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Abstract
Uncertainty relations are key components in the understanding of the nature of quantum
mechanics. In particular, entropic relations are preferred in the study of angular position and
angular momentum states. We propose a new form of angle–angular momentum state that
provides, for all practical purposes, a lower bound on the entropic uncertainty relation, +φH Hm,
for any given angular uncertainty, thus improving upon previous bounds. We establish this by
comparing this sum with the absolute minimum value determined by a global numerical search.
These states are convenient to work with both analytically and experimentally, which suggests
that they may be of use for quantum information purposes.
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1. Introduction

Current demands for secure, high-bandwidth communications
have resulted in a lot of interest in new protocols in quantum
information based on spatial modes carrying orbital angular
momentum (OAM) [1–3]. These are defined within an infi-
nite-dimensional, discrete Hilbert space and are therefore of
considerable interest for quantum information purposes as
they have the potential to generate multi-dimensional entan-
gled states. The potential for each photon to carry more than
one bit of information [4] means that in applications such as
quantum key distribution (QKD) not only is the data transfer
rate increased in proportion to the number of bits of infor-
mation carried by each photon but the security of the protocol
is also increased.

Uncertainty relations are of particular importance in the
study of quantum-limited measurements as they impose a
fundamental limit upon the precision with which conjugate
pairs of physical properties of a system can be measured. In
other words, the more precisely one property can be

determined, the less well known will be its counterpart.
Indeed, the complementarity of incompatible observables is
one of the fundamentally distinctive properties of quantum
theory [5]. This feature is given quantitative form in the
Heisenberg uncertainty principle [6] and its generalization to
any pair of observables [7], which place bounds on the pro-
duct of the statistical uncertainties or standard deviations for
the pair. The uncertainty relation for angular momentum and
angular position [8, 9] is much less well-known than the
Heisenberg uncertainty relationship for linear position and
momentum. It is also a little more complicated as the periodic
nature of angular position imposes a finite range of π2 on the
angle observable and the resultant uncertainty relation has a
state-dependent lower bound [7]. In the commonly-chosen
range π φ π− ⩽ < it can be expressed as [8–11]

Δ Δφ π π⩾ − −m P
1

2
1 2 ( ) , (1)

where π−P ( ) is the angular probability density at the
boundary of the chosen range.

In this case there are strong reasons for considering other
measures of uncertainty. In particular, entropic uncertainties
are particularly well suited to states with a dependence on
angular position as they avoid the issue of the angle peri-
odicity [12]. Among the other advantages of entropic
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uncertainties is that they distinguish between broad, single-
peaked distributions and distributions with two, or more,
narrow but widely separated peaks. While both distributions
can have a large uncertainty, the latter will have a much
smaller entropy. Moreover, entropic uncertainties are well-
adapted for quantum communications theory. Indeed, security
proofs for QKD are expressed in terms of information or
entropy bounds [13]. This suggests that the entropic uncer-
tainty relation for angle and angular momentum may find
application in secure communications based on OAM [14].

Entropic uncertainty relations place a lower bound on the
sum of the entropies associated with the probability dis-
tributions for a pair of observables [12, 15–19]. An important
feature of this lower bound is that it is a constant [16], which
is in contrast to the lower bound for the product of standard
deviations which is, in general, state-dependent [7]. For linear
position and momentum and for angular momentum and
angle, for example, the entropic uncertainty relations are
[15, 17, 18]

π+ ⩾H H elog ( ), (2)x p

π+ ⩾φH H log (2 ), (3)m

where the entropies are derived from the corresponding
wavefunctions:

∫
∫

∫

∑

ψ ψ

ψ ψ

ψ ψ

φ ψ φ ψ φ

= −

= −

= −

= −φ
π

π

−∞

∞

−∞

∞

=−∞

∞

−

H x x x

H p p p

H m m

H

d ( ) log ( ) ,

d ( ) log ( ) ,

( ) log ( ) ,

d ( ) log ( ) . (4)

x

p

m

m

2 2

2 2

2 2

2 2

We note that in the last of these, any π2 -integration range
may be chosen as ψ φ( ) is π2 -periodic. The explicit values of
these entropies depend, of course, on the base of the loga-
rithm chosen. Here, for definiteness, we select the natural base
so that log should be interpreted as loge.

An important point to note is that for linear position and
momentum, the lower bound on the entropy sum (2), is
satisfied for the Gaussian wavefunctions that also satisfy the
equality in the more familiar Heisenberg uncertainty princi-
ple. These states are referred to as the intelligent states
[12, 20] and, indeed, have been demonstrated experimentally
[10]. For angular momentum and angle the intelligent states
that satisfy the equality in (3) have the form of a truncated
Gaussian centred on φ = 0 [10]:

⎛
⎝⎜

⎞
⎠⎟ψ π π φ= −−( ( ))b b

b
2 erf 2 exp

4
, (5)Int

2
1
2

where λ=b 1 (2 ) and ∫π= −x terf ( ) (2 ) e d
x t

0

2
is the error

function [21], as can be seen from the angular probability
distribution in figure 1. At difference with position and linear
momentum, in the case of angle and angular momentum it is
possible, for a given Δφ, to find states for which the uncer-
tainty product in (1) is lower than that for the intelligent states

[11, 22–24]. Such minimum uncertainty states [22], which
may be expressed in terms of confluent hypergeometric
functions [11] or Mathieu wave functions [23], are possible
only because the state-dependent lower bound in (1) takes a
yet lower value than the uncertainty product. For the entropic
uncertainty (3), in contrast to the linear position and
momentum states, only the angular-momentum eigenstates,
for which Hm = 0, satisfy the equality. Any state for which the
angular distribution is peaked necessarily leads to an entropic
sum, + φH Hm , in excess of πlog (2 ). Our aim is then to
obtain a stronger lower bound on the sum + φH Hm for
application when we do not have a flat angular probability
distribution, φ ψ φ=P ( ) | ( )| 2.

2. Analysis

One motivation for pursuing this specific problem is the
existence of quantum communications protocols based on
angle and angular-momentum complementarity [25]. It is
known that uncertainty principles, both variance based and
entropic, impose fundamental limits on quantum information
tasks. For example, the ability to perform quantum steering is
related to bounds in certain entropic uncertainty principles
[26]. Similarly, one can relate the Tsilson bound to the
uncertainty principle [27]. Furthermore, many estimates of the
secret key rate for QKD depend on bounds for an entropic
uncertainty principle [28, 29]. Understanding the minimum
uncertainties for angle and OAM is thus important for
exploiting OAM for quantum communication. Even approx-
imate results are useful, as they can give a strong indication of
the optimal performance of tasks such as QKD.

The simplest approach to our problem is to find a bound
given any particular value for the angular standard deviation,
Δφ. This has the added advantage that in fixing Δφ we can
make a natural connection with existing work on the uncer-
tainty principle for angular momentum and angle [10–12].

To obtain a stronger lower bound we require the lowest
possible entropic sum, + φH Hm , for a given angular uncer-
tainty, Δφ, and to find the form of the states which achieve
this bound. Note, the fact that entropy is concave implies that
the minimum uncertainty state will be a pure state [30]. We
have not been able to find an analytical form for the lower
bound and so have had to rely on a numerical optimisation to
find this. There is, however, an excellent analytical approx-
imation to the states that reach this lower bound. The states
we have found have Gaussian amplitudes in the angular
momentum basis:

∑ψ
ϑ

=
− =−∞

∞
−

( )
1

0, e
e , (6)oam

a m

am

3
2

2

where a is a real and positive parameter, ϑ −1 (0, e )a
3

2 is
the normalisation factor and θ3 is an elliptic theta function of

the third kind, defined as ϑ = ∑ = −∞
∞u q q( , ) en

n inu
3

22
[31].
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Angular momentum and angle are related by a discrete
Fourier transform, which leads to the angular wavefunction

⎜ ⎟
⎛
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⎞
⎠
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ϑ φ
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where we have re-expressed the sum in terms of its corre-
sponding theta function. A straightforward application of the
Poisson sum-rule [31] leads to a, perhaps, more physically
appealing representation in the form

⎡
⎣⎢

⎤
⎦⎥∑ψ φ

ϑ
φ π= − −

− =−∞

∞

( )a a
n( )

1

2 0, e
exp

1

4
( 2 ) . (8)

a n3
2

2

We note the similarity between (8) and equation (2.18)
of [32].

Our Gaussian distribution of angular momentum states
has the form, in the angular representation, of a sequence of
overlapping equal Gaussians, peaked at πn2 . Figure 1 shows
the corresponding angular probability distribution in the
angular range −π to π and the comparison with the intelligent
states. In this form it is clear that the parameter a determines
the width of the Gaussians. To be precise, a is proportional to
the square root of the width of the Gaussians such that the full
width at half maximum (FWHM) of the Gaussians is

a4 ln 2 . As the parameter a is increased, the width of the
Gaussians is increased and, as the angle state is related to the
OAM state by (discrete) Fourier transform, the number of
states in the OAM distribution decreases accordingly.

The angular uncertainty, Δφ, is defined via

∫Δφ φ φ φ=
π

π

−
Pd ( ), (9)2 2

where the angular probability distribution is φ ψ φ=P ( ) | ( )|2.
For the states (7) we calculate this to be

Δφ π
ϑ

= +

× ∑ −
− ′

−

′=−∞
≠ ′

∞
− ′

− + ′

( )
( )

m m

3

2

0, e

( 1)

( )
e . (10)

a

m m
m m

m m
a m m

2
2

3
2

, 2

2 2

Equation (10) depends solely on the parameter a and so
we can calculate the entropic sum (3) as a function of
angular uncertainty simply by varying a. Note that as a is
increased from 0 towards∞, the angular uncertainty increases
from 0 to its limiting value of π 3 . The corresponding
OAM distribution varies between an almost flat, continuous
distribution and a single OAM eigenstate with variance
Δ =m 0.

It is straightforward to obtain the angular momentum
entropy for our Gaussian state:

ϑ Δ= +−( )H a mlog 0, e 2 , (11)m
a

3
2 2

where Δm2 is the angular-momentum variance given by

Δ
ϑ

ϑ= −
−

−

( ) ( )m
d

da

1

2 0, e
0, e . (12)

a
a2

3
2

3
2

Evaluating the angular entropy presents more of a challenge.
We do not have an expression for this in closed form but do
have a very good upper bound on its value, which we present
in the appendix. It is straightforward, however, to determine
the value of φH numerically. The result, shown in figure 2,
clearly shows a lower entropic uncertainty sum for the
Gaussian states than for the intelligent states over a large
range of Δφ.

Although we do not have an exact analytical expression
for the entropic uncertainty over the entire range of angular

Figure 1. The angular probability distribution, φ ψ φ=P( ) | ( )|2, in the
range π− to π for the overlapping Gaussian states (blue, solid)
compared to the truncated Gaussian intelligent states (red, dashed),
corresponding to angular variance Δφ = 1.61.

Figure 2. Entropic uncertainty relation, + φH Hm , as a function of

Δφ for the intelligent states (red, dashed) and our Gaussian
distribution states (blue, solid). Both tend to the limits

π =elog ( ) 2.14 and π =log (2 ) 1.84 as Δφ → 0 and Δφ → ∞,
respectively.
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uncertainty, it is straightforward to obtain limiting forms for
large and small values of Δφ. In the limit Δφ tends to its
maximum value, π 3 , our state becomes the angular
momentum eigenstate with m = 0. For this state we have
Hm = 0 and π=φH log (2 ) and we reach the global minimum
value given in (2). At the other extreme, for small values of
Δφ, our Gaussian peaks become well separated and it suffices
to consider only the peak centred at φ = 0:

⎛
⎝⎜

⎞
⎠⎟ψ φ π φ≈ −−a

a
( ) (2 ) exp

4
. (13)

2
1
4

In this limit our angle entropy is

π=φH ea
1

2
log (2 ). (14)

For the angular momentum variance in this limit we find
Δ =m a1 (4 )2 and our angular momentum entropy is

⎜ ⎟⎛
⎝

⎞
⎠

π=H
e

a

1

2
log

2
. (15)m

Thus our entropy sum tends to the value πelog ( ), which
is the value found for the unbounded and continuous obser-
vables, x and p. The reasons for this are, of course, that in this
limit the angular momentum distribution is broad and slowly
varying and so approaches a continuous distribution, and the
angle distribution is sharply peaked around φ = 0 and so is
insensitive to the ends of the angle range at φ π= ± .

3. Entropic minimum

It remains to determine how close the entropy sum for our
state is to the elusive true minimum value. We have tested this
numerically using standard search techniques. Note that we
constrain the angular probability of the state to have minima
at φ π= ± in order to maximize the rhs of equation (1). We
also assume that, like both the intelligent states (6) and our
overlapping Gaussian states (8), the angular probability
function is symmetric and increases monotonically from the
minima to a maximum at φ = 0. This, and hence also the
corresponding OAM state, are then numerically optimized to
minimize the sum + φH Hm using an iterative optimisation
process. This iteration is repeated several times with a

randomized optimization pathway to confirm that our opti-
mization is global.

Comparing our numerical result for the entropic sum for
our overlapping Gaussian state (6, 7) with this global mini-
mum, figure 3, we find a very close agreement between the
two with the greatest difference, Δ + φ( )H Hm , for Δφ ≈ 1,
amounting to only about 0.06%. This difference is unlikely to
be significant for any but the most sensitive of measurements
and suggests that the overlapping Gaussian states provide a
practical approximation to the states that minimize the
entropic sum for a given angular width.

4. Conclusion

In conclusion, we have presented a new form of angle and
orbital angular momentum states which have a Gaussian
distribution in angular momentum and consist of a sum of
overlapping Gaussians in angle. These are an excellent ana-
lytical approximation to the states that minimize the entropic
sum, + φH Hm , and thus provide, what is for all practical
purposes, a state independent lower bound on +φH Hm for
any angular width, thereby improving upon previous bounds.
We suggest that these states are therefore ideal candidates for
use in high-bandwidth, secure quantum information
protocols.
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Appendix A. Analytic approximation for Hφ

We seek an analytic approximation, preferably an upper
bound, to φH for our overlapping Gaussian state (7). We find
this by making use of the relative entropy, which in our case

Figure 3. Left: The entropic uncertainty of our new states (red, dashed) is almost identical to the numerically minimized sum (blue, solid);
right: the maximum difference between them is of the order of 0.1%.
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takes the form [33]

∫φ φ φ φ φ
φ

=
π

π

−
H P Q P

P

Q
[ ( ) ( )] d ( ) log

( )

( )
. (A.1)

This quantity has the merit of being always greater than or
equal to zero, taking the value zero only if φ φ=P Q( ) ( ).
Hence, if we set φ ψ φ=P ( ) | ( )|2 then we find the bound

∫ φ φ φ⩽ −φ
π

π

−
H P Qd ( ) log ( ), (A.2)

for any probability distribution φQ ( ).
We find different upper bounds for different choices of

φQ ( ). One suitable choice for the probability distribution
φQ ( ) is to use the truncated Gaussian state, which is also the

intelligent state for angle and angular momentum [9, 10]. This
gives:

⎛
⎝⎜

⎞
⎠⎟φ φ= −−Q Z b

b
( ) ( ) exp

2
, (A.3)1

2

where π π=Z b b b( ) 2 erf( 2 ) and the positive parameter b
is yet to be determined. A straightforward calculation then
gives the bound

Δφ
⩽ +φH Z b

b
log ( )

2
, (A.4)P

2

where ΔφP
2 is the variance associated with the probability

distribution φP ( ). To find the best bound we simply choose b
so as to minimize our upper bound. To this end we differ-
entiate our bound with respect to b to find the extremum:

⎛
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⎠
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Δφ

Δφ

+ =
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Z b

b

Z

Z

b b

d

d
log ( )

2
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We can write the first part of this expression in terms of the
variance for the probability distribution φQ ( ):
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Q

2

2
2

2

2

2

It follows that the least upper bound occurs when we choose
the two probability distributions, φP ( ) and φQ ( ) to have the
same variance: Δφ Δφ Δφ= =Q P

2 2 2. Hence, our least upper
bound for φH , which we denote Γ, has the form

Γ Δφ= +Z b
b

log ( )
2

, (A.7)
2

where b is chosen so that Δφ Δφ=Q
2 2.

We find that using Γ in place of φH gives an excellent
approximation to the entropy sum evaluated numerically for

ψ φ( ). In figure 4 we compare the exact numerical values for
+ φH Hm , plotted as a function of Δϕ, with Γ+Hm , where Γ

is evaluated with Δφ Δφ=Q . The solid green line is
+ φH H ,m while the dashed red line is Γ+Hm . Figure 4

shows that using Γ in place of φH is an excellent approx-
imation. This can be shown further by plotting the fractional
difference between the two curves plotted in figure 4, as
shown in figure 5. We see that the fractional difference
between the approximate and exact results is always less than
0.24%.
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