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Abstract: Lithium nitride hydride, Li4NH, was synthesised from lithium nitride and 

lithium hydride over minute timescales, using microwave synthesis methods in the solid 

state for the first time. The structure of the microwave-synthesised powders was confirmed by 

powder X-ray diffraction [tetragonal space group I41/a; a = 4.8864(1) Å, c = 9.9183(2) Å] and 

the nitride hydride reacts with moist air under ambient conditions to produce lithium 

hydroxide and subsequently lithium carbonate. Li4NH undergoes no dehydrogenation or 

decomposition [under Ar(g)] below 773 K. A tetragonal–cubic phase transition, however, 

occurs for the compound at ca. 770 K. The new high temperature (HT) phase adopts an 

anti-fluorite structure (space group Fm 3 m; a = 4.9462(3) Å) with N3− and H− ions 

disordered on the 4a sites. Thermal treatment of Li4NH under nitrogen yields a 

stoichiometric mixture of lithium nitride and lithium imide (Li3N and Li2NH respectively). 

Keywords: nitride; hydride; structure; microwaves; synthesis; hydrogen storage; 

diffraction; thermal analysis; reactivity 
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1. Introduction 

The Li–N–H system is a promising hydrogen storage candidate, with the ability to store 11.5 wt % 

of H2 reversibly [1]. This process occurs via two exothermic steps (Equations 1 and 2): 

Li3N + H2 → Li2NH + LiH  ΔH = −165 kJ/mol H2 (1)

Li2NH + H2 → LiNH2 + LiH ΔH = −44.5 kJ/mol H2 (2)

However, it has been demonstrated that the reaction pathway may be more complex than originally 

indicated. In-situ powder neutron diffraction (PND) [2,3] revealed the possibility of a reaction pathway 

involving the formation of the lithium nitride hydride, Li4NH [4,5] from lithium nitride in addition to 

the hydrogenated phase, lithium imide, Li2NH. At a low partial pressure of hydrogen, the formation of 

LiH appears to be suppressed, leading to the overall reaction shown in Equation (3). The 

dehydrogenation behaviour of Li4NH itself, however, remains essentially unknown and Li4NH is the 

only nitride hydride currently known in the Li–N–H system. 

2Li3N + H2 → Li4NH + Li2NH (3)

Further, non-stoichiometric phases can be formed at 723 K from the reaction between the hydride 

and imide products in Equation (3). These complex non-stoichiometric phases thus contain N3−, H− and 

(NH)2− anions and form a solid solution [Equation (4)] [4]: 

(1−x)Li4NH + xLi2NH → Li4−2xN1−xH1−x(NH)x (4)

A full understanding of the structure and reactivity of Li4NH is thus required in order to determine 

its role in the Li–N–H system and the process of hydrogen uptake and release. One of the problems in 

developing such an understanding centres on the reliable synthesis of single phase Li4NH. Preparation 

of the phase requires the solid state reaction of Li3N and LiH at high temperature under strictly 

anaerobic conditions while preventing side reactions with container materials. 

In this work we demonstrate how microwave synthesis of Li4NH using both commercial  

multi-mode and single-mode microwave (MW) cavities can provide a solution to this problem. The 

result is a reproducible route for the synthesis of phase-pure Li4NH over timescales orders of 

magnitude shorter than those required for conventional heating methods, which are less  

energy-efficient and more difficult to control. This facile synthesis approach has allowed us to produce 

bulk powders of Li4NH for a subsequent comprehensive study of structure, stability and reactivity. 

This synthesis method may well be extrapolated successfully to other hydrogen storage materials. 

2. Experimental Section 

2.1. Synthesis of Li4NH 

All manipulations were performed in an N2-filled glovebox (5 ppm O2; 10 ppm H2O). Lithium 

nitride, Li3N (Alfa Aesar, Heysham, Lancashire, UK, 300 mesh, 99.95%; ca. 0.1 g) and lithium 

hydride, LiH (Sigma Aldrich, Gillingham, UK, 30 mesh, 95%) (1:1.1 molar ratio) were ground 

manually with an agate mortar and pestle, pressed into pellets (13 mm internal diameter, 1–2 mm 

thickness) for 30 min using a hand press and placed in an N2-filled silica tube (25 cm × 8 mm × 2 mm) 
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sealed with parafilm. The silica tube was transferred from the glove box and sealed under vacuum 

(10−2 m·bar). Reactions were conducted in either a multi-mode microwave reactor (Panasonic 4697 

NN-TS53W, Panasonic UK Ltd., West Berkshire, UK, 900 Wmax. output, 2.45 GHz) or a single-mode 

microwave reactor (CEM Discover®, CEM corporation, Matthews, NC, USA, 300 Wmax. output,  

2.45 GHz). The resultant products were collected in the glovebox. 

2.2. Characterization 

Powder X-ray diffraction (PXD) was conducted using a Bruker D8 diffractometer (Bruker 

Corporation, Billerica, MA, USA, Cu Kα source) or a PANalytical X’Pert Pro MPD powder 

diffractometer (Cu Kα1 source) in capillary mode. The air-sensitive samples were ground into fine 

powders and placed in 0.5 mm diameter sealed glass capillaries for data collection. Data were collected 

in the range 5° ≤ 2θ ≤ 85° using a 0.0168° 2θ step size for 1 h for phase identification or  

10° ≤ 2θ ≤ 110° for 12 h for structure refinement. PXD data were indexed and refined by least squares 

fitting using the CELREF software package [6]. Structural refinements were conducted via the 

Rietveld method using the GSAS and EXPGUI packages [7,8] The scale factor, zero point and 

background were refined in initial cycles, A shifted Chebyschev polynomial function (background 

function 1 in GSAS) was employed to model the background. The unit cell parameters, peak profile 

parameters and atomic parameters were refined subsequently. The peak shape was modelled using the 

pseudo-Voigt function (profile function 2 in GSAS). Constraints were applied to the thermal 

parameters of the N and H atoms within both the LT- and HT-Li4NH phases. 

Simultaneous thermal analysis (thermogravimetric and differential thermal analysis; TG-DTA) was 

performed using a NETZSCH STA 409PC thermobalance coupled to a HIDEN HPR20 mass 

spectrometer (MS). Approximately 30 mg of Li4NH was placed in an alumina pan and heated from 

ambient temperature to either 773 K or 873 K at 5 K·min−1 under a flow of Ar or N2 (60 mL·min−1), 

respectively. The maximum temperature was held for 1 h before cooling (5 K·min−1). Simultaneously, 

mass spectra for nitrogen, hydrogen, ammonia and water were recorded during heating.  

IR spectra were collected at room temperature (20 scans/sample, 8 cm−1 resolution) using a 

Shimadzu FTIR 8400S instrument with a Pike MIRacle ATR sampling accessory. Raman spectra were 

collected at room temperature using a Horiba LabRAM HR confocal microscope system (Horiba Itd., 

Kyoto, Japan) with a 532 nm laser, 1200 gr·mm−1 grating and a Synapse CCD detector. A hole aperture 

of 50 μm and a 25 times reduced laser intensity were used in order to minimise sample decomposition. 

3. Results and Discussion 

3.1. Li4NH Synthesis Using a Multimode Microwave Reactor 

MW synthesis in a commercial multimode cavity (MMC) reactor offers faster processing (over 

times of the order of minutes), increased energy efficiency and lower cost [9] than conventional high 

temperature approaches. To date, MW heating experiments with solid-state hydrogen storage materials 

have been limited to the study of the dehydrogenation properties of a small number of alkali,  

alkaline-earth and transition metal hydrides and of the alkali metal borohydrides, LiBH4, NaBH4 and 

KBH4 [10–12]. Nevertheless, given the difficulties in mapping the microwave field distributions in 
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3.2. Li4NH Synthesis Using a Single Mode Microwave Reactor 

A summary of the reactions conducted in SMC system (Figure 3) is shown in Table 2. As for the 

MMC syntheses described in section 3.1, cooling intervals were introduced between irradiation periods 

to avoid melting of the silica reaction ampoule (i.e., melting point 2073 K). Indeed, heating at 300 W 

for t > 240 s led to the destruction of the SiO2 reaction vessel. It is evident from PXD data collected for 

sample 8 that single phase Li4NH could be successfully synthesized at 300 W in 180 s; no reflections 

from the starting materials α-Li3N and LiH were observed (Figure 4). The final product had the 

appearance of a yellow/beige pellet. Previously, Li4NH was synthesised from the reaction between 

Li3N and LiH at 763 K for 6 h under Ar [4] and thus with the synthetic approach described here, 

reaction times could be reduced by a factor of 100 and performed without the need for an inert cover gas. 

Table 2. Summary of Li3N + LiH reactions using a SMC reactor. 

Reaction Power/W Time/s Other reaction conditions PXD results 

6 150 270 Vacuum LiH, α-Li3N and Li4NH 

7 250 270 Vacuum LiH, α-Li3N and Li4NH 
8 300 180 Vacuum Li4NH 

Figure 3. Reaction set-up using a SMC reactor. 

 

The MW synthesis of lithium nitride hydride is possible due to the ability of the starting materials to 

absorb microwave energy and convert this into heat (as reflected in the loss tangent, tan δ). The ability 

of Li3N to produce heat in a microwave field may be attributed to its inherent fast ionic conductivity 

and semiconducting behavior [15,16]. In fact, it is well established that microwaves couple directly to 

charge carriers leading to extremely rapid reactions in many ionic conductors and semiconductors [17]. 

Conversely, LiH does not generate significant heat under a microwave field and, for example, no 

changes in temperature were observed when LiH was placed within SMC (400 W; 20 min) or MMC  

(500 W; 30 min) reactors [7,9]. In fact, in these previous studies among NaH, MgH2, CaH2, TiH2, 

VH0.81, ZrH2 and LaH2.48 only the transition metal and lanthanide hydrides showed a rapid increase in 

temperature, which even then only led to the desorption of a small percentage of hydrogen (< 0.5 wt %). 
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Figure 4. PXD data for tetragonal Li4NH obtained in an SMC reactor at 300 W for 180 s 

under vacuum (sample 8). 

 

During the reactions described here (samples 1–8), a purple plasma was observed along the length 

of the silica reaction tube. The purple plasma was followed on most occasions by yellow/orange 

flashes (Additional Supplementary Information). The observation of these plasmas/flashes provides 

evidence for the high local temperatures achieved in the reaction vessel (i.e., Li evaporation occurs at ca. 

1573 K) [18]. 

3.3. Thermal Stability of Li4NH  

The thermal stability of the nitride hydride was investigated by TG-DTA under flowing argon.  

TG-DTA of sample 8 showed no evidence of mass change and hence decomposition or 

dehydrogenation when the sample was heated to 773 K (Figure 5a). Moreover, it was also evident 

from mass spectra collected simultaneously while heating that no hydrogen or other gases were 

evolved over the entire m/z range (1 ≤ m/z ≤ 200) (Figure 5b). These results corroborate previous 

investigations conducted to 698 K under argon [4]. Indexing of the PXD pattern from sample 8 

following the TG-DTA experiment (Figure 5c) yielded cell parameters for Li4NH of a = 4.891(2) Å 

and c = 9.9252(8) Å. These lattice parameters are within 2σ of those obtained for this sample prior to 

the TG-DTA and therefore no significant changes were noted. An Li2O impurity was noted in the  

post-TG-DTA diffractogram and was attributed to the presence of moisture in the Ar(g) and/or a 

reaction between a small amount of Li4NH and the alumina sample holder. 

The DTA profile for sample 8 however reveals an interesting feature above 700 K with no 

corresponding simultaneous weight change. This endothermic peak at 770 K can thus be attributed to a 

structural phase transition in Li4NH. An equivalent exothermic peak in the DTA was observed at  

755.6 K on cooling, demonstrating that the phase transition is reversible (and as corroborated by PXD 

where the tetragonal Li4NH is observed as discussed above). 
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The presence of the HT-phase in sample 8 can be rationalised by the relatively fast cooling rate 

from the SMC MW reaction (as compared to conventional heating), which allows some of the 

kinetically stable HT-Li4NH phase to remain in the sample at room temperature.  

Table 3. Selected Rietveld refinement data from the lab X-ray refinement of sample 8 at 

298 K. 

Empirical formula LT-Li4NH HT-Li4NH 

Collection temperature/K 298 298 
Crystal system Tetragonal Cubic 
Space group I41/a Fm 3 m 

Lattice parameters/Å 
a = 4.8864(1)

a = 4.9462(3) 
c = 9.9183(2) 

V/Å3 236.82(1) 121.01(2) 
Z 4 4 

Unit cell formula weight, Mw 171.116 85.558 
Density/g cm−3 1.200 1.174 

Phase fraction/wt% 98.1(5) 1.8(5) 
No. of observations, parameters 12,117, 35 

Rwp, Rp 0.0373, 0.0273 
χ2 1.962 

Figure 7. Observed-calculated-difference (OCD) profile plot from the room temperature 

Rietveld refinement for sample 8. Observed data are shown in red, calculated data are 

shown in green and the difference between the two profiles is shown in pink. Black 

tickmarks correspond to tetragonal Li4NH, red tickmarks correspond to cubic Li4NH and 

blue tickmarks correspond to SiO2. 
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HT-structure fully disordered N3−/H− anions are in a regular cubic coordination, with an Li–(N3−/H− 

distance of 2.1418(1) Å (Supplementary Information; Table S1). Li atoms are tetrahedrally 

coordinated to N/H atoms in the HT-phase. There are also strong similarities between the anti-fluorite 

structures of HT-Li4NH (Li2N0.5H0.5) and Li2NH (Li2(NH)). The Li–N3−/H− bond lengths are shorter 

than the lithium-imido Li–N distances reported by Balogh et al. [19] in Li2NH. (2.205 Å).  

Nitride hydrides are relatively rare but N3−/H− anion ordering similar to that in the LT-Li4NH phase 

has also been observed in alkaline earth metal nitride hydrides such as Ca2NH(D) (cubic space group 

Fd 3 m) [20,21], Ba2NH(D) and Sr2NH (both hexagonal space group R 3 m) [22,23]. Although there are 

no previously reported examples of complete N3−/H− disorder in the solid state, the anion disorder in 

HT-Li4NH is paralleled by the N3−/F− distribution in nitride fluorides such as Ba2NF [24,25]. Further 

studies on deuterated LT-Li4NH and HT-Li4NH using powder neutron diffraction will be performed to 

elucidate the crystal structures more fully (i.e., determine accurate hydrogen (deuterium) occupancies 

and anisotropic thermal parameters). 

Table 4. Atom positions and isotropic thermal parameters generated by Rietveld 

refinement against lab X-ray data for LT-Li4NH (sample 8) at 298 K. 

Atom N1 H1 N2 H2 Li1 

Site 4a 4a 4b 4b 16f 

x 0 0 0 0 0.1959(5) 

y 0.25 0.25 0.25 0.25 0.4618(4) 

z 0.125 0.125 0.625 0.625 0.2794(2) 

100 × Uiso/Å
2 3.9(1) 3.9(1) 3.1(4) 3.1(4) 6.93(9) 

Site occupancy 0.95 0.05 0.05 0.95 1.00 

Table 5. Atom positions used for Rietveld refinement against PXD data for HT-Li4NH (in 

sample 8) at 298 K. (Thermal parameters were fixed for this minority phase). 

Atom Li1 N1 H1 

Site 8c 4a 4a 
x 0.25 0 0 
y 0.25 0 0 
z 0.25 0 0 

100 × Uiso/Å
2 2.5 2.5 2.5 

Occupancy 1.00 0.50 0.50 

3.5. Reactivity of Li4NH with Air and Nitrogen 

3.5.1. Li4NH in Air 

To determine the reactivity of Li4NH in air, a freshly made sample was exposed to the ambient 

atmosphere for different times and the as-formed products were analysed by PXD (Figure 9). After 4 h 

of air exposure, Li4NH had completely reacted to form crystalline phases of Li2CO3, LiOH·H2O and 

LiOH. Prolonged (e.g., 24 h) exposure of Li4NH to air led predominantly to Li2CO3 with some 

Li2OH·H2O still present. Given this experimental evidence and by analogy to Li3N [26], the hydrolysis 
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4. Conclusions 

In summary, Li4NH has been synthesized in multi-mode and single-mode cavity microwave 

reactors over unprecedented timescales. Single-mode microwave reactions demonstrate several 

advantages over multi-mode approaches, such as increased efficiency and higher reproducibility. This 

new synthetic approach can reduce reaction times by a factor of 100 compared to conventional 

synthesis methods. Diffraction data served to confirm the purity of the as-formed product and to 

provide a structural model for Li4NH by means of Rietveld refinement. Thermal treatment under argon 

showed that a phase transition to a high temperature cubic anti-fluorite phase occurs at ca. 770 K.  

HT-Li4NH contains disordered nitride and hydride anions. In addition, results on the reactivity of 

Li4NH under air and N2 were also shown. In the former case, the nitride hydride reacts to form 

hydroxides (anhydrous and monohydrated) and subsequently lithium carbonate, under ambient 

conditions. In the latter case, Li4NH reacts to produce Li3N and Li2NH at high temperature. 
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