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Systemsbiologyhas gained a tremendous amount of interest in the last fewyears. This is partly due to the realization
that traditional approaches focusing only on a few molecules at a time cannot describe the impact of aberrant or
modulated molecular environments across a whole system. Furthermore, a hypothesis-driven study aims to
prove or disprove its postulations, whereas a hypothesis-free systems approach can yield an unbiased and novel
testable hypothesis as an end-result. This latter approach foregoes assumptions which predict how a biological sys-
tem should react to an altered microenvironment within a cellular context, across a tissue or impacting on distant
organs. Additionally, re-use of existing data by systematic data mining and re-stratification, one of the cornerstones
of integrative systems biology, is also gaining attention. While tremendous efforts using a systems methodology
have already yielded excellent results, it is apparent that a lack of suitable analytic tools and purpose-built databases
poses a major bottleneck in applying a systematic workflow. This review addresses the current approaches used in
systems analysis and obstacles often encountered in large-scale data analysis and integration which tend to go un-
noticed, but have a direct impact on the final outcome of a systems approach. Its wide applicability, ranging from
basic research, disease descriptors, pharmacological studies, to personalized medicine, makes this emerging ap-
proach well suited to address biological and medical questions where conventional methods are not ideal.
© 2014 Robinson et al. Published by Elsevier B.V. on behalf of the Research Network of Computational and

Structural Biotechnology. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

In 1958 Francis Crick first discussed the central dogma of molecular
biology: that information is transferred sequentially in one direction
from nucleic acid to protein and cannot move in the opposite direction,
which is often summarized by the phrase “DNAmakes RNAmakes pro-
tein” [1]. While the central dogma is still a core part of our understand-
ing of the molecular machinery that facilitates life, the picture is of
course now much more complex (Fig. 1), as has been previously
discussed [2,3].

We now know that in addition to the genetic information stored as
the code in the formof the four bases guanine, thymine, adenine and cy-
tosine, there is also information carried in by the modification of these
bases, e.g. methylation or hydroxymethylation of cytosine. Another
type of epigenetic (above genetic) modification is to the histones, the
proteinswhich bind to DNA to form chromatin. These epigenetic chang-
es can act in concert [4] and they contribute to changes in levels of gene
expression [5] and can direct which parts of the genetic code form a
resultingmature transcript via alternative promoter selection and alter-
native splicing [6,7]. While epigenetic changes aremostly erased during
gametogenesis, they have been shown in some cases to persist through
generations [8].

Similarly RNA transcripts may undergo base modifications although
these are much less extensively studied [9]. While most transcripts are
protein-coding as suggested by the summarization of the central
dogma quoted above, many are non-coding. One class of transcripts
called microRNAs serve to downregulate gene expression by cleaving
their specific target mRNA sequences. Some of these miRNAs seem to
target thousands of specific RNAs and are extremely highly conserved
across eukaryotes [10]. As transcripts can undergo alternative splicing
one gene may encode a large number of proteins by the removal of
exons from pre-mRNA [11]. The protein products of these transcripts
also undergo post-translational modifications before forming a mature
Fig. 1. A summary of themolecular processes occurring between the common biomolecules of t
processes. *‘Processing’ of RNA indicates both common events such as capping or splicing and l
posttranslational modification; RISC, RNA-induced silencing complex.
protein product [12], so that along with splice variants and alternative
start sites, one multi-exon gene has the potential to form of a vast
array of proteins. Proteins of course interact with each other and with
metabolites, but also assist in various nucleic acid related processes
such as transcription [13] and miRNA-directed downregulation [14].

Molecular biology has undoubtedly been transformed by large-scale
sequencing initiatives such as the human genome project (HGP), as
evidenced by the techniques and tools which have arisen from it. ‘Com-
pleted’ genome sequences allowed the development of genome-wide
DNA microarrays which soon showed how different tissues in a com-
plex organism may have very diverse patterns of gene expression [15].
The ‘next generation’ and ‘third generation’ sequencing machines,
whose production was no doubt encouraged by the HGP have allowed
for the categorization of the microbiome — the collective genomes of
the community of microorganisms of a particular environment. In
humans this microbiotic community (or microbiota) is vast, diverse be-
tween individuals, can provide metabolic function and is implicated in
various disease states — it is sometimes discussed as an organ itself
[16].

Pleiotropy is the term used to describe how one gene (or rather its
products) can affect several traits. This often occurs through onemolec-
ular cause having a physiological consequence with related physiologi-
cal consequences or due to the gene being involved in multiple
pathways with different physiological outcomes. In some cases the
product of the gene may have multiple molecular functions [17] and it
has been suggested that alternative splicing may contribute to pleiotro-
py in some cases [18]. Genes may even act as an activator and a repres-
sor of the same process due to alternative splicing [19].

An insight from one gene expression study which investigated sev-
eral individual tissues of Drosophila melanogaster showed that many
genes which had known functions in one tissue were also highly
expressed in unexpected tissues [20]. This suggests that many genes
whose function is thought to be well understood may have alternative
he cell. Arrows represent the transfer of information and/or the regulation of these transfer
ess common RNA editing events. DNA, deoxyribonucleic acid; RNA, ribonucleic acid; PTM,
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functions in different environments and/or are helping contribute to
completely distinct physiological states.

The biophysical microenvironment in the form of changes of the
micro-topographic cell characteristics can induce modifications at an
epigenetic level, promoting changes on the patterns of histone acetyla-
tion and methylation therefore modifying cell reprogramming efficien-
cy [21]. Other biophysical constraints such as cell-to-cell contact,
stiffness, surface tension, and magnetic field are also involved in the in-
teractionwithmolecular networkswith the last being governed bynon-
linear dynamics [22].

The field of bioinformatics is broad, but is perhaps best described by
the large biological datasets which must be manipulated via computa-
tion and testedwith robust statistics. The key challenges of bioinformat-
ics are those of data storage and algorithm development and the goal is
usually a description of that individual dataset, possibly by statistics
alone or by also integrating annotations in an automatic manner and
interpreting the enrichment of these.

Systems biology is sometimesmisunderstood as a newword for bio-
informatics.While it is true that there is a certain amount of intersection
between the fields, a systems biologist seeks to use bioinformatics tools,
data, and databases in conjunction with clinical data and information
from the literature, in order to describe as much of a system as possible
or as is appropriate to the task. The addition of clinical and laboratory
measurements means that systems biology need not be entirely reduc-
tionist, or at least that some additional higher scale measurements may
act as a surrogate for missing low-level data. A systems approach may
also make use of complex mathematical models to simulate the system
or determine putative associations.

Due to the diverse range of data types and analysis methods, a
systems biologist should work in collaboration with clinical scientists,
lab scientists and possibly (bio)informaticians and (bio)statisticians
depending on the requirements of the task and the skill set of the
individual. A systems biologist may work in a team including a bio-
informatician, in which case it is not necessary to do the omics data
pre-processing, but should at least have a conceptual understanding of
where the data has come from, including the power, limitations and
possible biases involved.

Another source of confusion may be that systems biology is neces-
sarily about kinetic mathematical models, irrespective of size. While
this may be a useful methodology to a systems biologist, this is only
one possible aspect and such a modeling effort should relate to a large
system or should be used to validate a crucial part of that system; sys-
tems biology should aim to describe the complexity of biological sys-
tems rather than extremely small abstract sets of reactions.

The approach is commonly applied to studying normal functions,
diseases, prediction of drug effects (on-target and off-target) and com-
parison of different species. The desired outcomeofmanyof these appli-
cations is to establish a mode of action informed from diverse methods
describing events on different biological scales, and often to use this
model to make informative and useful predictions such as the identifi-
cation of biomarkers or possible off-target drug effects. There is no
one exact procedure to follow to reach this conclusion, as each result
could suggest a different approach required, or the iteration of that anal-
ysis with a higher or lower stringency. It is, in this sense, directed partly
by experience; knowing which analysis is most appropriate for data
with particular features. Each step should however be well-founded in
evidence and potential sources of bias sought out and accounted for
where possible.

This review seeks to provide an overview of systems biology, intro-
ducing important concepts frommolecular biology, statistics and bioin-
formatics. A good grounding in key components of these subjects is
important as these fields provide the majority of the data, analysis
methods and the biological framework under which systems biology
is practiced. Examples of the various applications of systems biology
will be described and some of the challenges for future work will be
identified.
2. Data

2.1. Platforms & preprocessing

Systems biology requires large datasets, preferably with a wide ge-
nomic scope and unbiased toward particular pathways or processes.
Most often the information required to form the basis of an analysis is
the transcriptome, proteome or metabolome, as the data itself or fold
changes derived from it may be mapped to biological pathways and
used to infer systemic differences between groups.

Microarrays emerged relatively early with respect to other genome-
wide technologies and may be used to gather information on a range of
molecules andmolecular events, but most notably they are used tomea-
sure gene expression. They are relatively cheap compared to some other
omics methods, and the procedures for processing the data are now
mostly well-devised. Manufacturing differs from company to company
but the general concept remains the same: a probe or a set of genomically
proximate probes is designed to hybridize to a transcript and fluoresce
upon hybridization, and the level of fluorescence will inform on the
abundance of the target molecule. The probes have genome-wide cover-
age and are bound to the microarray (or ‘chip’) in a 2D array of ‘spots’ or
first bound to microscopic beads which are deposited in a 2D array of
wells. Comparisons are only robust between samples within the same
probe or probe set, not between probes or probe sets as different binding
affinities, genetic variation etc. may exist between the sequences com-
pared and act to obscure true biological variation.

When using this type of data one should study both the
manufacturer's annotation materials and the literature to identify any
improvements that might be made to the analysis. For example the
Illumina Human Methylation 450 Beadchip has many probes which
may truly report SNP differences rather than differential methylation
and like many microarrays suffers from cross-hybridization [23]. It is
also advantageous to either check for the latest version of annotation
or create novel annotation using public resources [24]. For creating
new microarray annotation, protein databases etc. one may require a
large scale sequence alignment and clustering software which can han-
dle large amounts of data and run on relatively low-powered machines
such as LSCluster [25].

Just as some probes can annotate several genes, some genes are de-
tected by several probes; it is a many-to-many (m–n) relationship that
exists between probe sets and genes. Often it is the case that different
probe sets for the same genes are highly correlated and where they
are not, it suggests that either an un-annotated cross-hybridization or
alternative splicing is occurring.

RNA-seq is an emerging alternative method for estimating gene ex-
pression by sequencing cDNA and aligning it to a reference genome.
RNA-seq is amore powerful technology in that it can detect genetic var-
iation and levels of different splice variants. Microarrays are however
cheaper and simpler to analyze and it has been suggested that the two
technologies should be used together to gather the broadest tran-
scriptome coverage [26].

While any large dataset may be useful, those of most interest are the
final functional products, i.e. proteins and metabolites. Mass spectrom-
etry (MS) is most often the tool to collect this data on a large scale. It is
used in combination with a method to separate the components of a
sample prior toMS such as liquid chromatography, gas chromatography
or capillary electrophoresis. MS itself involves ionizing thesemolecules,
fragmenting them andmeasuring their mass/charge ratios. These peaks
then allow the identification of the molecule relating to each profile of
mass/charge peaks. Different types of separation and different MS
equipment have different strengths and limitations. For example differ-
ent separation techniqueswill bemore/less suitable for differently sized
or charged molecules and offer a different degree of chromatographic
resolution [27,28].

Deviations in quantified MS peak intensities may arise from techni-
cal variations and result in unreliable run-to-run reproducibility. The
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normalization of peak intensity across all samples of a proteomics or
metabolomics dataset is therefore an important step in preprocessing
[29]. As the normalization affects downstream analysis it is crucial to
select an appropriate method and crucial that normalization factors
are independent from biological factors [30]. Out of the many possible
normalization methods proposed for MS data Total Ion Count (TIC) is
emerging as a gold standard. Total Ion Count simply acts to scale
each spectrum such that the total area under the curve is equal [31].
After preprocessing the peaks must then be associated to proteins/
metabolites.

2.2. Databases and identifiers

One of the initial challenges of working with large datasets –

especially proteomics and metabolomics datasets – is the association
between useful identifiers and the data itself. Many different sets of
IDs exist for both, and some have become defunct over time as support
for a database is dropped. While some issues such as this may be un-
avoidable, both database curators and users should adhere to good gen-
eral practices to minimize other problems. For example, when an ID is
assigned to a molecule, it should be permanently associated to it. If
the molecule is deemed to be a contamination, unusual fusion protein
or spurious reading then, rather than the entry being removed entirely,
it should remain in the database, but marked as spurious and possibly
set as being unsearchable. This way a molecule may not be removed
then later returned to a database under a different ID. Conversely one
ID will never be attributed to two different molecules.

Using gene symbols as IDs is not recommended as they can be dupli-
cated and are prone to change. One recent example is CDH1, which is
the Human Genome Organisation (HUGO)-designated gene name for
Cadherin-1, however CDH1 is also used throughout the literature as a
gene name for CDC20-like protein 1 or Fizzy-related protein homolog
FZR1. Any semi- or fully-automated data extraction from the published
literature may therefore inadvertently attribute molecular properties to
the wrong entry. Furthermore, in some species gene symbols may con-
tain Greek characters which are often not correctly read by various tools
(e.g. “αTry” in D. melanogaster). Despite this many tools only accept
these IDs (sometimes with Greek letters converted to roman words,
i.e. “alphaTry”), and therefore it is often necessary to convert between
types of IDs. While some conversion tools are available these issues
cannot properly be addressed without a concerted effort between
researchers, organizations and publishers.

If possible IDs should be constrained to the 36 (English) alphanu-
merical possibilities, which even with a modest ID length would allow
for an adequate number of possibilities. Even with only 4 characters of
this set there would be 1,679,616 resulting IDs. Whatever length of ID
selected length should be retained, e.g. ‘0001’ rather than ‘1’, to avoid
errors of truncation. Finally if other characters (e.g. Greek) are used in
order to represent common IDs in one part of a database, the rest of
the database and its associated interfaces and the user workflow pro-
ceeding from it should be made fully unicode-compatible. Care should
also be taken not to use IDs from restricted-access commercial data-
bases in publications.

The main resource for sequence data including RNAseq is the
Sequence Read Archive— a public database of NGS data [32]. The Inter-
national Sequence Database Collaboration (INSDC) is a collaboration
between the European Bioinformatics Institute, National Center for Bio-
technology Information and the DNA Data Bank of Japan who provide
access to SRA, both through their own graphical user interfaces and
via programmatic routes.

The Universal Protein Resource (UniProt) is a comprehensive data-
base of protein structures and annotations. It is divided into four main
components: UniProt Knowledgebase (UniProtKB), UniProt Reference
Clusters (UniRef), UniProt Archive (UniParc), andUniProtMetagenomic
and Environmental Sequences (UniMES) [33]. UniProtKB is divided into
two sections. UniProt/TrEMBL stores translations of the sequences
found in EMBL-Bank/GenBank/DDBJ, many of which are derived from
SRA.While the sharing of information between large bioinformatics da-
tabases adds to the power of these databases, it can also lead to the re-
production of errors if sufficient curation is not implemented. Many
UniProt/TrEMBL entries share identical sequences, and naming errors
(e.g. “HLQ-DQB1” as opposed to “HLA-DQB1”) may occur throughout
several resources. UniProt/Swiss-Prot is intended to contain one entry
per gene and is the gold standard in protein sequence referencing and
the assembly of pertinent molecular functions.

The HumanMetabolome Database describes small molecule metab-
olites in humans. It contains over 40,000 metabolites and links three
types of data: chemical, clinical, and molecular biology/biochemistry
[34]. Several similar databases exist for other species. KEGG Pathway
is a large, well-curated database with zoomable maps which show
large sections of the metabolisms of various species [35]. MetaCyc is a
similar database containing fewer compounds but a greater number of
pathways and reactions, andwithmore extensive pathway descriptions
[36]. Pathway Commons uses data from open-access databases to link
out to a software called Cytoscape [37,38].

While the large datasets used for systems biology are often generat-
ed from samples gathered specifically for the study, public datasetsmay
also be used either in conjunction with a new dataset or as the main
dataset(s) for the analyses themselves. NCBI's GEO [39] and EBI's
ArrayExpress [40] are themain databases for array-based data, however
other data types are also now included in GEO such as mass spec-
trometry data. Array-based and sequencing-based data in GEO and
ArrayExpress must adhere to "minimum information about a microar-
ray experiment" (MIAME) or “minimum information about sequencing
experiments” (MINSEQE) respectively [41].

2.3. Public datasets

There is currently much less support for sharing of proteomics and
metabolomics datasets despite the growing need, and relatively few
public datasets available. The Proteomics Identification Database
(PRIDE) contains over 25,000 proteomics experiments [35]. Metabo-
lights is a repository hosted by EBI and launched in 2012,which current-
ly houses 39 experiments [42]. Standards for reporting proteomics and
metabolomics experiments are coordinated by Human Proteome
Organisation's Proteomics Standards Initiative (HUPO-PSI), and Meta-
bolomics Standards Initiative (MSI) respectively.

While standards such as MIAME exist to ensure a certain amount of
information is uploaded along with the data in public databases, some
useful sample info e.g. on biological confounders or potential batch ef-
fects may bemissing, or only initially gathered for some datasets. Addi-
tionally if onemakes use of several different datasets the batch effects of
using different cohorts should be taken into account, even if all potential
biological confounders are accounted for and the same technology was
used to gather the information.

Another issue with public databases of this type which are storing
human data is that there is no consensus on whether consent for the
uploading of the data is implicit, or whether additional consent should
be sought. A survey showed that patients felt that it was very (69%) or
somewhat (21%) important to be asked for additional consent [43].
This is clearly a cause for some ethical concern and in future foresight
should be applied in writing ethical consent statements regarding
omics data open access.

In some cases rather than searching for experimental data relating to
a specific disease one may simply wish to know about the normal ex-
pression across different tissues of an organism. This can help identify
possible sources of cross-talk, or help to study normal function or to
compare systems inmultiple species. BioGPS and EBI's Gene Expression
Atlas offer similar services in this area, including graphical output for
each gene, and useful related links [44,45].

Meta-analysis of multiple public datasets can be extremely power-
ful. For example public gene expression data from GEO was used to
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determine the minimum number of genes required to impute the re-
mainder of the human genome. Genometry found that only 1000 ‘land-
mark’ genes were required to estimate the remaining genome
expression, expanding on previouswork in this area [46], and have gen-
erated a microarray to assay only these genes so that costs are reduced
and an increased number of samples may be studied. The source of the
data must be scrutinized however, as it can cause a bias in downstream
analysis— i.e. if 50% of the data in GEOwere to correspond to cancer ex-
periments then a bias would exist in the selection of the 1000 genes.

2.4. Pathways and annotation

In addition to databases containing experimental data, annotation
databases may also be extremely useful. Broadly speaking this data
comes from two original sources — experimental data itself held in a
public repository or reported in scientific literature, and predictions
based on sequence alignments, structural similarities or expression pro-
files. One of themost common annotations in molecular biology is gene
ontology (GO) [47]. There are three broad categories of these: biological
process, cellular component, andmolecular function— each term is part
of a greater hierarchy with these divisions at the top.

Online Mendelian Inheritance in Man (OMIM) is a database of
human genes and genetic phenotypes. The NCBI Taxonomy Database
was developed in consultation with the INSDC [48]. Almost 280,000
species have been described by Taxonomy representing an estimated
10% of the described species of life on the planet. GeneCards is a very
useful source of summary information collecting data frommany differ-
ent popular resources [49].

Reactome supports pathway enrichment analyses on that basis.
WikiPathways is a pathway database with an open and collaborative
ethos [50]. PathVisio is a tool which is used to view and edit pathways
from WikiPathways and its website provides helpful user tutorials
[51]. To search for additional pathway tools one can use Pathguide,
which contains information on over 500 resources (http://pathguide.
org).

3. Algorithms and implementations

3.1. Preprocessing & quality control

A wide variety of methods may be used for both preprocessing and
downstream analysis, found as stand-alone software or on shared plat-
forms. The following is far from a comprehensive list of methods or the
tools that implement them but serves as an overview (Fig. 2 shows
these methods ordered into a workflow). ‘R’ is a scripting language
Fig. 2.A general workflow of systems biology. Thisfigure summarizes the overall approach, at ea
of the data and the techniques used to gather it. QC, quality control.
and environment primarily developed for statistical computing. It is
particularly useful in bioinformatics and systems biology because of
the number of relevant packages available, largely through the open
source Bioconductor project, which contains hundreds of packages
alone [52].

R has a diverse range of uses, from preprocessing, to statistical test-
ing and on to downstream analysis, and in particular it has great utility
inmicroarray processing, althoughmany of the packages initially devel-
oped for microarray analysis have since been applied to proteomics and
metabolomics. Many graphical user interface (GUI) alternatives exist,
however oftenwhat is gained in speed and simplicity is lost in flexibility
and power, andmany of these GUI applications such as Partek, SPSS and
IPA are commercial.

Affymetrix microarray probe sets are dispersed randomly across
their chips so that if a spatial effect does occur it is unlikely to greatly af-
fect the final probe set value. Illumina seeks to further reduce spatial ef-
fects by randomly assigning the well used for each probe on each
individual chip.While this could be of utility, if thefile describing the co-
ordinates of the probes is not extracted at the time of scanning then the
locations of the beads are lost and spatial examination cannot later be
investigated. Due to these measures taken by themanufacturers spatial
correction is often foregone and rather packages are used to identify ex-
tremely dubious chips and simply remove them from analysis, however
packages do exist that aim to correct for smaller spatial effects [53].

One popular pre-processing procedure is called Robust Multi-array
Average (RMA), which background adjusts, quantile normalizes, log-
transforms and summarizes from individual probe values down to
probe set values [54]. A log2 transformation is performed in order to ac-
quire a more normal distribution to allow the use of parametric tests.
The log2 scale is also beneficial to the interpretation of fold changes as
upregulations and downregulations are scaled equally around zero, as
opposed to raw downregulations being found between zero and one
and upregulations being found between one and infinity.

There are now a diverse range of mass spectrometers used to gener-
ate MS data in proteomics, with various advantages and limitations.
Similarly there are also a considerable number of algorithms developed
to query and cross compare the tandemMS data [55]. Themost popular
programs/packages used to identify proteins from raw MS data are
MASCOT, SeQuest, OMSSA and X!Tandem [56]. The emergence of new
tools, e.g. Morpheus [57], and development of specialized tools such as
MaxQuant [58], specifically aimed at high resolutionMS data, will accel-
erate protein identification.

IDEOM is an Excel interface used for the analysis of LC/MS and GC/
MS metabolomics data [59]. It alleviates the requirement for either
scripting skills or in-depth understanding of preprocessing procedures
ch step highlighting some of the options available. These options often depend on the type

http://pathguide.org
http://pathguide.org
image of Fig.�2
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in obtaining a filtered, interpretable list of metabolites from a raw input
file and makes use of mzMatch [60] and XCMS [61] to preprocess and
identify metabolite IDs and then populate worksheets with metabolite
data and provide graphs of statistical output.

After pre-processing the data should be in the format of a large ma-
trix with rows by biomolecule and columns by patient (or possibly the
transpose). Distancematricesmaybeuseful at this stage, showing either
distances between samples or between molecules and often displayed
as a heatmap. The ‘distance’ ismost commonly Euclidean distance,Man-
hattan distance or some type of correlation (Pearson, Spearman etc.).

Dimensionality reduction methods reduce the number of rows de-
scribing each patient so that the data may be plotted on a 1D, 2D or
3Dgraph. The points on the graph are often colored according to various
features — plotting these points and coloring by certain variables may
prove informative as to quality control by identifying samples which
are extremely different from others, or displaying the association be-
tween clusters and various variables.

Sammon mapping seeks to compress a highly dimensional dataset
down to a plottable number of dimensions [62]. Sammon mapping
seeks to do this while minimizing what is described as stress, which is
a representation of the error in the distances between points in the
newdata space as compared to the original. Principal Components Anal-
ysis (PCA) on the other hand seeks to essentially tilt the axis through the
data space, such that the ‘first’ principle component (denoted “PC1”)
captures themaximumamount of variance possible and all components
remain orthogonal to each other [63]. The order of the naming of the
components is determined by ranking the list based on the amount of
variance described by each, i.e. PC2 captures the second most variance.
While all the data ismaintained (unlike in Sammonmapping) scree plots
may be used to show the amount of variance for each component and to
decide howmany principle components are worthy of examination.

Each PC can be described as correlating to a certain extent with each
original input variable, such that if a particular PC separates the samples
into two clusters, those variables mostly responsible may be identified.
A technique which can be used in combination with PCA is varimax ro-
tation, in which the top PCs are selected and further rotated such that
for each varimax-rotated component the variance across the correla-
tions with the input variables is maximized — therefore each PC may
be said to largely correlate to a small number of input variables [64,
65]. In some cases, where data is highly dimensional and highly corre-
lated, it can be useful to input these data into statistical tests — this
way each varimax-rotated PCwould be representative of a group of bio-
molecules and each group can be tested alongside the other in the same
model, rather than doing iterative tests in which different molecules
may be accounting for the same difference in the dependant variable.

3.2. Statistical analysis

Several possibilities exist for statistical analysis on a list of biomole-
cules or groupings of biomolecules, each with its own set of assump-
tions. Standard statistical tests to compare two groups such as the
nonparametric Wilcoxon rank sum and parametric Student's t-test
may be used depending on the assumptions appropriate to the data. Al-
ternatively the independent variable of interest may be continuous in
which case a different technique such as simple linear regression is
used. Linearity of relationships should be considered and non-linear re-
gression and mutual information employed where appropriate [66].
Non-linear relationships are poorly accounted for by linear approaches
and can be responsible for the apparent noise of a system [67].

Thesemay be iterated over every probe set and the results should be
multi-test adjusted. These tests seek to identify those results with a low
(e.g. b0.05) probability of occurring by chance, and so if 100 tests were
done then 5 results would be expected to show positive without
multitest correction. Bonferroni correction is direct and intuitive and
simply involves multiplying each p-value by the number of tests done.
It is very stringent however, especially with a very large number of
tests, so other less stringent methods have been developed (such as
the Benjamini–Hochberg correction), which often take into account
the rank of each test as ordered by p value [68].

New methods have been developed with the advent of genome-
wide technologies. Limma is an R packagewhichwas developed to facil-
itate gene expression microarray analysis [69]. With Limma one may
model batch effects, technical replicates, time series and complex mul-
tifactor experiments. It also provides the option to do a moderated t-
test, essentially borrowing information from other genes.

Rank products is a heuristic method which calculates statistical sig-
nificance based on ranks of fold changes, makes few assumptions
about the data and is especially useful when few biological replicates
are available. It is non-parametric and can be used with various high
throughput data types, including a mixed data type meta-analysis and
has been implemented as a package in R.

3.3. Pathway analysis

Cytoscape is a tool primarily designed for network visualization and
analysis; it makes use of a wide variety of plug-ins to extend its func-
tionality which are designed by the scientific community. However,
many useful plug-ins such as MiMI [50] have not been updated to be
compatible with current versions.

ClueGO [70] is a popular Cytoscape plug-in used for term enrich-
ment analysis — i.e. determining if any terms are associated more fre-
quently with the top of a ranked list of genes, or with a sub-set of a
larger gene list. As the name suggests this is done with GOs as the
terms, and allows the user to subcategorize based on the threemain cat-
egories or by evidence codes. It also provides the capability to analyze
with KEGG, WikiPathways and Reactome terms. Term enrichment is a
good way of making a preliminary analysis on the data and identifying
areas to focus on. For additional functionality, CluePedia [71] can be
added to ClueGO to produce networks with custom correlation scores
and other data plotted as edges between genes and nodes.

Cytoscape has a “pathway database” ‘app category’ containing plug-
inswhich derive data from a variety of information sources and provide
some appropriate tools for pathway editing and enrichment analysis:
CyKEGGParser manipulates KEGG files [72]; ReactomeFIPlugIn facili-
tates pathway enrichment analysis based on the Reactome database
[73]; an alternative interface to WikiPathways is provided; and
Metscape allows users to build and analyze networks of genes and com-
pounds, use gene expression and metabolomics data to identify
enriched pathways and their metabolic consequences and rely on data
from several different sources [74]. These are just a few examples of
the tools available in this category. There are many similar tools under
several other related categories andmany of them are found repeatedly
across categories. Large datasets may also be used to infer novel rela-
tionships by Bayesian inference models. These are used to calculate
the probability that a relationship exists between two molecules
based upon the observation, or generally-speaking they test a hypothe-
sis based on priors. The key challenges to this approach are having
enough power (data) to infer the number of possible interactions and
another is the lack of standards for accepting or rejecting relationships,
however the ability to recreate a well-accepted interaction can at least
be used to benchmark different methods [75].

3.4. Mathematical modeling

Kinetic models are useful for mathematically modeling/simulating
the dynamics of a system in silico, and may be constructed using the
SimBiology package for MatLab. Broadly-speaking there are two classes
of these types of models: deterministic and stochastic. Deterministic
models predict an average outcome; they do not take stochastic fluctu-
ations into account. Deterministic approaches are therefore more ap-
propriate for systems with large numbers of molecules, where small
fluctuations have negligible impact. Ordinary differential equations
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(ODEs) involve functions of one independent variable and derivatives of
the functions with respect to it. These are used to model dynamics over
time only. Partial differential equations (PDEs) can be used instead to
model dynamics over several independent variables i.e. multiple
spatial axes as well as time.

Exact stochastic approaches such as the Gillespie algorithm can be
useful, especially for modeling reactions with a small amount of mole-
cules where small fluctuations can have a large impact on the system
[76]. With this approach distributions are used rather than averages,
and each reaction is explicitly modeled instead of the average approach
used in deterministic modeling. In order to create accurate models of
large networks itmay be best to utilize both approaches— deterministic
for large populations and stochastic for lowly-populated important re-
actions. One of the biggest challenges for all kinetic modeling is to accu-
rately obtain or estimate the reaction constants and other parameters as
required. Another stochastic modeling approach outside of kinetic
modeling is agent-basedmodeling (ABM). ABMwas initially developed
for social sciences but has since been applied to several fields of biology.
The ‘agents’ of ABM are autonomous decision-makers which can be
used to represent biomolecules such as proteins or metabolites or, on
a larger scale, cells. The rules governing the system are found on the
agent level — each class of agent has certain rules which all instances
of the agent follow (e.g. all instances of ATP follow the same set of
rules). ABMs can account for time and three-dimensional space and al-
though the rules are assigned on the agent-level, those actions can de-
scribe emergent properties on a larger scale. Few examples of
applying ABM to molecular modeling exist in the literature to date —

one example is the ABM of the NF-κB pathway [77].
Constraint-based models are able to address the issues of long com-

putational time with respect to large networks and lack of genome-
wide reaction rates normally found with kinetic models. Rather than
seeking one immediate solution they start by restraining all possibilities
down to a biologically relevant solution space, by the addition of various
types of constraints. For example enzymatic capacity and thermody-
namic restraints place an upper bound on the flux for a reaction. The
greater challenges of this approach are generating the constraints to
apply, and developingmethods to probe the solution space for interest-
ing phenotypes. Omics datamay be used alongside thesemodels [78] or
can be integrated into them as constraints to introduce the context of
that state [79]. One popular toolbox for implementing constraint-
based models is COBRA, developed on MatLab but also available as a
package for Python [80].

3.5. Multi-omics analysis

The more of the system that is directly measured the more easy it
should be to discern the pathways and structures involved. Conversely
the more of the system directly measured the more information must
be integrated and the more complex the analysis. This describes both
the promise and challenges of multi-omics studies. The most obvious
way to integrate various omics experimental datasets is simply to ana-
lyze each set separately and retain only the positives from each set for
further downstream analysis.

The alternative to this set-by-set approach is to integrate the data
prior to analysis. Generally, this can be done in one of twoways— either
simply adding all datasets into one largematrix, or identifying biological
relationships between the molecules and analyzing the resulting
network.

Specialized tools for this type of analysis are currently limited and
are only beginning to emerge. Ondex is one tool designed to aid in
multi-omics analysis, however it lacks novel multi-omics statistical
approaches [81]. Mixomics is an R package which uses correlation be-
tween molecules to identify groups of related molecules corresponding
to e.g. a disease state [82]. It can be used to analyze two omics sets si-
multaneously and the edges between nodesmust be user-defined, rath-
er than relying on an underlying database.
4. Applications

4.1. Normal function — why modeling?

The high number and diversity of experimental data, especially
those covered by the life sciences domain never was so easy to access.
Ranging from the description of simple to more complex processes,
from isolated enzymatic reactions or temporal processes within meta-
bolic networks to patterns of gene expression and regulation. Nonethe-
less, it is not conceivable to predict the behavior of complex or even
simple systems with enough precision and accuracy based only on em-
pirical data. Thus, the major advantage of modeling relies on the use of
computational power within a set of predefined axioms to simulate a
particular environment, as e.g. knockout of one or a group of system
components and then predict the network outcome. Another benefit
is that the algorithms of computer programs can be reused on several
systems. Additionally, the costs associated with modeling are much
lower than for experiments, therefore organism-dependent experi-
ments can be reduced.

The process by which bacteria sense changes in the surrounding en-
vironment and direct their motility efforts toward favorable stimuli and
therefore away from unfavorable stimuli is called chemotaxis [83]. Here
the author describes the actual state of the art of the mathematical ap-
proaches for modeling this process within an individual bacterium
cell. The best studied model within this process is Escherichia coli, that
makes use of successive rotation/spinning changes of flagella from
counter-clockwise to clockwise, in order to produce runs and reorienta-
tion, respectively. This process is controlled through a well-defined set
of intracellular protein–protein interactions also sometimes referred
to “molecular machines” and has been explored successfully by mathe-
matical modeling of the intracellular signaling in bacteria [83].

The pursuit of building a whole-cell model involves the formulation
and application of newmodeling approaches and in particular the inte-
gration of models for each type of cellular process [84]. Apart from the
modeling of a particular event as cell cycle to the whole-cell modeling,
Karr et al. [85,86] used a hybrid methodology relying on the combina-
tion of ordinary differential equations (ODEs) into frameworks, and
constraint-based and Boolean methods, modeled individual biological
processes and merged the outputs in order to compute the overall
state of the cell. Thus, they were able to virtually simulate the life
cycle of Mycoplasma genitalium cells for every molecule and then
representing the function of every annotated gene in a single computa-
tionalmodel. This type of approach gives new insights for the prediction
of phenome based on genome, providing improved and comprehensive
models of cellular physiology, hence allowing researchers to prioritize
experiments and constrict their lines of research [85,86].

Another major chalenge within the systems biology field is the un-
derstanding of gene regulatory networks involved in development, es-
pecially during the initial establishment of germ layers. Besides this
subject beingwell characterized among a high number of model organ-
isms, the advantage of axolotl over other amphibian embryology
models (e.g. Xenopus laevis) is that it has only a single Mix and Nodal
gene needed for the specification of the mesoderm layer [87]. There
the authors proposed mathematical models based on ODEs for the de-
scription of the subjacent mechanism underlying the axolotl mesoderm
and anterior mesoendoderm specification [87], where they used both
in vitro and in vivo models to firstly stimulate Nodal signaling through
the use of Activin and secondly the presence of maternal transcriptional
factor β-catenin that activates Nodal signaling and therefore regulates
the expression of the down-stream targets [87].

4.2. Human disease

It seems natural thatmost diseases are not solely the consequence of
an abnormality in a single gene, taking into account the existent inter-
dependencies between molecular components in a human cell, but
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instead reflects the perturbations of the complex intracellular and inter-
cellular network that links tissue and organ systems [88]. Thus, moving
from the reductionist approach, which evaluates only individual com-
ponents within a system, to more complex interactions between bio-
molecules and the human -environment interplay, seems the proper
approach for solving several health disorders and consequently improve
the general population healthcare [89]. Consequently, a new subfield is
emerging, the network medicine that focuses on applying systems bio-
logy to pharmacology by “understanding the molecular systems and its
perturbations as a whole” to unravel relationships among disease pro-
cesses [90] enabling the development of specific drugs and pave the
road toward personalized medicine.

In the following sectionwewill briefly describe some studies related
with the medical field using systems biology approaches, highlighting
the contrast between existing and candidate biomarkers for disease di-
agnosis and progression as well as probable druggable targets.

4.3. Disease description and epidemiology

Neurodegenerative (ND) diseases are a large class of complex dis-
eases that includes Alzheimer's disease (AD), Parkinson's disease (PD),
Huntington's disease (HD), and prion disease [91,92]. These diseases
have the accumulation of protein fibrillar aggregates as a consequence
of protein misfolding in common [91]. ND diseases are chronic, pro-
gressively debilitating, and to date incurable [92]. Their prevalence
has increased globally,markedly in the elderly populations of developed
countries [92].

AD is the commonest cause of dementia and is characterized by pro-
gressive loss of memory and other cognitive functions [93] and is con-
sidered a major epidemic worldwide, where currently more than 35
million people live with this disease, being estimated that by 2050 it
will reach 115 million [94].

Themain pathological hallmark of AD is the development of amyloid
plaques and their accumulation in neurons, and whether they cause AD
or whether they are a by-product of the disease process is still largely
unknown [95].

4.4. Current disease diagnostic and prognostic

The clinical diagnostic of AD is often made during the mild stage of
the disease, taking in consideration a list of cognitive-behavioral signs
and symptoms [96,97]. Biopsy samples are out of “equation” for the
diagnosis, so the current approach is based on the combination of cogni-
tive and psychiatric assessment, with genetic profiling and imaging
studies [92,95] as structural magnetic resonance imaging (sMRI)
that is able to measure morpho-anatomical changes of brain e.g. loss
of neural cells, axons and expansion of CSF space [92].

4.5. Genetic determinants and causative mutations

The most relevant genetic determinants of AD are mutations in the
amyloid precursor protein (APP), presenilin (PS)-1 and PS-2 known
for triggering early-onset (b60 years) autosomal dominant AD [93].
On the other hand, the apolipoprotein E type 4 variant (apoE4) has
been implicated in the familial late-onset (N60 years) and the apoE2
seems to confer protection in AD [93].

Novel gene candidates of familial late-onset AD susceptibility have
been described, essentially derived from gene-wide analysis studies
(GWAS) as previously reviewed by Kim et al. [98]. Briefly, CLU, CR1,
PICALM, BIN1, SORL1, GAB2, ABCA7, MS4A, CD2AP, CD33, EPHA1 and
HLA-DRB1/5 can potentially modulate the risk of late-onset AD, but
still to a lesser extent than apoE4 [93].

Additionally, two novel susceptibility loci of ADwere found via an al-
ternative reanalysis of a GWAS dataset, where they searched for pat-
terns of association within genes [99]. They identified the TP53INP1
(chromosome 8), that curiously encodes a pro-apoptotic tumor
suppressor, given the fact that epidemiological data exists supporting
an inverse association between AD and cancer [100,101]. Furthermore,
the IGHV1-67 (chromosome 14) was also identified in this study and
though no known function is associated with this gene, it's known
that neighbor genes are involved in IgG heavy-chain somatic recombi-
nations [99].

Recently, Leduc et al. [102] found a single-nucleotide polymorphism
(rs3846662) in the HMGCR gene in the context of AD, which exhibited
the same protective effect as that of apoE2, and as a result subjects
showed delayed age of onset and a significant reduced risk of AD.

4.6. Epigenetic events

At the epigenetic level, several studies have been reporting altered
molecular events such as DNA methylation and hydroxymethylation
in AD brain tissue, which are respectively linked with decreased and
increased patterns of gene expression [103]. Additionally, histone H3
acetylation in the PS-1 and beta-secretase 1 (BACE1) promoter regions
was found increased in an in vitro study, using neuroblastoma N2a
murine cells transfected with Swedish human mutated APP, which
leads to an enhanced activation of transcription and ultimately causes
elevated expression of both AD related genes [104]. Remarkably, Frost
et al. [104] found that heterochromatin loss and overexpression of the
piwi-like protein 1 (PIWIL1) are molecular events conserved across
Drosophila, mouse and human in tau-induced neurodegeneration
(tauopathy), therefore chromatin structure could have a potential role
as a therapeutic target for AD.

4.7. MicroRNAs (miRNAs)

MicroRNAs have been proposed as potential molecular markers for
the diagnosis of several diseases, due to their stability and ease of quanti-
fication in biofluids [98,105]. A set of three miRNAs: miR-125b, -9 and
-181c has been linked to AD, and their expression has been found de-
creased in serum, in CSF and in brain tissues [105–107]. Therefore, the
proposed gene targets for miR-125b are CDKN2A, SYN-2 and 15-LOX,
which are associated with key processes as glial proliferation, synaptic
and neurotrophic deficits, respectively [107]. Additionally, the miR-9
family targets SYNJ1 and SYNPR, both associatedwith synaptic dysfunc-
tion; GMEB2 with neuronal trafficking and TGFBI with TGF signaling
[108]. Furthermore, miR-181c targets SIRT1 that is associated with
inflammation and response to stress; BTBD3 that is associated with
anti-apoptosis and TRIM2, which has a role in Aβ degeneration [108].

4.8. Proteins of interest

The major constituent of the extracellular senile plaques is the
amyloid-beta (Aβ) peptides (Aβ42/Aβ40), derived from theAPPmetab-
olism by secretase processing [92]. The BACE1 cleaves the APP into C-
terminal fragment (C99), releasing soluble APPβ. In turn, the retained
C99 is then cleaved by the γ-secretase complex, generating Aβ and
APPβ intracellular domain (AICD). These key proteins involved in Aβ
production have gained interest as ADbiomarkers. Some studies report-
ed changed levels of these proteins in the CSF of ADpatients, such as de-
creased levels of Aβ42/Aβ40, increased levels of APP isoforms and also
of BACE1 [92]. On the other hand, the neurofibrillary tangles (NFTs)
aremainlymade up of hyperphosphorylated insoluble forms of tau pro-
tein, which have high resistance to enzymatic proteolysis, resulting in
accumulation in neurons. Their use as an indicative parameter helps in
both the diagnosis and prognosis of AD, and also in the distinction
from other tauopathies [92,95].

Recently, Kim et al. [108] identified that the leukocyte
immunoglobulin-like receptor 2 (LilrB2) act as a receptor for the
Aβ in human brain, and their binding promotes the activation of
cofilin, resulting in actin filament disassembly and spine loss,
which could contribute to synaptic loss and cognitive impairment
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in AD progression [108]. This suggests that immune receptors may
have a role in AD, and therefore a selective block of LilrB2 function
could be a potential therapy for AD treatment [108].

4.9. Metabolomics and lipidomics

Despite the high number of studies searching for candidate bio-
markers such as e.g. tau or Aβ protein, still no fluid based biomarkers
have been fully validated for use in clinical evaluation of AD progression
[92,95]. Nevertheless, in a recent publication [109], a set of ten plasma
lipids was discovered and validated and were able to predict the
phenoconversion of cognitively normal individuals to either amnestic
mild cognitive impairment or even AD within a temporal frame of two
till three years with more than 90% accuracy. The identified biomarker
panel features targets such as phosphatidylcholine and acylcarnitine
that have roles in both cell membrane integrity and functionality. More-
over, they could be sensitive to early neurodegeneration of preclinical
cases of AD, however external validation is needed before further ad-
vancement in clinical use [109].

Furthermore, Gonzalez-Dominguez et al. [110] observed changes in
serum levels of phospholipids, prostaglandins and diacyglycerols that
can be linked with metabolic disorders seen in AD. Moreover, serum
levels of metabolites such as oleamine, guanine, arginine, histidine, im-
idazole and putrescine displayed altered expression in patients recently
diagnosed with sporadic AD, and thus they could arise as potential bio-
marker candidates [110].

The most widely reported marker candidates are protein-based bio-
markers, particularly the aggregation-prone proteins central to ND dis-
ease pathology and also proteins associated with oxidative stress and
inflammation. Therapeutical value has been attributed to etifoxine
which shows to be effective toward the treatment of peripheral nerve
injuries and axonal neuropathies for the treatment of ND disorders
[111]. While other small molecules comprising dimebon, piracetam,
and simvastatin target Aβ, mitochondrial membranes, and anti-
apoptotic proteins (Bcl-2) respectively, they have been identified to be
effective in the symptomatic treatment of AD [112,113].

4.10. Systems biology approach toward AD biomarker and drug discovery

Several studies aiming for the identification of disease biomarkers
have failed to prove their specificity and sensitivity, because inmajority,
they were unable to distinguish between the true biological signals
from all the noise. Then the use of a systems approach could provide a
set of tools from statistical, computational and biological areas that
could amplify the signal and therefore allow and ameliorate mapping
of the involved biological networks.

We above presented the state of art of ADwith several independent
studies ranging from genetic determinants to disease traits. Next, we
will present studies that merged and integrated data through systems
biology approaches in order to yield biological meaning of all de novo
generated information.

The integration of genomic data through a network approach has
been used to highlight cellular pathways underlying clinical traits and
ultimately to pinpoint genes that are probable key regulators in biolog-
ical processes [114]. An example of this type of approach was the iden-
tification of molecular interactions that are disrupted in patients with
late AD onset, where the authors [115] built co-expression networks
based on gene expression and genotyping data from postmortem
brain tissues of hundreds of patients and healthy individuals. They iden-
tified several modules of distinct functional categories and cellular
specificity. After, they applied an integrative network analysis to first re-
organize by rank the most relevant modules of late-onset AD and then
identify by Bayesian inference the main causal gene regulators of
these altered networks. As a result, they acknowledged the TYROBP
as a key driver of the immune/microglia module that was found re-
configured in the disease state, highlighting the benefit of the use of
network analysis to better identify and prioritize pathways and gene
targets involved in complex diseases. Similarly,Miller et al. [116] report-
ed that microglial activation occurs early in AD progression, where they
also identified the TYROBP as the main hub of the microglia module via
weighted gene co-expression network analysis. Furthermore, they
assessed two brain areas CA1 and CA3 in the disease context, through
microarray gene expression and found that the hippocampal region
CA3 has genes associated with disease protection: ABCA1, MT1H,
PDK4 and RHOBTB3, and the genes FAM13A1, LINGO2 and UNC13C
with disease vulnerability [116], thus, reinforcing the in silico finding
of microglia activation occurring early during AD progression and also
their association with NFT formation in addition to amyloid deposition
[116].

Epidemiological screen studies of human populations have identi-
fied novel associations between specific metabolites and disease traits
[92,117]. Sertbas et al. [117] developed a stoichiometric model of
brainmetabolism, covering several cellular pathways andmolecular in-
teractions in astrocytes and neurons. Then, they applied the developed
framework to analyze transcriptional modifications associated with
six neurodegenerative diseases, including AD and identified the fatty
acid synthesis, and phosphatidylcholine and inositol metabolism that
have been associated with AD and CDP-diacylglycerol biosynthesis as
a pathway that could allow the distinction of AD from other neuro-
degenerative diseases.

In order to fulfill the need of curated data of AD to build enhanced
AD pathway maps, the “AlzPathway” was developed [118]. It handles
a comprehensive map of signaling pathways linked with AD [119] and
could therefore be a major contribution toward the implementation of
novel pipelines for AD drug discovery [120].

A proper phenotype-based diagnostic within ND diseases is chal-
lenging, because of the overlap of several clinical conditions among
the different types of ND diseases. Thus, obtaining well-characterized
cohort samples either for biomarker discovery or for performing clinical
trials for drug development and implementation is a task that needs to
be overcome. However, with the advent of new high-throughput tech-
nologies, we can be closer to the discovery of numerous novel biomarker
candidates for each ND disease subtype [92]. Moreover, all de novo gen-
erated data should be integrated, in order to provide the whole picture
of the disease, than single research studies are able to provide [121].
Therefore, for a proper evaluation of progression in complex diseases
we should apply systems biology approaches that will enable us to
look into the biology inside of the “black box” [122].

5. Summary and outlook

Preprocessing methods for omics data are for the most part well de-
fined, however the identifiers to which the data are assigned are often
erroneous or missing which can negatively affect downstream analysis.
Greater efforts into database curation must be taken and tools must se-
lect appropriate identifiers for their inputs to mitigate these problems.

With the ever-reducing cost of omics technologies there is great
potential inmulti-omics studies. One of the greatest challenges current-
ly is to further study and developmethods of downstreamdata analysis.
Ideally these methods should be flexible to any number of omics sets,
and should be trained and tested against well understood systems
where possible. One challenge which may be insurmountable for
some time is to have one analysis platformwhich has all the various al-
gorithms available whichmight be useful tomulti-omics analysis rather
than coercing and exporting data between disparate analysis platforms.

To facilitate these multi-omics methods and assist systems biology
in general it would be extremely useful to have a database linking all bi-
ological molecules through various processes such as transcription,
translation, protein–protein interactions and so forth, and containing a
variety of ID types to map between them. Such a database should con-
tain biomolecules in clusters so that the user could select the level of
complexity required. For example two proteins may come from the
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same gene and may either be splice variants or different protein modi-
fications. These differences may cause great or little difference in func-
tion and in downstream analysis output. Therefore the user may wish
to summarize (i.e. average) to one value, retain the different sets of in-
formation or calculate both the summarization and a ratio of the most
common variants.

In order to better model complex organisms, samples frommultiple
tissues of the same set of individuals should be studied simultaneously
using omics data, which will require the development of novel analysis
methods. Acquiring the relevant tissues from humans can of course be
difficult however depending on the tissues involved. Comparative sys-
tems biologymay help identifywhich organismsmay be similar enough
in each particular aspect for use asmodels— of course the positive iden-
tification of a useful model cannot be totally assured prior to deriving
the system itself; however negative identifications can help rule out
those organisms which seem extremely unlikely to be helpful.

It is sometimes suggested that omics technologies and systems bio-
logy have failed to deliver many breakthrough enhancements to the
treatment of complex disease [123]. In some cases it may be that in
fact such diseases are not truly one disease from a systems or reduction-
ist point-of-view, but several with the same or similar phenotypic end-
points — i.e. with the current terminology they are unknown subtypes
of disease. If this is the case then the overlap between the systems is
poor and statistical methods which the approach relies on require
very large cohorts for identification of these subtypes and subsequent
description of each system. Other possibilities are that longitudinal
data or samples from different tissues are required.
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