Spin–lattice relaxation rates and water content of freeze-dried articular cartilage

Damion, R.A., Pawaskar, S.S., Ries, M.E., Ingham, E., Williams, S., Jin, Z. and Radjenovic, A. (2012) Spin–lattice relaxation rates and water content of freeze-dried articular cartilage. Osteoarthritis and Cartilage, 20(2), pp. 184-190. (doi: 10.1016/j.joca.2011.12.005)

Full text not currently available from Enlighten.

Publisher's URL: http://dx.doi.org/10.1016/j.joca.2011.12.005

Abstract

Objective: Nuclear magnetic resonance (NMR) spin–lattice relaxation rates were measured in bovine and porcine articular cartilage as a function of water content.<p></p> Methods: Water content was varied by freeze-drying samples for short periods of time (up to 15 min). The samples were weighed at all stages of drying so that water content could be quantified. Spin–lattice relaxation rates were measured using magnetic resonance imaging (MRI).<p></p> Results: Linear correlations were observed between relaxation rate and two measures of inverse water content: (1) solid-to-water ratio (ρ), expressed as a ratio of the mass of the solid component of the cartilage (ms) and the mass of water at each freeze-drying time point (mw), and (2) a ratio of the total mass of the fully-hydrated cartilage and mw (1/w). These correlations did not appear significantly different for the bovine and porcine data. However, fitting the data to a piecewise-linear model revealed differences between these two species. We interpret the first two segments of the piecewise model as the depletion of different water phases but conjecture that the third segment is partially caused by changes in relaxation rates as a result of a reduction in macromolecular mobilities.<p></p> Conclusions: Whilst we can produce linear correlations which broadly describe the dependence of the measured spin–lattice relaxation rate on (inverse) water content, the linear model seems to obscure a more complicated relationship which potentially provides us with more information about the structure of articular cartilage and its extracellular water.<p></p>

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Radjenovic, Dr Aleksandra
Authors: Damion, R.A., Pawaskar, S.S., Ries, M.E., Ingham, E., Williams, S., Jin, Z., and Radjenovic, A.
College/School:College of Medical Veterinary and Life Sciences > School of Cardiovascular & Metabolic Health
Journal Name:Osteoarthritis and Cartilage
Publisher:Elsevier Ltd.
ISSN:1063-4584
ISSN (Online):1522-9653

University Staff: Request a correction | Enlighten Editors: Update this record