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Abstract 
The number of modes (also known as modality) of a kernel density estimator (KDE) draws lots of 
interests and is important in practice. In this paper, we develop an inference framework on the 
modality of a KDE under multivariate setting using Gaussian kernel. We applied the modal clus-
tering method proposed by [1] for mode hunting. A test statistic and its asymptotic distribution 
are derived to assess the significance of each mode. The inference procedure is applied on both 
simulated and real data sets. 
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1. Introduction 
Mode is defined as the local maximum of a probability density. Modality, which is the number of the modes, is 
an important feature of any probability distribution. The natural evolution of multimodality occurs when a dis-
tribution is composed by several sub-populations. In practice, it is important to learn how many sub-populations 
the data have. In general, there are three different, but related, research areas that address this question: 1) the 
inference on the number of components in the finite mixture model; 2) estimating the number of clusters and/or 
merging the clusters of a clustering output; and 3) the modality inference. Each of these three approaches ad-
dresses the question of how many components the data have from its own angle. For the inference on the num-
ber of components in the mixture distribution, the hypothesis is usually 0 :H K k=  versus : 1aH K k= +  
where K is the parameter of the number of components. The likelihood ratio test (LRT) is often used to assess 
the significance of the hypothesis. However, in general, the distribution of the LRT is very complicated. More 
details can be found in e.g. [2]. Depending on the clustering method, the inference procedures on the number of 

http://www.scirp.org/journal/ojs
http://dx.doi.org/10.4236/ojs.2014.45041
http://dx.doi.org/10.4236/ojs.2014.45041
http://www.scirp.org/
mailto:yansong.x.cheng@gsk.com
mailto:surajit.ray@glasgow.ac.uk
http://creativecommons.org/licenses/by/4.0/


Y. S. Cheng, S. Ray 
 

 
420 

clusters could be different. [3] proposed the GAP statistic, which contains information regarding the distance 
between the data points within each cluster. In particular, the authors applied the method on the K-means clus-
tering [4]. [5] proposed the EM-clustering method, a model-based clustering method. The authors selected the 
ideal number of clusters by using the Bayesian information criterion (BIC), which is a model selection tool. 
However, as it is well established, BIC does not follow the regularity conditions and is inappropriate to use in 
the problem of determining the number of components. 

The modality inference, which is used to assess the number of modes of the data, is often a robust nonpara-
metric approach. There is a lot of existing literatures that address the problem of the modality of univariate 
probability distribution. These methods can be classified as the test of unimodality, bimodality or multimodality. 
Alternatively, these methods can be grouped as a global or local test. The global test considers the modality of 
the entire distribution. In contrast, the local test focuses on the specific region of the density that contains the 
particular investigated mode instead of considering the entire distribution. 

In the case of the global test, [6] proposed the most commonly used critical bandwidth parameter, the smal-
lest value of the bandwidth parameter h for which the KDE with Gaussian kernel 

( )
1

1ˆ
N

i

i

x Xf x
nh h

φ
=

− =  
 

∑                                (1.1) 

is k-modal, where ( ).φ  is the probability distribution function (pdf) of the standard normal distribution. To as-
sess the significance, [6] suggested using crith  as the bandwidth parameter, denoted as 0h , and using the non-
parametric bootstrap method proposed by [7] to sample the reference data, consequently to get the distribution 
of the test statistic under the null hypothesis. 

Among the local tests, the one proposed by [8] is widely used. Denoting the mode as 2ku  and the saddle 
point 2 1ku − , the test statistic is defined as: 

( ) ( ) ( )( ){ }1

1
1 1
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M f x f u f u x+

−
− +

+
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where i is the ith investigated mode and ( )f̂ x  is the KDE in (1.1). It can be thought as the probability mass of 
the mode above the higher of the two saddle points or antimodes around it. The advantage of this statistic is that 
it does consider not only the heights of the mode and saddle point, but also the distance between them. The ref-
erence distribution is generated by forcing the distribution flat (uniform) between the point 1iu −  and 1iu +  and 
keeping the rest of the distribution the same. 

The generalization to multivariate data is sparse. [9] proposed a mode hunting tool together with a further test 
of the significance for the existence of these modes, by using the k-nearest neighbor (KNN) density estimate for 
multivariate data. The authors proposed an iterative nearest neighbor method for selecting the initial modal can-
didates and then thinning out this list of modal candidates to form a set of modal candidates, M. For the formal 
pairwise test of existence of the modes in M, [9] proposed the following statistic 

( ) ( ) ( ) ( ){ }1 2: log min log , log ,m mSB f f fαα = − +x x x  

where 1mx  and 2mx  are the two candidate modes and ( ) [ ]1 21 , 0,1m mα α α α= − + ∈x x x  is the point on the 
segment between 1mx  and 2mx . It is noted that the test statistic is the logarithm of the ratio of the heights of a 
point between the two modes, 1mx  and 2mx , and mode with lower estimated density. The test of 0SB <  leads 
to the conclusion of whether 1mx  and 2mx  are the two distinct modes. Moreover, using the KNN to estimate 

( )SB α , it is found that the asymptotic distribution of the test statistic ( )ŜB α  follows the normal distribution.  

The null hypothesis is rejected if and only if ( ) ( )1

1

2ˆ 0.95SB
k

α −≥ Φ . 

In this paper, we develop a multivariate modality inferential framework. It is a local inference procedure that 
tests a specific pair of modes, 

1mx  and 
2mx , of the data. The hypothesis can now be written as 

0 : and are unimodal

: and are bimodal.a

H

H
1 2

1 2

m m

m m

x x

x x
                             (1.2) 

This paper is organized as follows: Section 2 reviews some properties of the KDE, including bandwidth se-
lection and some asymptotic properties. These provide the basis of mode hunting and inference procedure in-
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troduced in this paper. [1] introduced a set of tools to detect the modes and saddle point between the two modes 
of the KDE. Section 3 provides a review of these tools. Section 4 proposes the test statistic and its asymptotic 
distribution. Section 5 discusses the choice of the bandwidth parameter. Section 7 applies the method on some 
simulated and real data sets. Section 8 closes the paper with some discussion and future work. 

2. Kernel Density Estimate 
In this section, we review some basic properties of the multivariate KDE, which provides the foundation of the 
modality inference introduced in the next chapter. The multivariate KDE is the most commonly used non-pa- 
rametric estimate of the probability density of a multivariate random variable. Suppose the d-dimensional vec-
tors ( ), , ,= 1 2 nX X X X  are i.i.d samples from the population with some unknown probability density f. The 

( )1 2, , , , 1, 2, ,i i idX X X i n= =iX   . The multivariate KDE is: 

( ) ( )( )1

1

1ˆ ,
n

i
f K

n
−

=

= −∑ ix H x X
H

                          (1.3) 

where ( )K ⋅ , a real-valued multivariate kernel function, has the properties of ( )d 1K =∫ z z , ( )d 0K =∫ z z z  
and ( ) ( )2dK Kµ=∫ Z

pzz z z I . Usually ( )K ⋅  is chosen as the standard multivariate normal density function. 
H is the d d×  non-singular positive definite bandwidth matrix and H  is the determinant of H. 

The d-dimensional H contains ( )1 2d d +  number of parameters. In practice, it is difficult to choose the 
values of H due to such a large number of parameters over d-dimensional space. It is more practical to keep the 
number of bandwidth parameters as small as possible, but retaining enough to provide good estimates. One ap-
proach to reducing the number of bandwidth parameters is to use the simplest model that contains only one 
bandwidth parameter: 

( )
1

1ˆ
n

d
i

f K
hnh =

− =  
 

∑ ix Xx                              (1.4) 

However, if the data have different scales on different dimensions, the KDE of (1.4) will lead to a poor esti-
mation. To avoid the scaling problem, the sphering transformation can be applied to the data. 

2.1. Sphering Transformation 
Sphering transformation, also known as Whitening transformation, is a linear transformation that makes the data 
have the identity covariance matrix [10]. To carry out the transformation, one computes the spectral decomposi-
tion of the sample covariance matrix of X, ˆ = TΣ PΛP . Let 1 2−= TY Λ P X , then ( )Cov =Y I . Using the oper-
ation 1 2=X PΛ Y , one can transform the data back to the original scale. In this thesis, we will use this trans-
formation and the kernel density estimator (1.4). Figure 1 illustrates two examples of original data and sphering 
transformed data. The original data is shown on the left panel while the transformed data is shown on the right 
panel. The plots show that after the transformation, both the scale and the “direction” of the data has changed, 
while the clustering or grouping information of the data is still preserved. 

2.2. Bandwidth Selection 
Traditional method to select the “optimal” choice of the bandwidth is to minimize the asymptotic mean inte-
grated squared error (AMISE) of ( )f̂ x , which leads to 
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Thus the AMISE is minimized as h is: 
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Figure 1. Two examples of original data and sphering transformed data. 

 
and the minimized AMISE is: 

( )
1

4AMISE .d
opt dh O n

−
+

 
=   

 
 

The “normal reference rule” [11] is widely used. It is given as: 

( )

1
44 ,

2

d

j jh
d n

σ
+  =  

+  
 

where jσ  is the standard deviation of the jth dimension and can be estimated by the corresponding sample 
standard deviation. 

2.3. Asymptotic Distribution of KDE 
In this section, we review the details of the asymptotic properties of KDE defined in (1.4). 
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( )
1

1ˆ
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f K
hnh =

− =  
 

∑ ix Xx  

As 0h → , we have 

( ) ( )ˆ ,E f f  → x x  

showing that ( )f̂ x  is asymptotically unbiased. We apply the normal reference rule on the sphering trans-
formed data to choose the bandwidth parameter h as (2.2), 

( )

1
44 .

2

d

normalh
d n

+  =  
+  

 

Note that the term ( ) ( )( ) ( )4ˆd dnh E f f O nh + − = x x . If we choose h with the optimal convergent rate, 

which is 
1

41 d

nh c
n

+ =  
 

 defined as (2.2), for example, using normal reference rule, then 

( ) ( )( ) ( )ˆ 1 .dnh E f f O − → x x  

The kernel density estimator has the following asymptotic normality property of: 
Property 1. If 0h →  and dnh →∞  as n →∞  then 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )( )
21 2

22
, 2

ˆ 0, d
2

dd
n h

fhnh f f K tr N fµ
  ∂

− − →    ′∂ ∂  
∫

x
x x x K u u

x x
. 

The proof of the above property is based on the Liapunov Central Limit Theorem. [12] provide the details of 
the proof. From the Property 1, it can be seen that by choosing the h  at optimal convergent rate, the KDE 

( ),n̂ hf x  asymptotically is a biased estimator of ( )f x . It underestimates the local maxima since the term  
( )2 f

tr
 ∂
  ′∂ ∂ 

x
x x

 in bias is negative at maxima and it overestimates at local minima due to the same reason.  

If we choose an h that converges faster than the optimal rate, i.e., 
1

4 4
where 1

d dc ch o
n n

γ

γ
+ +∗    = = >   

   
 

the bias term can be made negligible. The asymptotic distribution then becomes: 
Property 2. If 0h → , dnh →∞  and 4 0dnh + →  as n →∞ , then 

( ) ( ) ( )( ) ( ) ( )( )( )
1

22
,

ˆ 0, ddd
n hnh f f N f− → ∫x x x K u u . 

To satisfy the conditions dnh →∞  and 4 0dnh + → , we should choose h∗  as 

4 4where 1 1
dch

n d

γ

γ
+∗  = < < + 

 
 

If the h converges slower than the optimal rate, the bias term cannot converge as n →∞ . 
Note that the variance term in the asymptotic distribution contains the unknown parameter ( )f x . Simply by 

applying the delta method and using the transformation function ( )g x x= , the variance is stabilized and 
becomes invariant with ( )f x . The asymptotic distribution in Property 1 becomes 

( ) ( ) ( )( ) ( )( )21
2

,

dˆ 0, .
4

dd
n hnh f f N

 
 − →
 
 

∫K u u
x x  
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Further, it is easy to verify the following property: 
Property 3. If 0h →  and dnh →∞  as n →∞ , for 21 xx ≠ , ( )f̂ 1x  and ( )f̂ 2x  are uncorrelated. 
Proof: We consider the covariance between ( )f̂ 1x  and ( )f̂ 2x . 

( ) ( )( )

=1 =1

2

2

ˆ ˆ,

1 1,

1 ,
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We want to show that ( ) ( )( )ˆ ˆ, 0Cov f f →1 2x x  if 0h →  and dnh →∞  as n →∞ . Consider the term 
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1 2x xu u  is a convolution and hence another density, therefore  

its integration is bounded by 1. Now we consider the term 
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Thus, it follows 

( ) ( )( )
0

ˆ ˆlim , 0.
h

Cov f f
→

=1 2x x  

Therefore, we proved that ( )f̂ 1x  and ( )f̂ 2x  are asymptotically uncorrelated. Since under the same condi-
tion of Property 3, ( )f̂ 1x  and ( )f̂ 2x  asymptotically follow normal distributions, we can claim they are 
asymptotically independent. 
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3. Mode and Ridgeline 
[1] proposed a set of comprehensive tools to explore the geometric feature of the KDE. In this section, we re-
view the basic quantities of the modality inference, which are the mode, the saddle point and the ridgeline. We 
will also discuss the algorithms to determine these quantities under the KDE. 

3.1. Mode 
Mode is defined as the local maximum of a probability density. Traditional techniques of finding local maxima, 
such as hill climbing, work well for univariate data. However, multivariate hill climbing is computationally ex-
pensive, thereby limiting its use in high dimensions. [1] proposed an algorithm that solves a local maximum of a 
KDE by ascending iterations starting from the data points. Since the algorithm is very similar to the expectation 
maximization (EM) algorithm [13], it is named as the modal expectation maximization (MEM). The finite mix-
ture model can be expressed as 

( ) ( )
1

,
K

k k
k

f x f xπ
=

=∑                                 (1.5) 

with 1 1K
kk π

=
=∑  and ( )kf x  are the mixing components. Given any initial value ( )0x , the MEM solves the 

local maxima of the mixture density by alternating the following two steps until it meets some user defined 
stopping criterion. 

Step 1: Let 
( )( )

( )( )
; 1, , .

r
i i

i r

f x
p i n

f x

π
= =   

Step 2: ( ) ( )1
1arg max log .nr

x i iix p f x+
=

= ∑  
Details of convergence of the MEM approach can be found in [1]. The above iterative steps provide a com-

putationally simpler approach than the grid search method for hill climbing from any starting point Dx∈ , by 
exploiting the properties of density functions. Given a multivariate kernel K, let the density of the data be given  

by ( ) ( )1

1n
iif x K x x

n=
Σ = − Σ∑ , where Σ  is the matrix of smoothing parameters. Moreover, in the special  

case of Gaussian kernels, i.e., ( ) ( ),i iK x x x xφ− Σ = Σ , where ( )φ ⋅  is the pdf of a Gaussian distribution, the 
update of ( )1rx +  is simply 

( )1

1
.

n
r

i i
i

x p x+

=

= ∑  

This allows us to avoid the numerical optimization of Step 2. Due to this reason, the normal kernel function is 
used throughout the methods introduced in this thesis. However, in general, one can also use other kernel func-
tions. 

The MEM algorithm can be naturally used to define clusters. If we start the algorithm from each data point, 
we can cluster the data that converges to the same mode as one group. [1] denotes this algorithm the Mode As-
sociation Clustering (MAC). If we choose a sequence of bandwidth parameters h, then we can get the Hierar-
chical MAC (HMAC). 

3.2. Saddle Point and Ridgeline 
[14] provided the explicit formula for the ridgeline between the two means of the mixture of two multivariate 
normal distributions. The mixture density of two d-dimensional multivariate normal distributions is: 

( ) ( ) ( ) ( )1 1 2 2; , 1 ; , , df xπφ π φ= + − ∈ℜx x Σ x Σµ µ                    (1.6) 

where the 1µ  and 2µ  are the mean vectors and 1Σ  and 2Σ  are the two covariance matrices of the two 
mixed multivariate normal components respectively. The ridgeline of the distribution in (1.6) from one mean to 
another is given by: 

( )
1* 1 1 1 1

1 2 1 1 2 2 ,x α α α α α
−− − − −   = + +   Σ Σ Σ Σµ µ                     (1.7) 
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where [ ]0,1α ∈  and 1α α= − . [14] showed that all the critical points of the d-dimensional distribution, in-
cluding the modes and saddle points, are the points on the ridgeline. With different choices of the parameters, 
the probability density can be unimodal, bimodal or in some special cases, trimodal. See some examples in [15]. 
The ridgeline provides a useful tool to discover the modality of a mixture of multivariate normal mixtures. 

[1] also provided the algorithm to find the ridgeline of the KDE between the two modes identified by MEM, 
named the Ridgeline EM (REM). Here we provide a brief description of the REM: 

Let the density of the two clusters represented by the two modes of interest be 1f  and 2f . We can consider 
both 1f  and 2f  as the mixtures of L  parametric distributions: 

( ) ( ), ,
1

, 1, 2
L

i i k i k
k

f x h x iπ
=

= =∑  

Starting from an initial value ( )0x , the REM updates x by iterating the following two steps:  
Step 1: Compute: 

( )( ) ( )( ), , , , ,1
Lr r

i k i k i k i j i jjp h x h xπ π
=

= ∑  with 1, 2, , , 1, 2k L i= =  

Step 2: Update ( )1rx + : 
( ) ( ) ( ) ( )1

1, 1, 2, 2,1 1arg max 1 log logL Lr
k k k kk kx h x h xα π α π+

= =
= − +∑ ∑  

In the special case where ( ) ( ), , ,i k i kh x xφ µ= Σ , the multivariate normal distribution, the second step becomes  
( ) ( )1

1, 1, 2, 2,1 11 .L Lr
k k k kk kx α π µ α π µ+

= =
= − +∑ ∑  Figure 2 illustrates one example of the ridgeline. 

The point on the ridgeline with the lowest density is the detected saddle point. The REM and MEM intro-
duced in this section provide useful tools to detect the mode and saddle point of the KDE, which provides the 
basis of the inferential framework introduced in the following section. 

4. Test Statistic and Its Asymptotic Distribution 
We denote the one of 

1mx  and m2
x  with lower density by mx . To test the hypothesis defined in (1.2), a nat-

ural choice is to compare the density of mx  against the density of the saddle point sx , which is the point on 
the ridgeline between 

1mx  and m2
x  with minimum density. We use Ridgeline EM (REM), which was re-

viewed in Section 1.3 to determine the saddle point sx . To identify the interested pair of modes, in practice, 
when several modes are identified by MEM, it starts with the one with the lowest density and its neighbor mode. 
Or, one can select the particular pair of modes based on the context of the study. After identifying mx  and sx , 
the hypothesis in (1.2) can be restructured as: 
 

 
Figure 2. Ridgeline example. 
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( ) ( )
( ) ( )

0 : ;

: .a

H f f

H f f

=

>
m s

m s

x x

x x
                                 (1.8) 

We use ( )ˆ ˆf mx  and ( )ˆ ˆf sx  to make the inference, where ( )f̂ ⋅  is the kernel density estimate of ( )f ⋅  
and mx  and sx  are the estimated mode and saddle point of the KDE detected by the Modal EM (MEM) algo-
rithm, which was reviewed in Section 3. We believe mx  is a good estimation of the modal region and is close 
to the true population mode, and same for the sx . 

Theorem 1. Using Gaussian kernel function, under 0H  of (1.8), if 0h → , dnh →∞  and 4 0dnh + →  as 
n →∞ , then 

( ) ( ) 1 1ˆ ˆˆ ˆ 0, .
2 2 π

d
d

df f N
nh

  
 − →     

m sx x                       (1.9) 

Proof: Using Property 2, Property 3 and density in 1.5, we can show that: 

( ) ( )
( )2 dˆ ˆˆ ˆ 0, .

2
d

df f N
nh

 
 − →
 
 

∫
m s

K u u
x x                       (1.10) 

ˆ mx  and ˆ sx  are correlated. However, based on Property 3, as long as ˆ ˆ≠m sx x , ( )ˆ ˆf mx  and ( )ˆ ˆf sx  are 
asymptotically independent. 

Next, we simplify the term ( )2 d∫K u u . For univariate standard normal kernel function: ( )
2

21 e
2π

x

K x
−

= , 

we have ( )2 1d
2 π

K x x =∫ . Therefore, for d-dimensional multivariate normal kernel function:  

( )
( )

2
1

1
2

2

1 e
2π

d
jj x

dK
=

 − 
 

∑
=x , we have ( )2 1d

2 π

d
 =  
 

∫K x x . Thus we prove the theorem. This is the test statistic 

of Hypothesis (1.8) and its asymptotic distribution. 

5. Choice of the Bandwidth Parameter 
In order to use the asymptotic distribution (1.9), the conditions of Property 2 must be satisfied. To satisfy the 
conditions dnh →∞  and 04 →+dnh , the bandwidth parameter h∗  should be chosen as 

4 4where 1 1
dch

n d

γ

γ
+∗  = < < + 

 
 

However, the range of γ , 41 1
d

γ< < + , is still wide if the dimension of the data is not high, e.g., 1 3γ< <   

if 2d = . Theoretically, the bias of the KDE can be negligible if γ  is within this interval. However, in practice, 
the selection of γ  affects the variance-bias trade off, which affects the inference dramatically. We demonstrate 
the phenomenon using logctA20 data set. The description of the data set can be found in R package Modalclust, 
which will be described in the next chapter. logctA20 is a two-dimensional data with 2166 observations. The 
scatter plot of the data is shown in Figure 3. 

Using the normal reference rule, the bandwidth parameter used for the MEM is: 

( )

1
2 44 0.278

2 2 2166nrrh
+  = = 

+ ×  
 

Using the MAC to cluster the data, the output shows that there are four major clusters. Figure 4 shows the 
clustering output as well as the modes, saddle points and ridgeline between the modes. The next step is to test if  
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Figure 3. Scatter plot of logctA20 data. 

 

 
Figure 4. Mode, saddle point and ridgeline of logctA20 data. 

 
the four modes are significant. We consider three tests for the three adjacent pairs of modes: the test of Mode 4 
against Mode 3, Mode 3 against Mode 1 and Mode 2 against Mode 1. As mentioned at the beginning of this sec- 
tion, in order to use the asymptotic distribution (1.9), we should choose the bandwidth parameter h so that it 
converges faster than the optimal rate. Thus, we should choose 

4 4where 1 1
dch

n d

γ

γ
+∗  = < < + 

 
 

Figure 5 provides the plot of the p-value of the modality test against the choice of the γ . It clearly demon-
strates that the value of the γ  affects the conclusion of the inference. For Mode 2, the lower values of γ  lead 
to rejecting the null hypothesis, whereas the higher values of γ  lead to not rejecting the null hypothesis, In 
practice, if we choose a small value of γ , the bias term still exists, even though asymptotically it will converge 
to 0. If we choose a large value of γ , the variance is relatively large and could mislead the conclusion. We 
suggest to use a small value of γ , which will lead to a large value of h∗ . 

Remark: Recall in Section 2, we reviewed that the bias term in Property 1 is ( ) ( )22

22
fhb K trµ

 ∂
=   ′∂ ∂ 

x
x x

.  

Note that 0b <  at ˆ mx  and 0b >  at ˆ sx . Thus, under 0H  of hypothesis in (1.8), the expectation of the test 
statistic is negative if the bias exists. Therefore, it makes the test conservative. 

From the analysis in Figure 5, we conclude that Mode 4 is not significant, while Mode 2 and Mode 3 are.  



Y. S. Cheng, S. Ray 
 

 
429 

 
Figure 5. p-value of modality inference against γ. 

 
Group 4 can be merged with Group 3. The final plot after merging Group 4 with Group 3 is given in Figure 6. 
Note that the resulting modes are all significant. 

When we have several mode candidates and when we want to inference on the entire distribution to see how 
many significant modes, there is a multiplicity issue. One can refer [15] for some method to control the overall 
Type I error rate. We focus on the local significance and do not provide an overall significance of the final result. 

6. The Procedure of the Mode Hunting and Inference 
The inference procedure proposed in the previous section, along with the MEM and REM reviewed in Section 3, 
provides a comprehensive tool for mode hunting and follow-up inference of a data set. In this section, we sum-
marize the procedure.  
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Figure 6. Mode, saddle point and ridgeline of the example 
data after merging. 

 
Step 1: Sphering transformed the data; 
Step 2: Use KDE to estimate the density of the data with bandwidth parameter chosen by some standard me-

thod, e.g., the normal reference rule, etc.; 
Step 3: Identify the modes of KDE using MEM. After determining the pair of modes ˆ

1mx  and ˆ
2mx , identify 

the corresponding saddle point ˆ sx  by REM; 

Step 4: Use 
4dch

n

γ
+ =  

 
 where 41 1

d
γ< < +  and 4

2
c

d
=

+
 to calculate ( )f̂ mx  and ( )f̂ sx . In particu-  

lar, we suggest to choose 1.1γ =  when d is small; 
Step 5: Make the inference of the Hypothesis (1.8) based on the asymptotic distribution (1.9). 

7. Application 
This section provides the application of the modality inferential framework on some real and simulated data sets. 
We start by providing a description of the data sets and follow up by providing the conclusion of the inferential 
framework. 

7.1. Four Discs 
The four disks data is a simulated data. It contains 10,000 observations and the data is a mixture of four biva- 
riate normal distributions. The mean vectors are ( )0,0 ′=1µ , ( )0,3 ′=2µ , ( )5,0 ′=3µ , ( )5,8 ′=4µ . 

The data contains multiple layers of the clusters. There are three main clusters with one of them having two 
sub-clusters. By the simulation design, the Group 1 and 2 shown in Figure 7 are two distinct groups. The 
p-value of Mode 1 compared with Mode 2 is 0.0194. However, Group 1 and 2 are relatively close compared to 
the other groups. After merging these two groups together, the resulting clusters and the ridgeline between each 
pair of modes are shown in Figure 8. The multiple layers of clusters are common in real life application. The 
decision of how many clusters the data has is often related to the application area and research question. 

7.2. 3-Dimensional Two Half Discs 
The 3-dimensional two half discs is another simulated data set with 800 samples. It is formed by two half discs 
with equal size, i.e. 400 samples for each disc. Using 800n =  and 3d =  for 

( )

1
44 ,

2

d

nrrh
d n

+  =  
+  
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Figure 7. The first layer of four discs data. 

 

 
Figure 8. The second layer of four discs data. 

 
we get 0.373nrrh = . The clustering output using the MAC with 0.373h =  is shown in Figure 9. There are 4 
major clusters and the number of samples of each cluster is given in Table 1. 

The inference between some major clusters is carried out and the resulting p-values are given in Table 2. It is 
straightforward to conclude that Group 1 is not significantly distinct from Group 3, and Group 6 is not distinct 
from Group 5. Group 3 is significantly separated from Group 5 and 6. Group 5 is significantly separated from 
Group 1 and 3. Thus, we get the conclusion that there are two main groups in this data set. 

7.3. Flow Cytometry Data 
Flow cytometry is a technology that simultaneously measures and then analyzes multiple physical characteristics 
of single cell, as they flow in a fluid stream through a beam of light. Flow cytometry is one of the most com-
monly used platforms in clinical and research labs worldwide. It is used to identify and characterize types and 
functions of cell populations e.g., dead or live cells, in a sample by measuring the expression of specific proteins 
on the surface and within each cell. 

Flow cytometry data consists of per cell measurements (or events) in the form of scattering of light and fluo-
rescence intensity from the fluorophore-conjugated markers. In a typical flow data analysis workflow, a human 
analyst visually inspects 2-dimensional scatter plots of a sample, where the dimensions could be scatters, marker 
intensities, or a combination of these, and it demarcates (or gates) specific populations of interest such as live 
cells, lymphocytes, etc. Often, gates are drawn around visually discernible congregations of events. For instance, 
for live gating, the dead cells or debris could be discerned by their small cell size and granularity, which appear 
as a distribution of points with low forward- and side-scatter values. Forward-scatter light (FSC) and Side-scat- 
ter light (SSC) reflects two features of the cells and forms a two-dimensional scatter plot. FSC is proportional to 
cell-surface area or size. SSC is proportional to cell granularity or internal complexity. The manual approach to 
gating is, however, labor-intensive and subjective, and gating results can vary considerably from one analyst 
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Figure 9. 3-D two half discs data. 

 
Table 1. Cluster size of two half discs data. 

Group 1 2 3 4 5 6 

Size 82 2 314 2 314 86 

 
Table 2. p-value of modality inference on two half discs data. 

Pair of Mode p-Value 

1 vs 3 0.0876 

1 vs 5 7.805e−5 

3 vs 5 4.970e−13 

3 vs 6 2.716e−4 

5 vs 6 0.0611 

 
to another. [16] have used the MAC to gate flow cytometry data. However, the inference is distinctly missing. 
Figure 10 is one example of flow cytometry data. The data contains 4905 cells. In this plot, the dead cells have 
a relatively smaller size compared with the live cells, which shows that the dead cells have a smaller value of 
FSC and SSC. In the scatter plot, the dead cells are at the bottom left corner. For this data set, using the infe-
rence procedure introduced in Section 6, we applied the MAC on the data with ( )1 61 4905 0.243h = =  and got 
the two major clusters. It is suspected that the cluster on the bottom left represents the dead cells, while the rest 
are the live cells. The p-value of the mode existence inference is p 0.0001< . Thus, the procedure can automat-
ically identify the dead cell population distinctly from the live cells. 

7.4. Swiss Banknotes 
The data set contains 6 measures of 200 Swiss banknotes, where 100 are real and 100 are counterfeit. The 6 
measures are: 

1X : Length of the bank note, 
2X : Height of the bank note, measured on the left, 
3X : Height of the bank note, measured on the right, 
4X : Distance of inner frame to the lower border, 
5X : Distance of inner frame to the upper border, 
6X : Length of the diagonal of the inner image. 

All measurements are in millimeters. The original banknote image and the measurements are shown in Figure 
11. In this data set, we know the truth of whether the banknote is real or forged. More information about the data  
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set can be found in [17]. We use the spectral degrees of freedom concept, which was proposed by [18], and 
supply 1.022h =  for the MAC. The MAC output shows there are two major clusters and can capture the two 
groups well. The output is shown in Table 3. Group 1 and Group 4 are the two major clusters. Using 0.517h = , 
the p-value of the corresponding modality inference is 0.001774, which indicates the two clusters are clearly se-
parated. 

8. Discussion 
In this paper, we developed the inference procedure to test the significance of a specific mode. The asymptotic 
distribution of the test statistic is derived based on the asymptotic normality of the KDE to assess the signific-
ance of the mode. The traditional method to assess the significance of the modality of the data is to determine 
the test statistic and decide the reference distribution under the null hypothesis. Then, a large scale simulation is 
performed to simulate the reference data and compute the test statistic of the simulated reference data to form  

 

 
Figure 10. One example of flow cytometry data clustered by 
MAC. 

 

 
Figure 11. 6 measurements of Swiss banknote data. 

 
Table 3. MAC output of emphSwiss banknotes data. 

 Real Counterfeit 

Group 1 97 4 

Group 2 1 0 

Group 3 1 0 

Group 4 1 96 
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the null distribution of the test statistic. The method we introduced uses the asymptotic distribution of the statis-
tic, thus, we can avoid the bootstrap testing, which could be computationally expensive. 

Combined with the research work in [1], we provided a comprehensive mode hunting and inference tool for 
the investigated data set. The mode hunting and inference procedure is based on the KDE and using the normal 
density as the kernel function. It is important to select the bandwidth parameter h. There are two steps to select 
the bandwidth parameters. It is acknowledged that there is no best choice of h for estimating a density. For mode 
hunting, we chose to use the normal reference rule. For the inference, h has to satisfy the conditions of the 
asymptotic normality of the KDE. Due to the curse of the dimensionality, this method is limited to low or mod-
erate dimensions. 

We can apply this inference procedure on each pair of modes to assess how many modes the data have. In the 
MAC algorithm, the number of modes is the same as the number of clusters. It is difficult but worthwhile to 
generate the automated algorithm to decide on how many clusters/modes of the data have, based on the modality 
inference procedure. The difficulty here is that the method is based on the KDE. The outliers of the data could 
easily form the spurious modes, especially for the high dimensional data, which make it difficult to generate au-
tomated algorithm.  
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