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Analysis of a high-resolution suite of modern glacial sediments from Jostedalen, southern Norway, using a
portable optically stimulated luminescence (OSL) reader, provides insights into the processes of sediment bleach-
ing in glacial environments at the catchment scale. High-magnitude, low-frequency processes result in the least
effective sediment bleaching, whereas low-magnitude, high-frequency events provide greater bleaching opportu-
nities. Changes in sediment bleaching can also be identified at the scale of individual bar features: tails of
braid-bars and side-attached bar deposits have the lowest portable reader signal intensities, as well as the smallest
conventional OSL residual doses. In addition to improving our understanding of the processes of sediment
bleaching, portable reader investigations can also facilitate more rapid and comprehensive modern analogue
investigations, which are commonly used to confirm that the OSL signals of modern glacial sediments are well
bleached.
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Optically stimulated luminescence (OSL) dating, is
used to successfully date Quaternary sediments in a
range of different depositional environments (cf.
Wintle 2008; Rhodes 2011). However, one of the key
challenges to the successful application of the technique
is selecting sediments that have had their luminescence
signal fully reset prior to deposition. Whereas partial
resetting (bleaching) is not generally expected in
aeolian deposits, sediments deposited by fluvial (e.g.
Murray et al. 1995) or glacial processes (e.g. Rhodes &
Pownall 1994) can be seriously affected. One approach
for assessing the degree of sediment bleaching is
through the measurement of the luminescence signal of
a modern analogue deposit, which has the same or a
similar depositional setting to the geological deposits
under investigation (Gemmell 1997; Alexanderson
2007; Boe et al. 2007; Alexanderson & Murray 2012).
However, recent studies into the variability of residual
OSL ages in modern glacifluvial sediments has revealed
that residual ages vary significantly amongst similar
depositional settings, ranging from zero to almost 3000
years for glacifluvial bar deposits from a single catch-
ment (King ez al. 2013). Where OSL dating has been
used to date glacial deposits (cf. Thrasher ez al. 2009) a
range of different residual (unbleached) luminescence
signals have been reported for sediments with similar
depositional settings from modern analogue investiga-
tions (e.g. Alexanderson & Murray 2012). It is there-
fore possible that inherited residual ages will be over- or
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underestimated if based on a single modern analogue
deposit, which is problematic if the residual age
comprises a significant proportion of the sample burial
age. Considering the importance of signal resetting to
successful OSL analyses, it is clear that there is further
scope for detailed modern analogue studies to investi-
gate the processes of sediment bleaching within differ-
ent depositional settings.

The purpose of the present study was to investigate
catchment scale variability in the residual signals of
modern glacial sediments that have contrasting sedi-
ment sources and transport histories, in order that the
processes of sediment bleaching may be better under-
stood. Understanding which sediments are most likely
to have experienced significant bleaching within glacial
environments will inform sampling protocols and may
therefore improve the accuracy and precision of OSL
dating in glacial settings.

Exploring variations in luminescence signals at the
catchment scale is difficult because of the significant
time required to prepare OSL samples (weeks to months
dependent on sample) and for their measurement (days
to weeks, dependent on sample), coupled with the often
challenging properties of quartz from glacial environ-
ments (e.g. Rhodes & Bailey 1997). Quartz has conven-
tionally been regarded as the preferred mineral for OSL
dating in environments where partial bleaching is likely
to occur, as its most readily bleached OSL signal com-
ponents can reset more rapidly than corresponding
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signals in feldspars, providing that the illumination field
isrich in the near-UV spectrum. However, the sensitivity
(brightness) of quartz from glacial sediments is often
very low, which necessitates increased measurement
time as many aliquots are rejected, and in the worst
instances it may not be possible to obtain a quartz OSL
age (e.g. Lukas ez al. 2007).

Over the past 10 to 15 years, a number of OSL
screening methods have been developed that aim to
provide insights into the luminescence properties of
sediments more rapidly than through conventional
OSL analyses. These methods can be grouped into
instrumental developments such as the Scottish Univer-
sities Environmental Research Centre portable OSL
reader (Bishop et al. 2005; Sanderson & Murphy 2010),
and methodological developments such as laboratory
profiling (Sanderson ez al. 2001, 2003; Burbidge ez al.
2007), rangefinder ages (Durcan et al. 2009; Roberts
etal. 2009) and standardized growth curves (e.g.
Roberts & Duller 2004). A number of studies have
recently been published that have successfully utilized
one (or often more) of these techniques to characterize
deposits from different environments, enabling
archaeological and environmental questions to be more
rapidly addressed (e.g. Mufioz-Salinas et al. 2012;
Munyikwa et al. 2012). Kinnaird et al. (2012) used a
combination of portable reader (PR) data and labora-
tory profiling analyses to gain insights into the
palaeoenvironmental history of a coastal setting in
Orkney, Scotland. Stang et al. (2012) also contrasted
PR data with rapid profiling analyses on untreated
sediments using a Rise TL/OSL reader to investigate
the history of soil mixing in the San Gabriel Moun-
tains, USA. The work reported here uses a combination
of rapid portable reader measurements, and conven-
tional OSL analyses in order to better understand the
likely bleaching opportunities that different glacial and
glacifluvial sediments experience throughout transport
and deposition at both the catchment and individual
landform scales.

Study area

The Jostedalen region of southern Norway is host to
the Jostedalsbreen icecap, which is the largest body of
ice in mainland Europe (Fig. 1). The Jostedal Plateau is
thought to have completely deglaciated 7.5-5.5 cal. ka
BP (Nesje & Kvamme 1991; Matthews et al. 2000;
Nesje et al. 2000, 2001), but has experienced significant
Neoglaciation since ~5 ka BP (Shakesby ez al. 2004).
Various outlet glaciers drain Jostedalsbreen and
samples were collected from the Jostedela (JOS), but
four catchments are the focus areas of this research:

Bergsetdalen (BERG), Fabergstolsdalen (FAB),
Fabergstolsgrandane (GRAN) and Nigardsdalen
(MJO).
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Fig. 1. Map of the Jostedalen region of southern Norway with study
sites highlighted: A = Fabergstolsdalen; B = Fabergstolsgrandane;
C = Nigardsdalen; D = Bergsetdalen. This figure is available in colour
at http://www.boreas.dk.

Jostedalen is within the western Gneiss region of
Norway (Bryhni & Sturt 1985), and is underlain by
bedrock of Precambrian granitic to granodioritic gneiss
(Holtedahl 1960; Holtedahl & Dons 1960). The upper
catchments of Nigardsbreen and Bergsetdalen are
underlain by quartz monzanite, whilst Féabergsto
Isdalen and the majority of Jostedalen are underlain by
quartz diorite.

Fabergstolsdalen (FAB)

Fabergstolsbreen (61°42’N, 7°17’E) discharges into the
E-SE trending Fabergstolsdalen valley and is drained
by a single meltwater stream, which anastomoses in the
lower catchment. Very little vegetation is established in
the upper catchment where till and early Holocene
paraglacial deposits are reworked by debris flows
(Ballantyne & Benn 1994), which form the dominant
sediment source in addition to direct subglacial inputs.
Fabergstolsdalen has a high degree of hillslope connec-
tivity and debris flow material is transported directly
into the meltwater stream. The Féabergstolsdalen catch-
ment is 3 km? and 19 samples of glacifluvial bars were
collected along a transect of 2.5 km from the ice front,
as well as five samples from paraglacial, subglacial and
avalanche deposits, which represent sediment sources.

Bergsetdalen (BERG)

Bergsetbreen (61°38°51N, 7°06’16E) is a hanging
glacier that discharges into the E-NE orientated
Krundalen valley, the upper section of which is referred
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to as Bergsetdalen. It is the most southern valley
sampled within Jostedalen, and is heavily vegetated
relative to Fabergstolsdalen. Sediments are sourced
predominantly from subglacial material, although
limited reworking of paraglacial deposits within the
Little Ice Age (LIA) moraine limit (Bickerton &
Matthews 1993) also contributes to the total sediment
budget of this catchment. Material is transported by
the meltwater stream, which is a similar size to the
meltwater stream in Fabergstolsdalen, but comprises
multiple braided bars in the upper catchment and a
single meltwater channel in the lower catchment. The
Bergsetdalen catchment is 7 km?, and 27 samples were
taken predominantly from braided bars in the upper
catchment, but also from side-attached bar deposits
3 km from the ice front. Bergsetdalen forms a comple-
mentary sample site to Fabergstolsdalen, as meltwater
streams form a significant mode of transport in both
catchments but Bergsetdalen does not have the high
degree of channel-hillslope connectivity of Fabergsto-
Isdalen. Contrasting these sites may enable the influ-
ences of depositional processes and sediment sources to
be separated and identified.

Fabergstolsgrandane (GRAN )

Fabergstolsgrandane (61°43"39N, 7°21’50E) is the
largest sandur in mainland Norway and occupies a
catchment of 6 km? It is sourced from a number of
the Jostedalsbreen outlet glaciers including the
debris-covered Lodalsbreen within Stordalen. Sediment
sources are dominantly subglacial, although paraglacial
material from Stordalen and Trongedalen will also con-
tribute to the total sediment flux, in addition to material
avalanched directly onto the sandur from the valley
sides. The Jostedela river is sourced from these catch-
ments and flows across the western and southern flanks
of the sandur, and is bordered by a suite of side-attached
bar deposits. Fabergstolsgrandane comprises a series of
braided bars, which range from heights of 1 m above the
channel bottom in the upper northwest part of the
sandur, which is most proximal to the source sediments,
to heights of ~30 cm further east and southeast. Clast
sizes vary as bar heights reduce from cobble-dominated
bars in the northwest to gravel- and sand-dominated
bars in the southeast. Samples were collected across two
transects. The first comprised nine samples of braided
bar deposits and was 1.5 km in length, and the second
comprised 11 samples of side-attached bar deposits and
was 2 km in length.

Nigardsdalen (MJO)

Subglacial sediment from Nigardsbreen forms the
dominant sediment source in Nigardsdalen. Sediment
is transported by the meltwater stream into a proglacial
lake where a fan delta composed of braided bar depos-
its is formed. The bars have maximum heights of 30 cm
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across the delta, and clast sizes range from gravels to
sands, although occasional cobbles are found in the
most glacier-proximal bars. Nigardsdalen forms a com-
plementary site to Fabergstolsgrandane, as although
the scale of the braid-bars is smaller, they are formed
from similar depositional processes. The Nigardsdalen
proglacial delta has shallower relief than the
Fabergstolsgrandane sandur, and the braid-bars will be
submerged more regularly in response to small changes
in meltwater discharge. It is difficult to provide an esti-
mate of the delta size because the exposed area varies
depending upon lake level; however, it ranges from
approximately 0.03 to 0.08 km? Fifteen braid-bar
deposits were sampled, as well as a single sample of
paraglacial sediment near to the ice front.

Sample collection

The objective of this research was to explore the lumi-
nescence signals of modern sediments, rather than
explore the relative chronologies of different deposits.
Sample modernity was ensured through sampling hori-
zons that are >2 cm but within a few cm of the sediment
surface. Samples from all sites with the exception of
Nigardsdalen were collected through covering the
sample site with an opaque, plastic bag and sampling
directly into transparent sample bags within opaque
plastic bags. Samples from Nigardsdalen were collected
in opaque plastic tubes. Mainly glacifluvial deposits
were sampled as glacifluvial transport and depositional
processes are dominant in all of the catchments with the
exception of Fabergstolsdalen, where debris flows
contribute significantly to the total sediment flux. Addi-
tional samples of subglacial, paraglacial and
supraglacial material were taken to characterize other
key sediment sources and transport and depositional
processes within glacial environments.

Portable reader analyses

Portable reader analyses were carried out using the
2005 Scottish Universities Environmental Research
Centre (SUERC) prototype reader in the laboratories
at SUERC. Whereas conventional OSL methods are
usually applied to a restricted grain size and a single
mineral (except polymineral fine-grained analyses), the
portable reader facilitates simple measurements of the
luminescence response of the multi-mineral bulk
deposit without pre-treatment. Under subdued light
conditions, 96 bulk samples were decanted into 50 mm
Petri dishes for PR analysis and were not given any
pre-treatment.

Full details of the SUERC-PR are given in
Sanderson & Murphy (2010). The system comprises IR
(880 nm) and blue (470 nm) diodes, and luminescence
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Table 1. A. Portable reader analysis protocol. Stimulation sources
are indicated in parentheses. PSP = post-stimulation phosphores-
cence. B. Feldspar analysis protocol.

A

Background 1 10 s (no stimulation)

IRSL 80 s (IR diode stimulation)

IRSL PSP 10 s (no stimulation)

Background 2 10 s (no stimulation)

BSL 80 s (blue diode
stimulation)

BSL PSP 10 s (no stimulation)

B

Natural/regenerative doses 6.2,12.4,18.6, 0, 6.2 Gy'

TL 250°C, 60 's, 5°C s™!

IRSL 50°C, 100 s, 5°C s7!, 90%
power

Test dose 6.2 Gy

TL 250°C, 60 's, 5°C s™!

IRSL 50°C, 100's, 5°C s™', 90%
power

IRSL 290°C, 100 s, 5°C s™', 90%
power

'Regenerative doses varied dependent upon sample De but initial
analyses were carried out with these doses. IRSL = infra-red stimu-
lated luminescence, PSP = post-stimulation phosphorescence, BSL =
blue stimulated luminescence, TL = thermoluminescence.

is detected through UGI1 filters using an ETL
photodetector module with a 25 mm bi-alkali photo-
multiplier. The prototype system was capable of
continuous-wave stimulation and detection only, and
was reliant on manual operation of the stimulation
diodes.

The sample measurement sequence used here had
200 s duration comprising a 10 s background acquisi-
tion (i.e. no diode stimulation), followed by 80 s IR
stimulated luminescence (IRSL) measurement and a
subsequent 10s post-stimulation phosphorescence
(PSP) plus background measurement (i.e. no diode
stimulation, Sanderson & Murphy 2010). The IRSL
measurements were immediately followed by blue
stimulated luminescence (BSL) measurements in the
same format and for the same duration (Table 1A). All
measurements were performed at room temperature,
and samples were not dried prior to analysis. Samples
were stored for between one and four weeks at room
temperature before measurement.

The luminescence signals measured from multi-
mineral bulk sediments are the product of numerous
variables, which have been discussed by Sanderson &
Murphy (2010). They are dependent on (i) the
postdepositional age of the sediment, (ii) the total
radiation dose that the sediment has been exposed to
during burial, (iii) the degree of signal resetting through
sunlight exposure that the sediment experienced prior
to deposition, (iv) the sensitivity (brightness) of the
luminescence signal of the minerals present, and (v) the
sediment grain-size. This research aims to isolate only
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one of these controls on the luminescence signals,
namely point (iii), which relates to the unbleached frac-
tion of the initial luminescence signal and is referred to
as the residual luminescence.

The residual signal of a sediment is the product of the
initial luminescence signal of its constituent minerals,
and the degree of sunlight exposure that it has experi-
enced throughout transport and deposition. Through
sampling only modern material, the influence of the
postdepositional age of the sediment (point (i)) has
been circumvented. The influence of the total radiation
dose that the samples have received, point (ii), is
complex as a residual dose can relate to the dose rate of
the sediment source location, rather than the sample
location. However, as measured dose rate variations
within the different catchments are small (RSD <16%;
King 2012), these will have less influence on the result-
ant luminescence signals than the effects of partial
bleaching. Sample luminescence will also be affected by
changing concentrations of different minerals (point
(iv)) with different luminescence sensitivities, and by
changing grain size populations which experience dif-
ferent bleaching opportunities (point (v)); however,
such variations may also encode information about the
depositional and transport processes that the sediment
has experienced.

OSL sample preparation for
conventional analyses

Four K-feldspar samples (JOS13, JOS14, JOS18 and
JOSS51) were prepared specifically for comparison with
the portable reader analyses using conventional
methods. Material was desiccated at 50°C to enable
calculation of water content, and sieved to extract the
180-212 um grain size fraction selected for analysis.
The 180-212 wm grain-size fraction was treated with
30% HCI to remove CaCO; and with H,O, to remove
organics. K-feldspar was extracted from the
polymineral sample through density separations and
the <2.58 g cm™ K-feldspar fraction was not etched
(Duller 1992).

Conventional OSL analyses

All conventional OSL analyses were carried out at the
University of St Andrews using either a TL-DA-15
(Botter-Jensen et al. 2003) or TL-DA-20 Risg reader,
equipped with an EMI 9235QA photomultiplier. The
detection region was restricted to the blue for the
K-feldspar samples using a Corning 7-59 and BG-39
filter. Infrared (~870 nm) diodes were used for stimula-
tion and a *°Sr/°Y beta source was used for irradia-
tions. Equivalent dose values were calculated using
Analyst v.3.22b (Duller 2005).

Feldspar OSL was measured using small (2 mm, ~30
grain) multi-grain aliquots, and a modified single
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Fig. 2. Typical K-feldspar conventional IRSL decay curve measured
using a Rise TL/OSL laboratory system. The inset shows the stand-
ardized growth curve for sample JOS13. The standardized growth
curve was constructed from the average dose response of 12 aliquots
(1o uncertainties are within the data points). The average L,/T,*Tp
value for all 48 aliquots of JOS13 is shown on the y-axis with 1
standard error uncertainties.

aliquot regenerative (SAR) dose protocol (Wallinga
et al. 2000) whereby the first and second preheat tem-
peratures are identical in order to improve sensitivity
corrections (after Huot & Lamothe 2003; Blair et al.
2005; Wallinga etal. 2007; Table 1B). A high-
temperature IR bleach was incorporated at the end of
each SAR cycle (Murray & Wintle 2003; Blair et al.
2005; Buylaert ez al. 2007), which is designed to deplete
excess signal that may accumulate throughout analysis
(recuperation). The recently developed post-IR IRSL
protocol (Thomsen et al. 2008; Buylaert et al. 2009),
which is less susceptible to anomalous fading (Wintle
1973), was not employed as it is not suitable for young
sediments or those that may be partially bleached
(Thiel 2011).

The suitability of the selected protocol (Table 1B)
was confirmed through a range of dose-recovery and
preheat-plateau experiments. Acceptance criteria are (i)
recycling ratios within 10% of unity, (ii) signal intensi-
ties 236 above background, (iii) recuperation within
10% of the normalized maximum regenerated dose, and
(iv) D, value uncertainties are <10%. K-feldspar D,
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values were not corrected for anomalous fading, as
contrasts in relative residual ages rather than the abso-
lute residual ages are of key interest.

Standardized growth curves (SGC) for quartz and
polymineral fine grains have recently been investigated
by a number of authors (e.g. Roberts & Duller 2004).
A set of individual SGCs for each of the four samples
were developed from which D, values could be inter-
polated (Fig. 2). Standardized growth curve develop-
ment greatly increased the rate of analysis. The
suitability of the calculated SGCs was evaluated
through comparing D, values calculated from interpo-
lation of the sensitivity-corrected natural luminescence
signal (L,/T,) onto the SGC with those obtained from
a full SAR protocol fitted in Analyst v.3.22b (Duller
2005). To avoid circularity, aliquots used for testing
the SGCs were not included in their construction.
Fitting uncertainty was calculated using LINEST in
Excel 2007, and incorporated together with 1.5% ana-
lytical uncertainty.

Dose rate calculations

The environmental radiation dose rate (D,) must be
determined in order to calculate sample residual age.
It is comprised of external contributions from cosmic
radiation and the decay of radio-isotopes in the sedi-
mentary matrix, as well as from internal contributions
from the decay of radio-isotopes within the minerals
themselves. The concentrations of U, Th, K and Rb
were measured directly using ICP-MS at the Univer-
sity of St Andrews. It was not possible to calculate D,
for JOS13 and instead the average value for JOS14
and JOS18 has been used. The K-feldspar samples
analysed were not etched, and therefore an alpha con-
tribution to their D, has also been incorporated.
Alpha and beta attenuation factors after Bell (1980),
Mejdahl (1979) and Readhead (2002a, b) were used
and conversion factors after Adamiec & Aitken
(1998). A concentration of 12% K was assumed for
the internal B-dose of K-feldspar samples (Huntley &
Baril 1997), and an a-value of 0.15£0.05 (Balescu
& Lamothe 1992). Following calculation of D, (Gy
ka™'), sample age was calculated: Age (ka) = D./D,
(Table 2).

Table 2. Age-modelled D, values and calculated ages. All samples were modelled with the three-component minimum age model (Galbraith
& Laslett 1993), which was selected using the criteria of Bailey & Arnold (2006) with revised critical values (Arnold 2006) after Thrasher ez al.

(2009).
Sample n D. (Gy) Water K (%) Th (ppm) U (ppm) Rb (ppm) Dry Wet Age (ka)
content Alpha dose Dose rate
(%) rate (Gy ka™')  (Gy ka™)
JOSI13 48 3.633043 148 3.05£0.18  12.21+0.71  2.52+0.15  124.30£6.21  0.30+0.35 4.26+0.33  0.85£0.12
JOS14 45 2.5240.27 185 2.8240.16  12.77£0.75  2.99+0.17  115.40£5.78  0.33%0.35 4.28+0.33  0.59+0.08
JOSI18 47 2.76x0.21  21.7 3.2840.19  11.65+0.68  2.04+0.12  133.20£6.66  0.27+0.35 4.36+0.34  0.63£0.07
JOSS1 47 2.78+0.16 253 3.55¢0.21  14.86+0.87  3.66+0.21  100.00£5.00  0.40+0.36 5.00£0.36  0.56+0.05
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Results and discussion

Portable reader analyses

Net IRSL, BSL, IRSL/BSL ratios and PSP were calcu-
lated following signal background corrections for all
measurements (Table 3). Signals were background cor-
rected using the preceding dark count measurement to
avoid PSP. All samples exhibited measurable lumines-
cence signals that exceeded system dark counts (Fig. 3).
Luminescence decay curves are similar for the BSL and
IRSL signals, and both can be well fitted with an expo-
nential decay (r>>0.9, Fig. 3). All of the samples exhib-
ited brighter BSL than IRSL, and samples with dim
IRSL also had dim BSL. Stimulating a deposit with
infra-red light, prior to blue light can help to isolate the
luminescence contributions of different minerals (e.g.
Roberts 2007). However, quartz emissions are much
less bright than feldspar emissions, and it is thus likely
that both IRSL and BSL signals measured from these
bulk samples at room temperature are predominantly
from feldspars. This is supported by the strong corre-
lation (r* = 0.93) between BSL and IRSL signal inten-
sities for all samples (Fig. 4A).

Post-stimulation phosphorescence was brightest fol-
lowing BSL, and there is a positive correlation between
BSL and background-corrected BSL PSP (1> = 0.60),
and IRSL and background-corrected IRSL PSP (r? =
0.47; Fig. 4B). The subtle variations in PSP intensity,
beyond that explained by differences in IRSL and BSL
signal intensities, may reflect variations in mineral com-
position between samples (Sanderson & Murphy 2010).
This paper is concerned with exploring catchment scale
changes in sample luminescence residual signals and
therefore no further investigations into the causes of
PSP variability have been carried out at this stage.

Contrasting portable reader and conventional OSL
analyses of glacial sediments

Prior to investigating the application of portable reader
luminescence measurements to explore the unbleached
residual luminescence signals of glacial sediments, it is
necessary to understand what the different luminescence
signals are responding to. A suite of 27 glacial sediment
samples from Jostedalen, which have been previously
investigated using conventional quartz and K-feldspar
OSL SAR analyses (King et al. 2013; 2014), and four
K-feldspar samples described here, were also analysed
using the portable reader. Portable reader net signal
intensities, IR/BSL ratios and conventional OSL age-
modelled ages, overdispersion values and average test
dose signal intensities (7, Table 3) were contrasted
using Pearson’s correlation coefficient (Table 4), calcu-
lated in RStudio (R Development Core Team 2011).
The test dose is fixed within SAR protocols in order to
monitor sensitivity changes, identified as changing lumi-
nescence responses, throughout analysis (Murray &
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Wintle 2000) and provides information regarding the
luminescence sensitivity (brightness) of a sample.

Net signal intensities. — For the majority of samples,
there is no correlation between the portable reader net
signal intensities and 7, signal intensity. However,
whereas the coarse-grained K-feldspar 7' signal inten-
sities of samples from Fabergstolsgrandane exhibit no
relationship with the portable reader signal (r = 0.310).
Coarse-grained quartz 7' signal intensities of the same
samples do correlate with the portable reader net IRSL
signals (r = 0.648), and portable reader net BSL signals
(r = 0.697), although neither of these correlations is
significant at the 95% confidence interval. In contrast
the coarse-grained K-feldspar 7' signal intensities of
samples from Nigardsdalen are well correlated with the
portable reader net IRSL signal (r = 0.930), which is
significant at the 95% confidence interval, and with the
portable reader net BSL signals (r = 0.739). On this
basis therefore, portable reader net signal intensities
may be considered indicative of the sensitivity of the
coarse-grained quartz and/or K-feldspar extracts for
some, but not all, of the samples presented here.

The portable reader net signal intensities were also
contrasted with the age-modelled conventional OSL
ages for the different deposits, and all samples exhibit a
positive correlation of r>0.576. Where the quartz
and K-feldspar samples are grouped together and ana-
lysed, statistically significant correlations are recorded
between net IRSL and net BSL and the age-modelled
ages for both minerals. Portable reader results are
therefore informative about the age-modelled ages of
different glacial sediments, which is commonly the
most important output of conventional OSL dating.

IR/BSL ratios. — Conventional OSL analyses from
these catchments have revealed these deposits to be
partially bleached with wide and variable D, distribu-
tions (e.g. King et al. 2013), as measured using the
sample overdispersion values (G4). The variability in the
degree of signal resetting is clearly visible in the port-
able reader data, which vary in intensity over several
orders of magnitude. Some studies have reported dif-
ferential bleaching between quartz and feldspar in
glacifluvial depositional settings (e.g. Klasen et al.
2007: fig. 6); therefore, the relative net intensities of the
IRSL and BSL signals may also encode information
about the degree of partial bleaching of sediments.
However, this can only be determined through calcu-
lating the IR/BSL ratios of a range of deposits because
a baseline IR/BSL ratio must be established. This is
because different luminescence signals have different
signal intensities, and thus the BSL signal may be
brighter than the IRSL signal, whilst relating to a dose
of equal amount.

Overdispersion values range from zero to 84+13%
across the sample suite (Table 3), but the same degree
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Table 3. SUERC-PR and conventional OSL data summary. m = distance from ice margin. Samples without an overdispersion (c4) value have
fewer than 20 aliquots.

Sample Type m Net Net BSL IR/BSL IRSL BSL Quartz Quartz K-feldspar ~ K-feldspar
IRSL PSP PSP age (ka) (0q) age (ka) (c4)
BERG 11 Braid bar 412 47183 153741 0.307 478 1681
12 Braid-bar-mid 480 124790 359 684 0.347 1160 2741
20  Side-attached bar 3064 2749 15814 0.174 111 175
21 Braid-bar-mid 201 137807 449 540 0.307 1124 3053
22 Braid-bar-mid 203 151 854 454 775 0.334 1286 1788
23 Braid-bar-head 315 84246 275926 0.305 824 2060
24 Braid-bar-head 318 50062 157732 0.317 609 923
25  Braid-bar-mid 320 2006 12614 0.159 100 271
26  Braid-bar-mid 555 69469 214961 0.323 586 1694
27  Braid-bar-mid 384 163598 512356 0.319 1090 5054
28  Braid-bar-mid 314 101 188 327 764 0.309 918 3019
29  Braid-bar-mid 380 162422 529 568 0.307 1375 4456
30  Braid-bar-mid 1445 7553 36 865 0.205 173 496
31  Braid-bar-tail 1408 19 280 78 348 0.246 287 1761
32 Side-attached bar 1443 4344 23 806 0.182 131 406
34 Braid-bar-mid 1416 39010 151781 0.257 365 1502
35 Braid-bar-tail 575 75852 268707 0.282 697 1456
36  Braid-bar-mid 515 56184 199718 0.281 - -
37  Braid-bar-mid 453 41027 184123 0.223 - -
38  Braid-bar-mid 468 29883 109 639 0.273 350 988
39  Braid-bar-mid 469 7622 32 866 0.232 121 533
40  Braid-bar-mid 470 22 553 99 588 0.226 345 1018
64  Braid-bar-mid 0 103 550 340 867 0.305 - -
65  Braid-bar-mid 0 100 486 329 585 0.304 - -
66  Braid-bar-mid 0 28998 122463 0.237 - -
88  Supraglacial 0 1058 6423 0.165 - -
89  Moraine 248 96 751 292119 0.331 - -
FAB 2 Subglacial 0 71845 235489 0.305 703 2226 1.7240.77  0.68%0.10
41  Paraglacial 109 343346 840 582 0.408 1129 4746 3.3110.24 -
42 Avalanche 109 11 064 52 264 0.212 165 435 0.20+0.07 0.91%0.11
78  Side-attached bar 0 47387 162361 0.292 506 1827
79  Side-attached bar 0 254 448 646 139 0.380 2315 3958 4.06£1.04 0.47£0.05
80  Side-attached bar 99 201 777 580 825 0.347 1647 2590  1.64%£0.45 -
81  Side-attached bar 146 102119 374511 0.273 928 3044
82  Side-attached bar 248 54 645 159248 0.342 506 1223
83  Side-attached bar 341 199257 565115 0.353 1640 4601
84  Side-attached bar 386 295075 801908 0.367 1915 5432 1.13£0.34  0.84%0.13
85  Paraglacial 577 47103 143239 0.328 391 1062 0.39+0.16  0.87+0.12
86  Paraglacial 669 199 734 589 146 0.339 1933 3412 0.89£0.63 0.91£0.12
87  Side-attached bar 894 169 109 527 614 0.321 - -
90  Side-attached bar 889 169218 498 056 0.339 1450 1566  2.82+1.08 -
91  Side-attached bar 889 228 801 630233 0.363 1994 4365 1.34£0.28  0.67£0.07
92  Side-attached bar 909 9500 61 532 0.154 163 703 0.00£0.10 0
93 Side-attached bar 943 167003 481 536 0.347 1907 3229
94 Side-attached bar 986 92752 255 660 0.363 - —  1.64£0.42  0.64£0.06
95  Side-attached bar 1026 58213 171131 0.340 - - 2.36£0.63 0.61£0.05
96  Side-attached bar 980 22 306 85539 0.261 - -
97  Side-attached bar 1070 212593 595887 0.321 - -
99  Side-attached bar 1242 124 663 401 436 0.311 848 2932 1.50£0.54  0.50£0.07
100  Side-attached bar 1494 80956 319944 0.253 806 1707 0.65+0.29  0.83%0.11
101 Side-attached bar 2056 289378 792 699 0.365 1944 4581
GRAN 1 Side-attached bar 3225 82186 272685 0.301 8355 0
2 Side-attached bar 3335 66549 232418 0.286 439 1341
76  Side-attached bar 4313 3743 22 391 0.167 124 266
77  Side-attached bar 4304 15 464 53262 0.290 167 568
54  Braid-bar-head 825 219002 695090 0.315 1920 2090  5.39£0.55 - 33.6+3.49 0.20+0.01
55 Braid-bar-mid 771 150 577 511 821 0.294 1117 2594  3.29+0.21 0.27£0.01  22.842.53 0.25+0.01
56  Braid-bar-tail 934 33649 123489 0.271 282 872 0.47+0.07 0 2.77+0.32 0.24+0.01
57  Braid-bar-tail 1184 16 379 73 671 0.222 181 716 0.94+0.10 0 1.98+0.24 0.35+0.02
58  Braid-bar-head 1344 195689 599 791 0.326 2084 3672 3.3841.03  0.24£0.01  26.6%8.36 0.24+0.00
60  Braid-bar-mid 1569 24 836 75981 0.321 182 734
61  Braid-bar-mid 1847 156 030 484 085 0.322 1100 3651
62 Braid-bar-mid 2104 106 610 380 062 0.281 714 2386
63 Braid-bar-mid 1715 379 137 958 522 0.397 1633 5485
69  Side-attached bar 2079 22402 103 868 0.216 2366 946 1.1840.13 0.61£0.04
70  Side-attached bar 2204 24995 121998 0.204 242 1127
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Table 3. Continued
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Sample Type m Net Net BSL IR/BSL IRSL BSL Quartz Quartz K-feldspar  K-feldspar
IRSL PSP PSP age (ka) (c4) age (ka) (cq)

71  Side-attached bar 2378 5940 21235 0.280 99 241
72 Side-attached bar 2890 12211 29452 0.205 177 554
73 Side-attached bar 3119 46 035 163790 0.281 330 1974
74 Side-attached bar 3102 14 506 58919 0.246 194 431
75  Side-attached bar 3206 26 156 106 940  0.245 191 567

JOos 51  Side-attached bar  >10 km 7251 28 142 0.258 829 288 0.560.05 0.27£0.02
52 Side-attached bar  >10 km 2807 20300 0.138 108 233
53 Side-attached bar  >10 km 2576 15084 0.171 104 236

13 Braid-bar-head >10km 14113 48 256 0.292 153 223 0.85+0.12 0.67£0.06

14 Braid-bar-mid >10 km 8164 31958 0.255 130 170 0.59+0.08 0.74£0.07
15  Braid-bar-mid >10 km 7319 25825 0.283 147 301
16  Braid-bar-mid >10 km 8506 28 086  0.302 122 367
17 Braid-bar-head >10km 14102 48 345  0.292 249 801

18  Braid-bar-tail >10 km 3695 15988 0.231 65 216 0.63+0.07 0.46+0.03

MJO 3 Braid-bar-tail 477 8627 40950 0.211 169 325 1.45+0.24 0.344+0.02

4 Braid-bar-mid 455 644 586 1389662 0.464 2314 3191 19.0+3.02 0.54+0.03
5 Braid-bar-head 432 70 274 207 580  0.339 420 680

6  Braid-bar-head 412 262752 1286351 0.204 727 2499 3.1840.31 0.61£0.04

7  Braid-bar-mid 536 47276 136478 0.346 129 378 0.91+0.10 0.31£0.02

8  Braid-bar-tail 544 15729 67291 0.234 107 283 1.24+0.14 0.2240.01

9  Braid-bar-head 528 60 761 166 185 0.369 437 513 0.9610.11 0.75£0.07
10 Braid-bar-head 262 325414 660 559 0.493 1230 1721
44 Braid-bar-mid’ 444 456 116 1277255 0.357 610 6985
45 Braid-bar-mid' 508 65 506 169 830 0.386 447 424
45a  Braid-bar-mid' 497 9804 47423  0.207 154 550
46  Braid-bar-mid 472 85488 256 785 0.333 570 1310
47  Braid-bar-mid’ 508 360 829 936704 0.385 2044 5718
48  Braid-bar-tail 558 82 864 252510 0.328 732 1325
49  Braid-bar-head 477 40 773 146 714 0.279 319 1029
50  Paraglacial 0 84 839 257336 0.330 489 2159

'"Manual operation error resulted in no PSP measurement.

of variability is not recorded within the IR/BSL ratios:
values range from 0.14 to 0.50. Changing IR/BSL
ratios are likely to be dependent upon the influx of
sediments of unsorted mineralogy, as well as variable

sunlight exposure histories, whereas the over-
IRSL
4000 . weres BSL
£ : RS
3 3000 H hen
L : i e S
. esta
> : ou *tyen, an
2 : i
& 20004 : :
kS 2 :
T : i
c H H
o ; :
» 10004 i :
0 T T T T
0 20 40 80 80 100
Time (s)

Fig. 3. IRSL and BSL decay curves measured using the SUERC
portable reader system for side-attached bar sample GRANG62; both
signals fitted with an exponential decay.

dispersion values of conventional single-aliquot OSL
measurements reflect the differential bleaching of min-
erals of a single type (assuming that there are no
mineral inclusions) and grain size. Correlation coeffi-
cients are also low between IR/BSL ratios and
overdispersion values (Table 4), which highlights that
for these samples portable reader IR/BSL ratios are
relatively insensitive to the effects of partial bleaching,
in comparison to conventional single-aliquot OSL
analyses. This may be a consequence of measuring the
luminescence response of grams, rather than milligrams
of material as is done in conventional single-aliquot
OSL investigations, or alternatively reflect that a dif-
ferent variable, such as mineralogical composition is
controlling the changing IR/BSL ratios of these depos-
its. It is also likely that both the IR and post-IR BSL
signals are dominated by the luminescence response of
feldspars, masking any differential bleaching between
quartz and feldspar.

Summary of comparisons between portable reader and
conventional SAR analyses. — Comparison of the port-
able reader and conventional SAR data for a range of
different glacial sediments has shown that the portable
reader analyses provide an effective screening mecha-



BOREAS
1.6e+6
< A 0
o o
@ 1.2e+64
€
3
§ | 00®
T 8.0e+5- o ©
)
‘@ ) %o °
3 B °
— 4.0e+5 8
(7}
2
0.0 °
0 1e+5 2e+5 3et+b 4et+5 bLet5 6e+b Teth
Net IRSL signal (counts)
w 1e+h
g B
8 o
8
c  le+d 4
Q
@
Q
5]
s
& le+3
L
[=%
c
0
© L]
= 1e+2 4
E
9
@ e IRSL
2 o BSL
5 letl T T T T
=z 1e+2 1e+3 1et+4 1et+5 1e+6 1e+7

Net signal intensity (counts)
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nism for relative OSL sample age using either the IRSL
or BSL net signal intensities. However changing
IR/BSL ratios are unable to identify heterogeneous
bleaching in individual samples, which is the key cause
of overdispersion measured during conventional OSL
analyses for these different glacial deposits. Instead the

Sediment bleaching in glacial settings 963
ratios most likely reflect changing mineralogical com-
positions of the deposits, either by provenance or as a
function of sediment sorting throughout transport and
deposition. These comparisons show that portable
reader analyses provide useful insights into the conven-
tional OSL properties of individual mineral and grain-
size extracts, and their relative residual doses. The
remainder of this paper will explore the potential of
portable reader analyses for the investigation of sedi-
ment bleaching within glacial environments.

Portable reader analyses of sediments from
the Jostedola

The majority of samples analysed in this research are
modern glacifluvial deposits that comprise either side-
attached or braid-bars which are proximal to the ice
front (within 3 km). Within glacial environments,
partial bleaching of sediments that have been trans-
ported over relatively short distances is known to be
problematic (e.g. Berger 1990). A suite of six braid-bar
deposits and three side-attached bar deposits were ana-
lysed from the Jostedola river at distances >10 km from
any glacial source. As these sediments have been trans-
ported much greater distances than the sediments ana-
lysed from the glacial catchments, they are more likely
to have had their luminescence signals fully reset and
provide a control on the effects of partial bleaching,
which are often attributed to short transport distances
within glacial environments.

The IRSL and BSL signal intensities vary between
the different side-attached bar and braid-bar deposits,
and braid-bar-head deposits have the greatest IRSL
and BSL signal intensities. The average IRSL signal
intensity for the braid-bar head deposits is 14 10818
counts (n = 2, uncertainty is the standard deviation at
Io), and the average BSL signal intensity is 48 837421
counts. In contrast, the braid-bar-mid deposits sampled
have average IRSL signal intensity of 79962611 counts
and average BSL signal intensity of 29 120£3304 counts

Table 4. Pearson’s r correlation coefficients for conventional SAR OSL analyses and portable reader net IRSL, BSL and IRSL/BSL ratios.
Ages are the age-modelled ages, maximum ages are calculated from the highest D, value measured for a single aliquot of each sample. 64 =

overdispersion.

Mineral  Site n  Pearson’sr
Net IRSL vs. average Ty  Net BSL vs. average Ty  Net IRSL vs. age Net BSL vs.age n  IR/BSL vs. 64
signal intensity signal intensity
Quartz FAB 15 0.259 0.184 0.629 0.576 13 -0.194
Quartz GRAN 5 0.648 0.697 0.748 0.817 -2 -
Feldspar GRAN 6 0.310 0.254 0.842! 0.928! 6 —0.226
Feldspar MJO 6 0.930! 0.739 0.966' 0.765 6  0.361
Feldspar JOS 4 0.069 0.048 0.795 0.752 4 0384
Quartz 20 0.287 0.224 0.654! 0.657" 18 0.186
Feldspar 16 0315 0.294 0.625! 0.607" 16 0.096

ISignificant at the 95% confidence interval.
*Not calculated as the majority of samples have zero overdispersion.
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(n = 3), i.e. braid-bar-mid deposits have signals ~50%
smaller than braid-bar-head deposits. The braid-bar-
tail deposit (JOS18) has the lowest IRSL (3695 counts)
and BSL (15 988 counts) signal intensities of the braid-
bar deposits. Following the good correlation between
portable reader signal intensities and SAR quartz and
K-feldspar age-modelled ages, the different signal
intensities between the bar-heads, bar-mids and bar-tail
are interpreted to reflect improved sediment bleaching
and reducing residual doses with transport across the
bar features, rather than changing mineralogical com-
positions. This may be a consequence of changing
water depths, and increased opportunities for sub-
aerial exposure during transport across braid-bars.

The side-attached bar deposits have similar lumines-
cence properties to the braid-bar-mid and -tail deposits;
IRSL signal intensities are 4211£2643 counts and BSL
signal intensities are 20 27744891 counts (n = 3). This
suggests that side-attached bar deposits are also better
bleached than braid-bar-head deposits, and that the
braid-bar-mid and tail deposits and side-attached bar
deposits have experienced similar degrees of sediment
bleaching, perhaps due to having similar exposure
potential as a consequence of similar transport pro-
cesses and rates. Whereas braid-bar-head deposits are
essentially comprised of higher grain sizes and sediment
that accumulates under deeper and more turbulent
flows, sediment on braid-bar-mids, -tails and side-
attached bars may be transported under lower energy
conditions and at lower transport rates across the bar,
providing improved bleaching opportunities.

The coarse-grain (180-212 um) K-feldspar fraction
of a braid-bar-head (JOS13), -mid (JOS14) and -tail
deposit (JOS18), as well as one of the side-attached bar
deposits (JOS51), have been dated using a SAR proto-
col, resulting in ages of <1 ka (Table 2). The braid-bar-
head deposit (JOS13) has the greatest residual age
(0.85+0.12 ka) of the deposits analysed, whereas the
side-attached bar deposit (JOS51) has the lowest
residual age (0.5620.05 ka), which is within uncertain-
ties of the braid-bar-mid (JOS14) and -tail (JOS18)
deposits (Table 2). Overdispersion values are more
variable and range from 27+2% (n = 47) for the side-
attached bar deposit (JOS51), to 74£7% (n = 45) for the
braid-bar-mid deposit (JOS14). An increase in over-
dispersion is recorded between the braid-bar-head
(JOS13) and the -mid and -tail deposits (JOS14,
JOS18), and is interpreted to reflect increased sediment
bleaching with transport across bar features (King
et al. 2013). The conventional OSL data support the
observations made from the portable reader signal
intensities, and show that sediments may not be com-
pletely bleached even after transport over >10 km from
glacial source regions, but that side-attached bar depos-
its and braid-bar-tail deposits have both the lowest
conventional OSL residual doses and portable reader
luminescence signal intensities.

BOREAS

Portable reader analyses: Fabergstolsdalen
and Bergsetdalen

Fabergstolsdalen. — Glacifluvial side-attached bar
deposits were sampled along a transect from the ice
margin up to 2km from the glacial snout in
Fabergstolsdalen, and various source sediments includ-
ing subglacial and paraglacial material were also
sampled. The portable reader IRSL signal intensities of
the side-attached bar deposits range from 9500 to
343 346 counts and net BSL signal intensities also vary
over an order of magnitude from 52 338 to 841 8§70
counts. The different side-attached bar deposits
sampled do not exhibit any systematic variation in
IRSL net signal intensities throughout the catchment
(Fig. 5), similar to the results of conventional quartz
OSL analyses (Fig. 6A), which showed only a slight
reduction in residual age with transport distance (King
et al. 2013). However there is a slight reduction in BSL
signal intensity with transport distance (Fig. 6B). Com-
parison of the portable reader IRSL and BSL net signal
intensities with conventional quartz OSL data (Fig. 6)
shows that they follow broadly similar trends to the
age-modelled ages. Overdispersion values are more
variable than the IR/BSL ratios (Fig. 6C), in agreement
with the low correlation coefficient between these vari-
ables (Table 4).

The different source sediments have different lumi-
nescence signal intensities, which are dependent upon
the specific deposit type. FAB42 is an avalanche
deposit, and has one of the lowest IRSL signal inten-
sities (11 064 counts) and the lowest BSL signal inten-
sity recorded for the Fabergstolsdalen samples. These
low values can be explained by the high bleaching
opportunities of material exposed at the surface fol-
lowing transport via avalanching, and similarly low
values are obtained when this deposit is dated using
conventional quartz SAR: 0.18+0.06 ka (King ez al.
2013). In contrast, FAB41 is a slope failure deposit
and has the brightest IRSL and BSL signal intensities
of the Fébergstolsdalen samples as well as one of the
greatest residual ages of sediments from this catch-
ment: 3.3110.24 ka (King ef al. 2013). In contrast to
an avalanche deposit (e.g. FAB42), material trans-
ported by slope failure through debris flows and sheet
wash (e.g. FAB41, FAB86) has more limited sunlight
exposure opportunities, although this is dependent
upon the scale and duration of the event. The vari-
ability in the properties of the different source sedi-
ment types highlights the variety and complexity of
the different depositional processes operating within
Fabergstolsdalen.

Bergsetdalen. — Samples from Bergsetdalen were taken
over a similar length transect to Fabergstolsdalen, and
the braid-bars in the ice-proximal environment <500 m
from the snout were sampled most intensively. Con-
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Fig. 5. Fabergstolsdalen sample IRSL (A) and BSL (B) portable reader signals. All samples are side-attached bar deposits with the exception
of those labelled as subglacial or paraglacial. This figure is available in colour at http://www.boreas.dk.

ventional quartz SAR analyses were attempted on 10
samples from Bergsetdalen; however, low signal inten-
sities and poor recycling ratios meant that analyses
were not pursued (King 2012). Samples from
Bergsetdalen have amongst the lowest IRSL and BSL
signal intensities of the entire sample suite (Fig. 7).
IRSL and BSL signal intensities vary by one order of
magnitude between the various braid-bar deposits
analysed, and IRSL signals are an order of magnitude
smaller than BSL signals. Two side-attached bar
deposits (BERG20 and BERG32) were also sampled
from Bergsetdalen, and have some of the lowest net
luminescence signals recorded within the catchment
(Table 3). A single supraglacial sample (BERGS88) was

analysed and has the lowest net BSL signal (6423
counts) and IRSL signal (1058 counts) intensities
measured for the Bergsetdalen samples. This deposit is
likely to be completely bleached based upon its depo-
sitional context, and thus this provides a benchmark
against which the degree of bleaching of the other
sediments within this catchment can be evaluated. A
moraine deposit (BERG89) was also analysed from
Bergsetdalen, and has a net IRSL signal intensity of
96 751 counts, which is one of the highest signal inten-
sities measured for this catchment, although
BERG27 and BERG29, which are braid-bar deposits,
have the brightest net IRSL and net BSL signals,
respectively.
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subglacial material and paraglacial material on the west
valley side, which has been exposed by recent glacial
retreat, as well as a limited volume of supraglacial mate-
rial. The meltwater stream dissects a single moraine in
the upper catchment, and a limited amount of material is
obtained from snow avalanching; however, apart from
these minor contributors there are no other direct sedi-
ment inputs into the meltwater channel. Consequently
the residual luminescence signals are anticipated to
reduce with transport throughout the catchment, as
material has greater opportunity for sunlight exposure.
A weak trend towards reducing net signal intensity with
increasing transport distance was recorded in
Bergsetdalen (Figs 7, 8), showing that sediments in
Bergsetdalen are better bleached as meltwater transport
distance increases in agreement with previous observa-
tions elsewhere (e.g. Gemmell 1999).

Comparisons of portable reader analyses: Fabergstols-
dalen and Bergsetdalen. — The residual IRSL and BSL
signals in Fabergstolsdalen were greater than those

tances (Figs 6, 8). A slight reduction in signal
with increasing transport is recorded for the BSL signal
in Fabergstolsdalen (Fig. 6B), whereas both the
IRSL and BSL signals decrease in Bergsetdalen
(Fig. 8). The difference in signal intensities and changing
residual luminescence signals can be explained by the
contrasting geomorphology and transport processes of
the two catchments. Transport and deposition in
Fabergstolsdalen involve the remobilization of
paraglacial sediments by debris flows throughout the
entire upper catchment, whereas most of the sediment
transported in Bergsetdalen is entrained from deposits
within ~300 m of the glacial snout. Thus, source sedi-
ments are transported over longer distances prior to
deposition in the Bergsetdalen meltwater stream, which
affords improved bleaching opportunities.

Ifthe entrainment of source materials does explain the
differences in luminescence signal intensities recorded
between the two catchments, then the upper 300 m of
Bergsetdalen may reflect a similar variability in lumines-
cence intensities to that recorded across the entire
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Fig. 7. Bergsetdalen sample IRSL (A) and BSL (B) portable reader signals. All samples are braid-bar deposits with the exception of those
labelled as supraglacial (BERG88), moraine (BERG89) and side-attached bar (BERG32) deposits. BERG?20 (side-attached bar deposit), which
was sampled 3064 m from the glacial snout, is not shown. This figure is available in colour at http://www.boreas.dk.

Fabergstolsdalen catchment. Examination of Fig. 8
shows that signals vary most in the upper catchment of
Bergsetdalen, and that the range of luminescence inten-
sities recorded for the different signals reduces with
increasing transport distance; variations in signal
intensities are greater than those recorded in
Fabergstolsdalen (Fig. 6B). The source sediments
between the two catchments are similar, in that they
comprise subglacial and paraglacial sediments;
however, the total flux of paraglacial sediments in
Fabergstolsdalen is much greater. Thus, the increased
variability in signal intensities recorded in Bergsetdalen
is likely to reflect sediments approaching complete
signal bleaching, whereas deposits in Fabergstolsdalen

retain a greater residual dose. The contrasting behav-
iour between Bergsetdalen and Féabergstolsdalen shows
that portable reader measurements of bulk sediments
are sensitive to differences in residual luminescence
signals caused by changing source sediment inputs and
sediment transport processes.

Portable reader analyses: Fdabergstolsgrandane

Fabergstolsgrandane has some of the largest and small-
est residual IRSL and BSL signals of the different
catchments analysed (maximum IRSL: 379 137 and
maximum BSL: 958 522 counts; minimum IRSL: 3743
and minimum BSL: 21 235 counts). When considering
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the spatial distribution of these data and their specific
depositional contexts, the extreme values are the
product of two distinct depositional environments
(Fig. 9). The greatest IRSL and BSL signals are asso-
ciated with braid-bar deposits along the northeast
sandur side, whereas the smallest signals are associated
with a suite of side-attached bar deposits adjacent to
the main meltwater channel. These results are similar to
those observed for braid-bar-head deposits, and braid-
bar-mid, -tail and side-attached bar deposits from the
Jostedola.

The depositional setting may explain some of the
contrasting luminescence properties. The various
braid-bar deposits that exhibit the greatest lumines-
cence signals are farthest from the main meltwater
channel (~200 m), and thus are only mobilized during
high-frequency, low-magnitude events. Turbulent
flows result in limited bleaching opportunities as sun-
light exposure is reduced both by attenuation of inci-
dent rays throughout a turbulent water column
(Jerlov 1976) and also by rapid sediment transport.
Such episodic transport of material limits the bleach-
ing opportunities of sediments deposited at the braid-
bar-heads (c.g. GRANS54, GRANSS). However,
transport and quiescence across the bar features
during waning flow, which results in the downstream
accretion of bar tails (e.g. GRANS56, GRANS7),
allows relatively more opportunities for sediment
bleaching. Portable reader luminescence signals can be
seen to reduce across individual bar features (Fig. 9):
GRANS54, GRANSS and GRANS6 are sampled from
the braid-bar-head, -mid and -tail of the same feature.
The rate of down-bar bleaching can be much higher

transport distance for samples from
Bergsetdalen.

than an average downstream bleaching rate for
channel deposits, a phenomenon that is similar to the
very different rates of grain-size decrease on indi-
vidual bars and channel deposits (Rice & Church
2010). King et al. (2014) recorded the same relation-
ship in conventional OSL dating of coarse-grained
quartz and K-feldspar. Braid-bar-tail deposits there-
fore show the best bleached material using conven-
tional OSL dating and also the smallest portable
reader luminescence signal intensities. In contrast to
the braid-bar-head deposits, the side-attached bar
deposits (e.g. GRAN76), which form the second depo-
sitional environment, are reworked during moderate
discharge. This results in more frequent transport
events as moderate discharges occur more frequently
than elevated discharges, therefore increasing the
opportunities for sediment bleaching. These observa-
tions are also supported by the portable reader and
K-feldspar SAR data for the side-attached bar and
braid-bar deposits from the Jostedela discussed
above. There are no samples that investigate the rate
of bleaching across an individual side-attached bar.
It is not possible to separate the two different depo-
sitional sub-environments for Fabergstolsgrandane
completely using the PR luminescence signals alone,
because the braid-bar-tail deposits from the first envi-
ronment have residual luminescence signals as low as
the side-attached bar deposits. Luminescence signal
intensity data cannot therefore be taken in isolation of
depositional context (i.e. spatial location) when
making inferences about specific depositional path-
ways, although it does encode information about
depositional processes. Both the braid-bar-tail and
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side-attached bar deposits have the lowest IRSL and
BSL signals (Table 3) and are likely to be suitable for
conventional luminescence dating because they are
well bleached. This proposition is validated through
the observations of King et al. (2014) that braid-bar-
tail deposits have the lowest residual luminescence
signals during conventional coarse-grained K-feldspar
and quartz single aliquot SAR analyses; thus these
data also show that the portable reader can be used
as an effective screening mechanism in sample
selection.

Portable reader analyses: Nigardsdalen

The final catchment investigated is Nigardsdalen,
which has a dominant sediment source of subglacial
material that is transported via the meltwater stream
onto the proglacial fan delta. The fan delta comprises a

suite of braid-bar deposits, and as such forms a similar
depositional environment to that identified for the
northeast of Fabergstolsgrandane, although sediments
have a maximum transport distance of ~500 m.
Nigardsdalen exhibits the greatest residual lumines-
cence intensities of the different catchments analysed
(maximum IRSL: 644 586 counts, maximum BSL:
138 9662 counts; Fig. 10); however, the residual ages of
bar-head deposits (e.g. MJO6) from this catchment
determined from the SAR of coarse-grained K-feldspar
are lower than those recorded in Fabergstolsgrandane
(King et al. 2014). Thus, the high residual luminescence
signals are potentially caused by different mineralogy,
which has greater luminescence sensitivity due to dif-
ferences in the bedrock geology between the two catch-
ments: Fabergstolsgrandane is underlain by quartz
diorite, whereas the upper catchment of Nigardsdalen
is underlain by quartz monzanite. Therefore although
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the relative signal intensities of different samples can be
usefully contrasted, caution should be taken in making
inferences about residual doses between catchments
from signal intensity data alone.

The net IRSL and BSL signals both vary over two
orders of magnitude within Nigardsdalen, and exhibit a
clear reduction in signal intensity during downstream
transport across the delta (Fig. 10), which is conducive
with increasing opportunities for bleaching with trans-
port distance. Improved bleaching is also visible across
individual bar features, e.g. MJO9, MJO7 and MJOS
are sampled from the braid-bar-head, -mid and -tail of
the same feature. A more complicated pattern is
recorded amongst MJOS5, MJO4 and MJO3, which are
sampled from a braid-bar-head, -mid and -tail of the
same feature, as MJO4 has the brightest signal intensity

(IRSL 644 586 counts, BSL 138 9662 counts). This
reflects the location of sample MJO4 adjacent to a
cross-over chute channel, and highlights the sensitivity
of luminescence signals to transport and depositional
processes. Bar morphology and bar-channel interac-
tion influence the PR luminescence signal of a sediment
and again highlight the importance of careful sample
selection when glacifluvial sediments are collected.
The IRSL and BSL signal intensities reduce dramati-
cally across the fan delta, showing that bleaching
occurs very rapidly over short distances (<560 m)
within this depositional environment. Following from
the observations discussed for braid-bar deposits from
the Jostedela and Féabergstolsgrandane, this suggests
that transport across the Nigardsdalen delta comprises
multiple steps during moderate flows, rather than rapid
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transport during periods of elevated discharge. This is
because lower energy transport processes within this
specific depositional environment results in better
opportunities for sunlight exposure and sediment
bleaching. The best-bleached samples are braid-bar-tail
deposits (e.g. MJO3), which supports observations
from the Jostedola and Fabergstolsgrandane that the
best-bleached material in braid-bar systems is that
sampled from braid-bar-tails. However, a fan delta
deposit results from flow expansion and this lateral
spreading (rather than vertical accumulation) of sedi-
ment may provide bleaching opportunities for more
sediment grains during deposition.

Conclusions

The residual luminescence signals of different modern
glacifluvial sediments sampled from a suite of different
glacial catchments have been shown to vary dependent
upon specific depositional setting. Use of a portable
OSL reader facilitated the rapid analysis of 96 samples
enabling investigation of sediment bleaching at both the
catchment scale, and across individual glaciofluvial bar
features. Contrasting net IRSL and BSL signals meas-
ured using the PR with conventional OSL ages has
shown that for these deposits, the luminescence signals
of bulk, multi-mineral samples that have experienced no
pretreatment prior to measurement provide insights
into conventional single mineral, single grain-size OSL
ages. Residual luminescence signals reduce with increas-
ing transport distance and associated improved bleach-
ing opportunities in all catchments with the exception of
Fabergstolsdalen, where the influx of paraglacial mate-
rial results in elevated residual luminescence signals.
Braid-bar-tail deposits and side-attached bar deposits
have been shown to be best bleached in a range of
different glacifluvial environments. These observations
will help to inform sampling procedures for conven-
tional OSL dating applications, helping to reduce the
likelihood of sampling partially reset sediments.
Modern analogue investigations are frequently
employed within conventional OSL dating projects to
identify depositional sub-environments which contain
sediments that have been fully reset. The portable
reader provides a rapid, cheap and effective means of
screening samples for conventional luminescence
analyses, and can be used independently with informa-
tion about depositional setting to make inferences
about the relative bleaching opportunities offered by
different transport and depositional processes.
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