 (Figures 4B and 4C), ABI2 (Figures

S4A and S4B), and WAVE2 (Figures 4D

and 4E) all exhibited a diffuse cellular dis-

tribution that excluded the nucleus as well

as a marked association with membrane

protrusions, consistent with their role in

actin remodelling. Whether pUL135 was

expressed in isolation or during produc-

tive HCMV infection, all three cellular

proteins trafficked with pUL135 to the

Golgi apparatus (Figures S4C–S4F) and

colocalized evenly around the plasma

membrane. ABI1 and ABI2 were more

readily imaged in cells expressing pUL135,

even though their absolute abundance

remained constant as assessed by west-

ern blot and flow cytometry (Figures 4F

and 4G; data not shown). pUL135 also

efficiently colocalized with ABI1 and ABI2

when expressed with a C-terminal GFP

tag (Figures S4G and S4H). pUL135 inter-

acted and localized with ABI1, ABI2,

and WAVE2 at the Golgi apparatus and

plasma membrane without changing their

overall abundance.

Talin-1 binds actin and participates in

focal adhesions but is not a member of

the WRC. pUL135 expression alone was

sufficient to recruit talin-1 to the Golgi

apparatus and cell membrane, but, rather

than stimulating cell adhesion, focal
adhesions were disrupted (Figure 4H). pUL135 is not needed

for HCMV to disrupt focal adhesions (Stanton et al., 2007) yet

was required for talin-1 to be redistributed to the cell periphery

during HCMV infection (Figure 4I).

UL135 Inhibits Cytoskeletal Remodelling
pUL135 consistently induced cell rounding, loss of contact

adhesions, and disassembly of stress fibers. RNA interference

was used to investigate the roles played by the various
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pUL135-interacting cellular proteins (Figure S5A). Ablation of

both ABI1 and ABI2 (ABI1/ABI2) was associated with a very

slight reduction in F-actin levels in control cells, consistent with

a requirement for ABI1/ABI2 in the WRC (Figures 5A andS5B).

In contrast, pUL135 expression induced a very dramatic loss

of F-actin. Moreover, following ABI1/ABI2 knockdown, pUL135

lost the capacity to depolymerize F-actin fibers throughout the

center of the cell. This implies that, rather than directly inhibiting

ABI1/ABI2, pUL135 is commandeering the WRC to actively pro-

mote F-actin depolymerization. To determine whether the entire

WRC was involved in pUL135-mediated actin remodelling, the

WRC member CYFIP1 was targeted with small interfering RNA

(siRNA). Although knockdown had no obvious effect on actin,

CYFIP1 was required for pUL135-mediated depolymerization

of actin (Figures 5B and S5C). Therefore, ABI1/ABI2 was not

the only WRC component necessary for pUL135-mediated actin

remodelling.

Talin binds the cytosolic domain of integrins at focal adhe-

sions, at which point it provides a bridge between the actin cyto-

skeleton and the extracellular matrix (Kim et al., 2011), playing a

key role in activating integrin function in inside-out signaling.

pUL135 inhibited cell spreading on fibronectin; this phenotype

was also inhibited by knockdown of ABI1/ABI2 but not talin-1

and talin-2 (Figures 5C and 5D). In order to investigate the inter-

action between pUL135 and theWRC, pUL135 was immunopre-

cipitated from cells in which ABI1/ABI2 had been knocked down

(Figures 5E and S5D). Knockdown of any member of the WRC

can lead to loss of other members of the complex, yet the inter-

action of pUL135 with talin was clearly unaffected, which is

consistent with pUL135 binding talin independently of its inter-

action with the WRC.

A series of in-frame deletions were generated through

UL135, and the resulting gene products tested for their

capacity to bind ABI1/ABI2 and talin (Figure S5E). The center

of pUL135 (aa 169–206) was required for the interaction with

theWRC, but not talin. TheC terminus (aa 275–308) was required

for the interaction with talin (Figures 5F and S5F). In agreement

with siRNA studies, the interaction between pUL135 and the

WRC was responsible for the loss of central F-actin fibers (Fig-

ures 5G and S5G). The D169–206 mutant failed to redistribute

ABI1/ABI2, which instead concentrated in membrane protru-

sions around the periphery of the cell (Figure 5H, arrowed). Like-

wise, deletion of the talin-binding domain (aa 275–308) resulted

in talin no longer colocalizing with pUL135 but instead con-

centrating in punctate structures around the cell periphery

(Figure 5I, arrowed). Deletion of either the ABI1/ABI2 or talin

interaction domains partially restored the capacity of cells to

spread on a fibronectin matrix, and deletion of both domains

eliminated the phenotype completely (Figure 5J). Thus, pUL135

affected cell adhesion by two mechanisms: (1) through the

interaction with ABI1/ABI2, pUL135 actively disassembled

the actin framework that the extracellular matrix is attached to

and, (2) interacting directly with talin, pUL135 disrupted focal

adhesions and suppressed integrin function. Targeting ABI1/

ABI2 by either siRNA or mutation released the WRC and

restored cell spreading. Deleting the talin-interacting domain

also restored cell spreading, but talin knockdown in pUL135-

expressing cells did not, implying that pUL135 directly sup-

pressed talin function.
Cell Hos
The Interaction of UL135 with ABI1/ABI2 Is Required
for Inhibition of NK Cells
The functional significance of the interaction of pUL135 with

ABI1/ABI2 and talin in eliciting protection against NK cells was

investigated with siRNA. The interaction with ABI1/ABI2, rather

than talin, was critical for NK cell evasion whether assessed by

CD107a mobilization (Figures 6A and 6B) or cytolysis assays

(Figures 6C and 6D). This correlation was supported in experi-

ments utilizing the characterized pUL135 deletion mutants.

Only versions of pUL135 that bound ABI1/ABI2 elicited protec-

tion against NK cells (Figure 6E). Indeed, pUL135 functioned

even more effectively as an NK evasion function when the

talin-interacting domain was deleted. pUL135’s direct interac-

tion with ABI1/ABI2 was not sufficient, a second WRC member

(CYFIP1) was also required for pUL135 in order to induce

protection against NK cell attack (Figure 6F). The recruitment

of the entire WRC is thus implicated in pUL135 function. In the

absence of pUL135, neither the ablation of ABI1/ABI2 nor

CYFIP1 had an impact on NK cell recognition, indicating that

pUL135 used ABI1/ABI2 to recruit the WRC and then subverted

its activity to suppress NK cells.

Additional evidence for this hypothesis was provided in exper-

iments in which ABI1/ABI2 was overexpressed. Overexpression

of ABI1/ABI2 in the presence of pUL135 resulted in increased

recruitment of ABI by UL135, yet it decreased the recruitment

of WAVE2 (Figure S6A). This was interpreted as being due to

an excess of monomeric ABI1/ABI2, which saturated pUL135

and prevented the recruitment of ABI1/ABI2 found in the WRC.

This correlated with reduced modification of actin by pUL135

(Figures S6B and S6C) and a reduced ability for pUL135 to inhibit

NK degranulation (Figure 6G). Overexpression of ABI1/ABI2 in

the absence of pUL135 did not affect NK degranulation.

UL135 Inhibits the Formation of an Immune Synapse
pUL135-mediated protection against immune effector cells de-

pended on its interaction with ABI1/ABI2 and capacity to disrupt

and/or remodel the actin cytoskeleton. Furthermore, a specific

inhibitor of actin polymerization recapitulated this effect. More-

over, NK cells were less able to adhere to cells expressing

pUL135. To progress our understanding of pUL135 function,

the IS was imaged directly during NK cell recognition. Following

coculture of fibroblasts with NK cells, bona fide ISs were readily

detected at sites of cell:cell contacts, as demonstrated by a ring

of polymerized actin indicative of NK cell activation and synapse

formation (Figure 6H, RAd-Ctrl). When pUL135 was expressed in

target cells, ISs were less common, their morphology was less

defined, and actin polymerization at the IS was much reduced

(Figures 6H and 6I). Phalloidin selectively labeled long F-actin

filaments within the target cell. Interestingly, these frequently

delineated the inner or outer limits of actin polymerization within

the actin ring formed by the activated NK cell (Figure 6J). To

unambiguously differentiate the actin in the target cell from

that in the NK cell, fibroblasts were engineered to express a

Citrine-labeled live-cell actin marker lifeact, whereas NKL cells

expressed mCherry-tagged lifeact. Fluorescent labeling clearly

differentiated between the ‘‘red’’ actin ring associated with the

IS in the NK cell and the underlying ‘‘green’’ actin fibers within

the target cell (Figures 6K–6M). Like phalloidin staining, synap-

ses were much less common when UL135 was expressed in
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the target cell, and, when they did form, the characteristic actin

structure was absent (Figure 6K). Lifeact imaging also revealed

that the actin ring within the NK cell was delineated by, and

commonly aligned with, the actin fibers within the target cell

(Figures 6L and S6D). Moreover, we observed that actin poly-

merization within the actin ring formed by the effector cell was

clearly less dense where it ‘‘intersected’’ with actin fibers in

the target cell (Figure 6M), consistent with the structure of the

cytoskeleton within the target cell influencing synapse formation

in the effector cell. Therefore, we propose that F-actin filaments

within the target cell play an important role in the formation and

structure of the synapse in the NK cell, and pUL135 may inhibit

synaptogenesis by derailing this process.

DISCUSSION

The UL/b’ sequence (UL133–UL150) is an important determi-

nant of HCMV pathogenesis in vivo that harbors a striking con-

centration of genes implicated in controlling host immunity;

these include a potentiator of tumor necrosis factor a (TNF-a)

signaling (UL138) (Le et al., 2011), NK cell evasion functions

UL141 and UL142 (Wilkinson et al., 2008), TNF receptor homo-

log UL144 (Benedict et al., 1999), and IL-8-like virokine UL146

(Penfold et al., 1999). By promoting evasion of both NK and

T cell recognition, pUL135 can be expected to contribute

toward the increased virulence bestowed by HCMVUL/b’. More-

over, being encoded within the latency-associated UL133–

UL138 transcriptional unit, UL135 has the potential to confer

immune protection during virus reactivation in differentiating

myeloid cells. Nevertheless, pUL135 is efficiently expressed dur-

ing productive infection, reaching peak levels at 24 hr postinfec-

tion, and makes a major contribution toward the characteristic

cytopathic effect of clinical HCMV strains.

The profound effect pUL135 exerts on cellular morphology

was mediated by two distinct mechanisms acting independently

through talin and ABI1/ABI2. Integrins are heterodimeric integral

membrane proteins that link the cytoskeleton with extracellular

matrix (Kim et al., 2011). Bidirectional signaling through integrins

plays a crucial role in regulating cell proliferation, survival, tran-

scription, migration, and cytoskeletal organization. The N-termi-

nal FERM domain of talin attaches to the cytoplasmic tail of the

b-integrin subunit, whereas its C-terminal rod domain binds

actin. Talin is not merely a molecular bridge but a key regulator

of inside-out signaling and, hence, integrin activation. pUL135

and talin-1 participated in a stable complex at the plasma

membrane that correlated with disruption of focal adhesins

and suppression of contacts with the extracellular matrix.

Although integrins play a major role in immune recognition by

cytotoxic cells, talin knockdown had no discernible impact on

pUL135’s capacity to suppress NK cell function. Indeed, dele-

tion of the talin binding domain actually increased the ability of
Figure 4. UL135 Interacts with the WAVE2 Complex and Talin

(A) HFFF-hCAR were infected with RAd-UL135 or RAd-Ctrl, and HFFF were in

postinfection, and immunoprecipitation was performed for the V5 tag on UL135. P

indicated proteins.

(B–I) HFFF-hCARwere infected with RAd-UL135 or RAd-Ctrl (B, D, F, and H), and

(C, E, G, and I). Samples were fixed and stained for UL135 (V5 antibody) and ABI1

lysed, and SDS-PAGE was performed 48 hr postinfection (F) or at the indicated

Cell Hos
pUL135 to inhibit NK cells. Beyond immune evasion, HCMV con-

trols the motility and differentiation of infected cells in order to

promote virus dissemination, and infection of endothelial cells

can promote transendothelial migration of infected monocytes

by increasing the permeability of the endothelium (Bentz et al.,

2006). By inhibiting the ability of the cell to interact with the

extracellular matrix, pUL135 has the potential to affect these

processes.

The adaptor proteins ABI1 and ABI2 play a major role in pro-

moting actin polymerization through their interaction with mena

(Tani et al., 2003), the diaphenous-like formins (Ryu et al.,

2009), N-WASP, andWAVE1–WAVE3 (Takenawa and Suetsugu,

2007). We demonstrated that pUL135 bound directly to ABI1/

ABI2 and recruited members of the WRC, including WAVE2,

CYFIP1, and NAP1. The WRC promotes actin polymerization

following recruitment of profilin, actin, and the Arp2/Arp3 com-

plex. However, in recruiting the WRC rather than promoting

actin polymerization, pUL135 induced the selective loss of stress

fibers, whereas cortical actin was preserved. The effect is most

readily observed when pUL135 is expressed in isolation, given

that HCMV encodes additional functions that impact on actin

(Seo et al., 2011) and adhesion junctions (Stanton et al., 2007).

Remodeling of the actin cytoskeleton is not only instrumental

in a range of cellular processes including motility, polarity, sur-

vival, and replication but is also implicated in the entry, assem-

bly, replication, egress, and spread of innumerable viruses and

intracellular bacteria (Taylor et al., 2011). Although pUL135 has

the potential to impact on diverse cellular and viral processes,

the gene is dispensable in vitro. pUL135 is an extremely effective

NK and T cell evasion function, which operates against the back-

ground of a number of other HCMV encoded immune evasins.

Orchestrated reorganization of the actin cytoskeleton is critical

within the cytotoxic cell to promote adherence to the target

cell, polarization of cytolytic granules, organization of the

immunological synapse, and degranulation. The nucleation-pro-

moting factor WASp and the Arp2/Arp3 complex are recruited

to the NK cell synapse (Butler and Cooper, 2009; Mace et al.,

2010; Orange, 2008; Rak et al., 2011), whereas actin polymeriza-

tion induced byWASp andWAVE2 are critical for T cell activation

and IS formation (Billadeau et al., 2007). F-actin accumulation

at the synapse is a prerequisite for cytotoxic synapses and is

required for granule secretion, whereas inhibitory NK synapses

are characterized by a lack of an actin ring assembly (Brown

et al., 2011; Orange, 2008; Rak et al., 2011). However, there is

surprisingly little information regarding the role of actin in target

cells. Our imaging studies imply that F-actin fibers provide

a framework for the IS. This foundation is undermined in

pUL135-expressing cells and correlated with pUL135’s capacity

to modify F-actin through its interaction with the WRC. A role for

the cytoskeleton is indicated both by pUL135’s requirement for

ABI1/ABI2 and CYFIP1, and pUL135’s inability to suppress NK
fected with HCMV strain Merlin or MerlinDUL135. Samples were lysed 48 hr

roteins were separated by SDS-PAGE, and western blot was performed for the

HFFF were infected with HCMV strain Merlin or MerlinDUL135 or mock infected

(B and C), WAVE2 (D and E), or talin (H and I) 48 hr postinfection. Samples were

time points (G) followed by western blot for the indicated proteins.
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cell function in the presence of LatA or jasplakinolide. Neither

knockdown nor overexpression of ABI1/ABI2 or CYFIP1 in target

cells impacted on NK cell activation, indicating that the interac-

tion of pUL135with theWRC involvesmore than simple inhibition

of WRC function.

When expressed in isolation, pUL135-mediated disruption of

F-actin was associated with the elimination of lamellipodia, filo-

podia, and nanotubes; by itself, this could reduce recruitment of

the cytotoxic cell by the target (Davis and Sowinski, 2008).Within

the IS, the highly structured supramolecular activation cluster

spatially aligns receptors and adhesionmolecules on the effector

cell with their ligands on the target cell. The actin cytoskeleton

underlies and links to these structures in the target cell, and

disruption of actin in the target has been shown to impair ligand

binding to receptors on the NK cell (Gross et al., 2010). Forma-

tion of the IS was clearly impeded by pUL135, and, when found,

they were misformed and failed to induce the prominent actin

ring structure characteristic of an activating synapse. By imaging

the actin organization at the IS in both the NK and target

cell, it was clear that the actin organization within the target

cell can influence synapse formation by the NK cell by both

delineating the overall extent of the IS and influencing local levels

of actin polymerization on a subsynaptic scale. The important

role played by target cell F-actin in immune cell recognition

is manifest by the remarkable efficiency with which pUL135

suppressed NK and T cell recognition. By preventing the

establishment of a cytotoxic synapse, the viral evasion function

suppressed a wide range of effector cell types and functions.

This mechanism may not be unique to HCMV, given that a

wide range of viruses are known to perturb the actin cytoskel-

eton (Taylor et al., 2011).

EXPERIMENTAL PROCEDURES

Healthy adult volunteers provided blood and dermal fibroblasts following

written informed consent. All procedures were approved by the Cardiff

University School of Medicine Ethics Committee.

Cells and Viruses

Telomerase-immortalized primary SFs, HFFF, HFFF-hCAR, MRC-5, and

293-TREx cells were grown in Dulbecco’s modified Eagle’s medium (DMEM;
Figure 5. UL135 Interacts Independently with the WRC and Talin and I

(A–E) HFFF-hCAR were transfected with control siRNA (siRNA-Ctrl), siRNA again

TLN1/2), or siRNA against CYFIP1. They were infected with RAd-UL135 or RAd-

(A and B) Cells were fixed and stained for actin (phalloidin).

(C and D) Cells were allowed to adhere to fibronectin-coated dishes for 30 min

counted by microscopy. Four separate fields were counted; results are mean ± SD

***p < 0.001.

(E) Cells were lysed, and UL135 was immunoprecipitated with its V5 tag. Immun

performed for the indicated proteins.

(F–J) HFFF-hCAR were infected with the indicated adenovirus vectors, and assa

(F) UL135 was immunoprecipitated with the V5 tag. Immunoprecipitated prote

indicated proteins.

(G) Cells were fixed and stained for actin (phalloidin).

(H) Cells were fixed and stained for UL135 (V5 antibody) and ABI1. Accumulation

(I) Cells were stained for UL135 (V5 antibody) and talin. Accumulation of talin at

(J) Cells were allowed to adhere to fibronectin-coated dishes for 30 min and then

microscopy. Four separate fields were counted; results are mean ± SD and are r

0.001.

Cell Hos
10% fetal calf serum [FCS]), and primary NK cells were cultured as described

previously (Morris et al., 2005; Prod’homme et al., 2007). HCMV IE1- and

pp65-specific T cell lines were expanded by coculture with irradiated pep-

tide-coated autologous fibroblasts in RPMI medium (10% FCS, 2% human

AB serum, and 10 IU/ml IL-2). The HPV16 E6 T cell clone 7E7 has been

described previously (Evans et al., 2001). F-actin binding lifeact peptide (Riedl

et al., 2008) tagged with mCherry or mCitrine was expressed from retrovirus

vectors. HCMV was derived from bacterial-artificial-chromosome-cloned

strain Merlin (RL13� and UL128�) genome (Stanton et al., 2010). Merlin-

DUL135 was constructed via recombineering in order to delete the first

687 bp of UL135. All virus stocks were sequenced (MiSeq) following recon-

stitution. Recombinant adenoviruses were generated with the AdZ system

(Stanton et al., 2008).

Immunohistochemistry

Immunofluorescence and western transfers were performed as described

previously (Stanton et al., 2010). For HCMV-infected cells, coverslips were

precoated with 10 mg/ml fibronectin in order to provide greater adhesion.

There was no difference in the ability of Merlin or Merlin-DUL135 to bind to

fibronectin (data not shown). Coverslips were blocked with human serum prior

to applying primary antibody. For detection of immune synapses, NKL cells

were added 15 min before fixation followed by staining with Phalloidin Atto-

647N. Images were analyzed with ImageJ (National Institutes of Health).

Immunoprecipitation and Yeast Two-Hybrid

Cells were lysed with IP Lysis Buffer (Pierce Biotechnology) containing 2 mM

Na3VO4, 2 mM NaF, and protease inhibitors (Sigma-Aldrich) for 30 min and

centrifuged at 12,000 3 g for 30 min, and then 25 ml anti-V5 agarose (Abcam)

was added. Samples were rotated for 3 hr and washed three times, and then

proteins were eluted in NuPAGE SDS sample buffer. Samples were subjected

to SDS-PAGE followed by either western transfer or SILAC mass spectros-

copy as previously described (Weekes et al., 2012). Yeast two-hybrid

screening was performed as described previously (Striebinger et al., 2013).

siRNA

Cells were transfected with Lipofectamine RNAiMAX (Invitrogen) according

to manufacturers’ instructions. Cells were infected with RAd or HCMV 24 hr

posttransfection and then assayed 48 hr postinfection.

Adhesion and Spreading Assays

Target and NK cells were incubated for 15 min at 37�C in 1 mg/ml CFDA-SE.

Cell Tracer or 0.25 mg/ml DDAO-SE (Invitrogen) were used, respectively. Cells

were washed and incubated at 37�C for 30 min. Equal quantities of NK and

target cells were mixed and incubated at 37�C for 10 min. Cells were fixed in

4% paraformaldehyde before fluorescence-activated cell sorting acquisition.

Spreading assays were performed as described previously (Humphries, 2009).
nhibits Cytoskeletal Remodelling

st ABI1 and ABI2 (siRNA-ABI1/ABI2), siRNA against talin-1 and talin-2 (siRNA-

Ctrl 24 hr later. Assays were performed 48 hr postinfection.

and then fixed, and the number of cells exhibiting a spread morphology was

and representative of three independent experiments. Two-way ANOVA test.

oprecipitated proteins were separated by SDS-PAGE, and western blot was

ys were performed at 48 hr postinfection.

ins were separated by SDS-PAGE, and western blot was performed for the

of ABI1 at sites of actin protrusions are indicated with arrows.

sites resembling focal adhesions are indicated with arrows.

fixed, and the number of cells exhibiting a spread morphology was counted by

epresentative of three independent experiments. One-way ANOVA test. ***p <
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Figure 6. Interactions with ABI1/ABI2 Are Required for UL135 to Protect Against NK Cells

(A and B) HFFF-hCAR were transfected with control siRNA (siRNA-Ctrl), siRNA against ABI1 and ABI2 (siRNA-ABI1/ABI2), or siRNA against talin-1 and talin-2

(siRNA-TLN1/2). They were infected 24 hr later with RAd-UL135 or RAd-Ctrl. NK degranulation assays were performed 48 hr postinfection with IFN-a-activated

PBMC.

(legend continued on next page)
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Functional Effector Cell Assays

NK cytotoxicity was measured with Cr51 release (Aicheler and Stanton, 2013).

Degranulation assays were performed as described previously (Prod’homme

et al., 2007). For 7E7 T cell stimulation, HLA-A*0201 MRC-5 targets were incu-

bated for 1 hr at 37�Cwith HPV16 E629–38 peptide (TIHDIILECV). For T cell lines

generated from donor D7, autologous fibroblasts were coated with IE1

(VLEETSVML), pp65 (NLVPMVATV), or irrelevant peptide at 100 mg/ml. For

IFN-g assays, cells were stained with combinations of anti-CD3-PerCP, anti-

CD8-APC, or anti-CD56-APC before fixation, permeabilization, and intracel-

lular cytokine staining with anti-IFN-g-FITC or anti-IFN-g-PE (BD Biosciences).

For assays in the presence of LatA and jasplakinolide, cells were maintained

in the drug until the CD107a assay. Cells were washed, PBMC was added,

and the assay performed. Limited recovery of actin polymerization occurred

during the CD107a assay following LatA treatment (Figures S7A and S7B),

and none occurred following jasplakinolide treatment (Figure S7C).

SUPPLEMENTAL INFORMATION

Supplemental Information contains Supplemental Experimental Procedures,

seven figures, and two tables and can be found with this article online at

http://dx.doi.org/10.1016/j.chom.2014.07.005.
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(C and D) Cytotoxicity assays were performed with IFN-a-activated T-cell-deplet

ABI2 (D) and then infected with either RAd-Ctrl or RAd-UL135.

(E) HFFF-hCAR were infected with the indicated adenovirus vectors, and NK cell

PBMC.

(F) Cells were transfectedwith control siRNA or siRNA against CYFIP1. They were

performed 48 hr postinfection with IFN-a-activated PBMC.

(G) HFFF-hCAR were infected with RAd expressing ABI1 and ABI2 (RAd-ABI1

indicated, and NK cell degranulation assays were performed 48 hr postinfectio

samples. Results are representative of three independent experiments. Two-way

(H and J) HFFF-hCAR were infected with RAd-Ctrl or RAd-UL135. NKL cells wer

phalloidin. Images show the immune synapse between fibroblasts and NKL cells

(I) Quantitation of NKL:HFFF interactions in (H).

(J) 3D reconstruction of the IS is shown in the top panel. Arrows indicate actin fi

(K and L) Fibroblasts expressing lifeact-Citrine were infected with RAd-Ctrl or RA

(K) Differential imaging of F-actin within a fibroblast (green) and NKL cell (red) at

(L) Actin fibers in RAd-Ctrl infected fibroblast that align with the extent of actin p

(M) Intensity profiles of actin along the indicated regions of the IS within the fibro

Cell Hos
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