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The study of gluon radiation in QCD, in the limit of small (“soft”) momentum, remains an active
research area, with a variety of phenomenological and theoretical applications. Soft gluon emis-
sion leads to large logarithms in perturbation theory which have to be summed up to all orders in
the coupling, and also governs the structure of infrared singularities. Recently, new techniques
and mathematical structures have been discovered, which enhance our understanding of these all-
order properties. This contribution will review a number of key topics, including the relationship
between QCD and gravity.
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Figure 1: Example interaction, in which soft gluons may be emitted.

1. Introduction

It is well-known that scattering amplitudes in quantum field theory are beset by infrared di-
vergences. Consider, for example, the interaction shown in figure 1, in which a vector boson splits
into a quark pair. Either the final state quark or anti-quark may emit gluon radiation, and the Feyn-
man rules in position space tell us that we must integrate over all positions of the emitted gluon.
This integral goes out to infinity, and one may show from the behaviour of the integrand in four
space-time dimensions that the region at infinity is associated with a (long-distance) divergence.
We may think of such gluons as having an infinite Compton wavelength, and by the uncertainty
principle this corresponds to the emission of gluons with zero momentum. Thus, these divergences
are usually referred to as infrared (IR) divergences, and the gluons themselves as soft, to distinguish
them from the hard emitting particles that emerge from the interaction. Such gluons may be real
or virtual, and the above remarks make clear that IR divergences are a general feature of quantum
field theories, including QED, QCD and quantum gravity.

Infrared singularities are important for a number of theoretical and phenomenological reasons.
They are related to the structure of large logarithms in perturbation theory, which must be summed
up to all orders in order to obtain sensible results for many collider observables (see [1, 2, 3, 4, 5]
for a number of different approaches). Furthermore, there are a number of unproven conjectures
regarding infrared divergences, such as the so-called dipole formula in QCD [6], which we will see
in what follows. It has by now been well-established that scattering amplitudes factorise, such that
they have the schematic form [7]

A = H ·S · ∏i Ji

∏i Ji
. (1.1)

Here H is the hard interaction, and is infrared finite; S is the soft function, which collects all
soft singularities; Ji is a jet function, which collects hard collinear singularities associated with
outgoing particle i. Finally, Ji is an eikonal jet function, which corrects for the double-counting
of soft-collinear singularities associated with particle i 1. Furthermore, it is known in a variety of

1In quantum gravity, jet functions are not present, as collinear singularities cancel upon combining all diagrams [8,
9].
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Figure 2: The first few webs in QED. Upon removing the external lines, one is left with connected subdia-
grams.

theories that the soft function exponentiates, where the exponent may itself be given a Feynman
diagram interpretation. That is, one may write

S = exp

[
∑
W

W

]
, (1.2)

where {W} is a set of special diagrams known as webs 2. Their nature depends upon the theory.

2. Webs in QED and QCD

In QED, one may show that the exponent of the soft function contains only connected sub-
diagrams. By a subdiagram, we mean the graph that remains when the hard external lines have
been removed. Examples of QED “webs” are shown in figure 2, and one can indeed see that they
all correspond to connected subdiagrams. This result was originally derived using a combinatoric
approach [12], and has recently been rederived in a more intuitive way using path integral methods
and statistical physics techniques [5], which pave the way for examining more complicated cases
of exponentiation e.g. multiparton scattering in QCD. Note that exponentiation is a very powerful
result: it tells us that we can predict the structure of infrared divergences to all orders in perturba-
tion theory. Successive powers of the coupling constant in the exponent sum up successive towers
of IR singularities in the amplitude itself. Large logarithms that are associated with IR singularities
can also then be predicted to all orders from soft exponentiation, which is how resummation works
in practice.

The structure of soft exponentiation in QCD is more complicated due to the non-Abelian nature
of the theory. Scattering amplitudes then have non-trivial colour structure. Furthermore, one must
draw a distinction between processes in which only two coloured particles emerge from the hard
interaction (e.g. Drell-Yan production of vector bosons, deep-inelastic scattering, e+e−→ qq̄), and
processes in which many hard coloured particles scatter. In the latter case, the scattering amplitude
becomes a vector in the space of possible colour flows at the hard interaction vertex, and the soft

2This name was first introduced in the context of two-parton scattering in QCD [10], but we here adopt the more
general terminology of [11].
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(a) (b)
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Figure 3: Diagrams contributing to the soft function at two loops, where solid and wavy lines denote hard
and soft particles respectively.

function has a matrix structure in this space. Soft exponentiation in the two-particle case was first
studied in [10], where it was found that the corresponding webs consist of single, irreducible subdi-
agrams (that is, subdiagrams where no gluon can be shrunk to the origin independently of any other
gluon). The nature of webs in multiparton scattering has been studied only very recently [11, 13],
due to the involved colour structure remarked upon above. The results are in marked contrast to the
two-line case, and are best illustrated here by example.

Consider the pair of two-loop contributions to the soft function shown in figure 3, where each
diagram D has a kinematic part F (D) and a colour factor C(D). Although these diagrams are
reducible (in the sense that one may shrink both gluons separately to the origin in each case), one
may show that both of them contribute to the exponent of the soft function. Furthermore, each of
them has a modified colour factor C̃(D) in the exponent, which turns out to be a superposition of
the usual colour factors {C(D)} of both graphs. The contribution to the exponent from the pair can
be written (

F (a)
F (b)

)T (
C̃(a)
C̃(b)

)
=

(
F (a)
F (b)

)T
1
2

(
1 −1
−1 1

)(
C(a)
C(b)

)
. (2.1)

We see that the pair of diagrams mixes under exponentiation, where this mixing can be described
by a matrix acting on the vectors of kinematic and colour factors.

This structure is found to be quite general. Higher-loop diagrams form closed sets, where
each set has elements related by gluon permutations on the external lines. It is argued in [11, 14]
that each set should be considered as a single web, and its contribution to the exponent of the soft
function is given by the generic form

W = ∑
D,D′∈W

F (D)RDD′C(D′), (2.2)

where RDD′ is a web-mixing matrix. These matrices consist of constant numbers, and encode a
huge amount of physics, namely how colour and kinematic information gets entangled in the soft
limit to all orders in perturbation theory. An ongoing programme of work consists of classifying
general properties of these matrices, and interpreting the corresponding physics.
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Some general properties are already known. For example, any row of any web mixing ma-
trix must sum to zero. Also, all web mixing matrices are idempotent (R2 = R), such that their
eigenvalues can only be 1 or 0 [11, 15]. A further conjecture involves a weighted sum of col-
umn entries [14]. A pure combinatoric expression for web mixing matrix elements has been given
in [15], and may be related to order-preserving maps on partially ordered sets (posets) [16]. The
latter are used in computer science applications, and thus progress in understanding webs can be
made with or without any field theory knowledge.

For massless external particles, it is conjectured that the exponent of the soft function has a
very simple form, involving colour and kinematic correlations between at most pairs of particles.
This is known as the dipole formula [6], and possible corrections (at three loops and beyond) were
further investigated in [17]. Recently, new constraints were found to emerge from the high energy
(Regge) limit of scattering amplitudes [18], whose further implications were examined in [19].
Note that web mixing matrices should have something to say about the dipole formula: both webs
and the dipole formula are concerned with the structure of the exponent of the soft function.

3. IR singularities in gravity

Infrared singularities in gravity were first examined in [8], and there has recently been a revival
of interest aimed at describing gravitational physics using the same language as is used in non-
abelian gauge theories [9, 20]. It has now been firmly established that the exponent of the soft
function in gravity is one-loop exact i.e. only one-loop diagrams occur, connecting all possible
pairs of external particles. The relationship between QED / QCD and gravity was further explored
in [21], using the radial coordinate space picture of [22]. This involves mapping the Wilson line
operators which describe soft photon or graviton emissions from Minkowski space to Euclidean
AdS space, where they become point charges whose potential energy represents the cusp anomalous
dimension. The general potential energy for a spin-n Wilson line is found to be

H̃(β ) = A1

(
sinh(nβ )

sinhβ

)
+A2

(
cosh(nβ )

sinhβ

)
, (3.1)

where β is the radial distance in the AdS space (equivalent to the cusp angle in Minkowski space).
Equation (3.1) can be related to the known cusp anomalous dimensions in QED / QCD (n = 1) and
gravity (n = 2). Furthermore, n can be taken to be a continuous variable, and one thus sees that the
soft limits of the two types of theory are related by a continuous deformation. This is an interesting
novelty, that may have further implications.

Note that one-loop exactness of gravity implies that all IR singularities in this theory are
dipole-like. This begs the question: could the QCD dipole formula have a gravitational origin?
This has been further explored in [23], and the answer appears to be no. Nevertheless, intriguing
connections between QCD and gravity exist, whose investigation is ongoing.
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