
 

 
 
 
 
Burr, T., Hamada, M. S., Howell, J., Skurikhin, M., Ticknor, L., and Weaver, B. 
(2013) Estimating alarm thresholds for process monitoring data under different 
assumptions about the data generating mechanism. Science and Technology of 
Nuclear Installations, 2013 (705878). ISSN 1687-6075 
   
 
 
Copyright © 2013 The Authors 
 
 
 
http://eprints.gla.ac.uk/96860 
 
 
 
Deposited on:  12 September 2014 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Enlighten – Research publications by members of the University of Glasgow 

http://eprints.gla.ac.uk 

http://eprints.gla.ac.uk/96860
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/


Hindawi Publishing Corporation
Science and Technology of Nuclear Installations
Volume 2013, Article ID 705878, 18 pages
http://dx.doi.org/10.1155/2013/705878

Research Article
Estimating Alarm Thresholds for Process
Monitoring Data under Different Assumptions about
the Data Generating Mechanism

Tom Burr,1 Michael S. Hamada,1 John Howell,2 Misha Skurikhin,1

Larry Ticknor,1 and Brian Weaver1

1 Statistical Sciences, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
2Mechanical Engineering Department, University of Glasgow, Glasgow G12 8QQ, UK

Correspondence should be addressed to Tom Burr; tburr@lanl.gov

Received 7 December 2012; Revised 10 May 2013; Accepted 15 May 2013

Academic Editor: Michael F. Simpson

Copyright © 2013 Tom Burr et al.This is an open access article distributed under theCreativeCommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Process monitoring (PM) for nuclear safeguards sometimes requires estimation of thresholds corresponding to small false alarm
rates.Threshold estimation dates to the 1920s with the Shewhart control chart; however, because possible new roles for PM are being
evaluated in nuclear safeguards, it is timely to consider modernmodel selection options in the context of threshold estimation. One
of the possible new PM roles involves PM residuals, where a residual is defined as residual = data − prediction. This paper reviews
alarm threshold estimation, introducesmodel selection options, and considers a range of assumptions regarding the data-generating
mechanism for PM residuals. Two PM examples from nuclear safeguards are included to motivate the need for alarm threshold
estimation. The first example involves mixtures of probability distributions that arise in solution monitoring, which is a common
type of PM. The second example involves periodic partial cleanout of in-process inventory, leading to challenging structure in the
time series of PM residuals.

1. Introduction

Nuclear material accounting (NMA) is a component of
nuclear safeguards, which are designed to deter or detect
diversion of special nuclear material (SNM) from the fuel
cycle to a weapons program. NMA consists of periodic,
low frequency, comparisons of measured SNM inputs to
measured SNM outputs, with adjustments for measured
changes in inventory. Specifically, the residuals in NMA are
thematerial balances defined asMB = 𝑇in+𝐼begin−𝑇out−𝐼end,
where 𝑇 is a transfer and 𝐼 is an inventory.

Process monitoring (PM) is a relatively recent safeguards
component. Although usually collected very frequently, PM
data are often only an indirect measurement of the SNM
and are typically used as a qualitative measure to supple-
ment NMA or to support indirect estimation of difficult-to-
measure inventory for NMA [1–3]. However, possible new

roles for PM are being evaluated in nuclear safeguards. One
of the possible new PM roles involves PM residuals, where
a residual is defined as residual = data − prediction. One
challenge in combining NMA and PM data is that PM
residuals often have a probability distribution that cannot be
adequately modeled by a normal (Gaussian) distribution but
instead have an unknown distribution that must be inferred
from training data.

We assume throughout that typical behavior of PM
residuals, as defined by the probability distribution of the
PM residuals, must be estimated using training data that is
assumed to be free of loss (by diversion or innocent loss).
Because of this assumption, it is helpful to consider settings
with many applications other than safeguards that arise in
standard statistical process control. In standard statistical
process control settings, a quantitative attribute such as a
manufactured part’s dimension is measured and monitored.
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For part 𝑖, let the true part dimension be 𝑇

𝑖
and let the

measured part dimension be 𝑀

𝑖
= 𝑇

𝑖
+ 𝑅

𝑖
, where 𝑅

𝑖
is a

random measurement error. Assuming the manufacturing
process is “in control,” Phase I of statistical process control
refers to the training period on anomaly-free data that is used
to characterize the distribution of 𝑀

𝑖
, which varies because

both 𝑇

𝑖
and 𝑅

𝑖
vary among parts. Phase I is followed by

Phase II which refers to ongoing testing or monitoring for
departure from Phase I behavior that has been statistically
characterized.

A common test for departure from Phase I behavior is
to estimate an alarm threshold such as is done in the basic
Shewhart control chart [4], where continuous data is often
assumed to have approximately a normal distribution and
pass-fail data is assumed to follow a homogeneous Bernoulli
distribution. Although threshold estimation with the She-
whart control chart (which alarms if the maximum observed
data value exceeds the alarm limit) dates back to the 1920s,
it is timely to consider modern model selection options in
the context of threshold estimation.This paper reviews alarm
threshold estimation, introduces model selection options
to support threshold estimation, and considers a range of
assumptions regarding the data-generation mechanism. Two
examples from nuclear safeguards are included to motivate
the need for alarm threshold estimation. The first example
involves mixtures of probability distributions that arise in
solution monitoring, which is a common type of PM. The
second example involves periodic partial cleanout of in-
process inventory, leading to challenging structure in the time
series of PM residuals.

The paper is organized as follows. Section 2 provides
additional background and a brief literature review. Section 3
describes the specific cases considered and gives numerical
examples. The cases are defined by assumptions made about
the data-generatingmechanism for themonitored quantities,
which in our context are the PM residuals. Section 4 gives the
two PM examples from safeguards. Section 5 is a summary.

2. Background and Literature Review

Phase I training as used in many quality control applications
often has the luxury of very large sample size, such as
106 or more observations from a manufacturing step [4–
9]. In the context of monitoring PM residuals, we seek to
require as little Phase I training data as possible before
monitoring for typical behavior begins.Therefore, the quality
control literature that is most relevant for PM needs is that
concerned with Phase I training data size requirements [4–
27]. As one example, [7] considers the effect on estimated
tail probabilities of estimation error in estimated parameters
of assumed data distributions. As another example, [20]
considers extreme tail probability estimation while making
minimal assumptions about the distributional form of the tail
behavior. References [4–27] are among relatively few quality
control publications that have investigated the amount of
Phase I training data required for accurate estimation of
alarm limits to achieve a desired low false alarm probability
𝛼 in Shewhart or other control charts. Estimation error can

be expressed as error in the alarm limit or as error in the
estimated false alarm probability.

Often in safeguards it is necessary to control the per-
period false alarm rate. For example, if there are 𝑛 = 100

observations per year and the application requires a false
alarm probability of 𝛼 = 0.01 per year, then the Shewhart
alarm rule considers the distribution of the maximum of 𝑥

1
,

𝑥

2
, . . .,𝑥

𝑛
. However, for simplicity here, we consider the alarm

rate per data point rather than per period (see Section 3.1.3).
This paper focuses on the error in the estimated false

alarmprobability for several types of assumeddata generating
mechanisms, including single-family parametricmodels such
as the normal and log-normal and mixtures of single-family
parametric models. Specifically, we start by assuming that
the individual data points 𝑥

1
, 𝑥
2
,. . ., 𝑥

𝑛
are independently

and identically (iid) distributed as 𝑁(𝜇, 𝜎2), the normal
distribution with mean 𝜇 and variance 𝜎

2. Then the only
inference task is to estimate 𝜇 and 𝜎 in order to estimate
the alarm threshold 𝑇 so that the probability of a data point
being at or above 𝑇 is some small false alarm probability
𝛼 such as 0.01. That is, we want to estimate 𝑇 so that 𝑝 =

𝑃(𝑥

𝑖
≥ 𝑇) = 𝛼. We use the symbol 𝛼 when a small

probability 𝑝 refers to the false alarm probability during
Phase II monitoring. Alternatively, to estimate 𝑇, we might
assume almost nothing about the distribution of the data
points 𝑥

𝑖
and use a nonparametric alternative such as a

weighted average of the sorted data values which are also
known as the sample quantiles. For other assumptions about
the data, the inference task will change, as we demonstrate in
Section 3.

One conclusion of this paper is that a rough guide for the
required training data size 𝑛 for accurate quantile estimation
is that 𝑛 ≥ 100. Suppose 𝑛 = 100 and we want to estimate the
0.999 quantile, so 𝛼 = 0.001. Let 𝑥

(1)
, 𝑥
(2)
,. . ., 𝑥
(100)

denote the
sorted values. A reasonable estimate is some type of weighted
average 𝑎

1
𝑥

(99)
+ 𝑎

2
𝑥

(100)
of the two largest values, where

𝑎

1
+ 𝑎

2
= 1. There must be some type of modeling to select

the weights 𝑎

1
and 𝑎

2
. One type of modeling is described

in paragraph three of this section, in which a parametric
form𝑁(𝜇, 𝜎2) for 𝑥

𝑖
is assumed. Other types of modeling are

described in Section 3.

3. Cases Considered Regarding
the Data-Generation Mechanism

This section examines the amount of training data required
for accurate estimation of alarm limits for a range of assump-
tions regarding the data generation mechanism. The main
question that we address is as follows: what is the behavior of
the estimation error (relative and absolute) in ̂

𝑝, the estimate
of the probability of a data point being above the threshold
𝑇 as a function of sample size 𝑛 under various assumptions
about the data generation mechanism and under various
estimation approaches.

For this question regarding estimation error in ̂

𝑝, we
consider the following Cases (a)–(f). In each case we estimate
a threshold 𝑇 for a desired 𝛼. We summarize the behavior of
̂

𝑝 as an estimate of 𝑝 in terms of root mean squared error
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Figure 1: (a) 100 transformed observations 𝑦
𝑖
= (𝑥

𝑖
− 𝑥)/

̂
𝜎, in arbitrary units (au), with 𝑥

𝑖
simulated as 𝑥

𝑖
∼ iid𝑁(𝜇, 𝜎2); (b) the estimated

probability density using parametric density estimation from two sets of 100 simulated and transformed observations as in (a); (c) same as
(b) but using nonparametric density estimation.

(RMSE), with MSE = 𝐸{(

̂

𝑝 − 𝑝)

2
}, where 𝐸 denotes expected

value with respect to the distribution of the 𝑥
𝑖
, and RMSE =

√

𝐸{(

̂

𝑝 − 𝑝)

2
}.

(a) Assume the 𝑥

𝑖
are from a single parametric model.

First, the 𝑥

𝑖
are generated from a 𝑁(𝜇, 𝜎2) distri-

bution, and we assume the 𝑥

𝑖
are iid 𝑁(𝜇, 𝜎2) and

estimate 𝜇 and 𝜎2. Next, we generate the 𝑥
𝑖
as iid from

distributions other than the normal, but we incor-
rectly assume normality and estimate the parameters
of the assumed distribution in order to calculate 𝑇 for
a desired 𝛼. If instead we assume (correctly) the same
distribution as that used to generate the data, then we
use the correct distribution to calculate an estimate of
𝑇 with estimated parameters and then estimate 𝑝.

(b) Assume the 𝑥

𝑖
are a mixture of a known number

of normals and we estimate the mixture means and
variances and relative frequencies as a way to estimate
𝑝.

(c) Assume the 𝑥
𝑖
are a mixture of an unknown number

of normals, and as in (b) we estimate the mixture
means and variances and relative frequencies as a way
to estimate 𝑝.

(d) Assume the 𝑥
𝑖
are a mixture of an unknown number

of unknown distributions.
(e) Assume the 𝑥

𝑖
are iid from some known distribution

to be discovered using model selection.
(f) Assume nothing about the distribution of 𝑥

𝑖
. Evaluate

density estimation [28] and nonparametric quantile
estimation [29].

3.1. Case (a): Parametric Modeling

3.1.1. Normal Data. Figure 1(a) plots a time series of 𝑛 =

100 transformed observations 𝑦

𝑖
= (𝑥

𝑖
− 𝑥)/

̂
𝜎. Here, 𝑥

𝑖

is simulated as 𝑥

𝑖
∼ iid 𝑁(𝜇, 𝜎2), 𝑥 = 𝜇 is the usual

sample mean, and ̂
𝜎 =

√

∑

𝑛

𝑖=1
((𝑥

𝑖
− 𝑥)

2
/(𝑛 − 1)) is the usual

sample standard deviation. The “∼” is standard notation for
“is distributed as.” Figures 1(b) and 1(c) plot the estimated
probability distribution for the same 100 𝑦

𝑖
values as in

Figure 1(a), and also for a second set of 100 𝑦
𝑖
values to check

for consistency between two sets of 100 simulated values. Fig-
ure 1(b) uses parametric density estimation while Figure 1(c)
uses nonparametric density estimation. In Figure 1(b), 𝑥 = 𝜇

to estimate 𝜇 and ̂
𝜎 is used to estimate 𝜎, so the two sets of 100

𝑦

𝑖
values lead to quite similar density estimates based on the

normal probability density𝑁(𝜇

1
,
̂
𝜎

2

1
) in set 1 and𝑁(𝜇

2
,
̂
𝜎

2

2
) in

set 2. In Figure 1(c) we use nonparametric density estimation
which is a type of smoothed histogram that does not assume
we know the true probability distribution, so the two sets of
estimated densities are more different than in Figure 1(b) (see
Section 3.6.1).

In short, if we know the true parametric model and
only need to estimate its parameters, then the RMSE will
be relatively small even for small sample size 𝑛. Of course,
one rarely knows the true parametric model, which is why
we consider Case (b) in Section 3.2–Case (f) in Section 3.6
but include Case (a) in Section 3.1 for comparison and for
comparison to other literature such as [9].

3.1.2. Example of Nonnormal Data. As an example of non-
normal data, Figure 2 is the same as Figure 1, but is for
𝑥

𝑖
∼ iid gamma (shape = 1, rate = 0.1). Notice that for 𝑛 =

100 observations, there is nonnegligible estimation error in
the nonparametric estimate of the probability distribution
(Figures 1(c) and 2(c)). However, as we will show, a rough
rule of thumb is that 𝑛 = 100 observations is adequate for
estimation needs in PM, such as reasonably small RMSE in ̂

𝑝

as an estimate of 𝑝.The rule of thumb is motivated by finding
in our examples that either: (a) there is a very slow decrease
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Figure 2: The same as Figure 1, but 100 transformed observations 𝑦
𝑖
= (𝑥

𝑖
− 𝑥)/

̂
𝜎 from the gamma (shape = 1, rate = 0.1) distribution.

in the RMSE as 𝑛 increases beyond 100, so increasing PM
training data requirements beyond approximately 𝑛 = 100

observations is probably not necessary, or (b) the RMSE is
very small for some value of 𝑛 near 100 or less.

3.1.3. The True Alarm Probability Compared to the Estimated
Alarm Probability for Normal and Nonnormal Data. For
normal data, Figure 3(a) plots the true alarm probability
(see the next paragraph) versus the sample size using a
nominal false alarm probability (FAP) of 0.001 to estimate
the threshold 𝑇. We selected 0.001 as a small but reasonable
FAP per PM data stream, anticipating that a per-year FAP
over all NMA and PM streams should be 0.05 or less. In all
our examples, we use either 0.001 or 0.025 as examples of
small FAPs. As mentioned in Section 2, the desired FAP per
PM stream will depend on the number of PM streams. And,
the sampling frequency in a given PM stream will determine
the FAP per sampling observation to maintain the desired
per-year FAP. For example, if a PM stream has independent
10 samples per year, and a 0.01 FAP is allowed for that PM
stream, then the per-sample FAP should be approximately
0.001.

Figure 3(a) was produced using simulation in R [30] as
follows. As in Figure 1(a), generate data as 𝑥

𝑖
∼ iid 𝑁(𝜇, 𝜎2).

From these data estimate 𝜇 using 𝜇 = 𝑥 (the sample mean),
and estimate 𝜎

2 using ̂
𝜎

2
= ∑

𝑛

𝑖=1
((𝑥

𝑖
− 𝑥)

2
/(𝑛 − 1)) (the

sample variance). Substitute 𝜇 for 𝜇 and ̂
𝜎 for 𝜎 in the normal

probability cumulative distribution function to estimate the
alarm threshold 𝑇 corresponding to the 0.999 quantile.
Specifically, 𝑇

0.001
= 𝜇 + 3.09𝜎 so ̂

𝑇

0.001
= 𝜇 + 3.09

̂
𝜎. Notice

in Figure 3(a) that the true alarm probability is considerably
larger than the nominal (0.001) alarm probability marked by
a horizontal line until approximately 𝑛 = 20 or slightly larger.
The “true” alarm probability was estimated with negligible
estimation error by using 106 simulations. Throughout this
paper we distinguish the true alarm probability (which is
estimated with negligible estimation error by using many

simulations) from the estimated alarm probability (whose
estimation error is a key quantity that we study).

For nonnormal data in Figures 3(b)–3(d), 𝑥
𝑖
is generated

as in Figure 3(a), but as iid from the lognormal, gamma
and 𝑡(2df) distributions. In all four Figures 3(a)–3(d), we
estimate the parameters of the normal distribution in order to
estimate 𝑇 for a desired 𝛼. That is, we assume (incorrectly for
Figures 3(b)–3(d)) that the 𝑥

𝑖
are distributed as iid 𝑁(𝜇, 𝜎2)

to illustrate the need for Case (b) in Section 3.2–Case (f) in
Section 3.6. Therefore, we again use ̂

𝑇

0.001
= 𝜇 + 3.09

̂
𝜎 in

Figures 3(b)–3(d) for the lognormal generated from exp(𝑥)
with 𝑥 ∼ 𝑁(𝜇 = 0, 𝜎 = 1) (so the mean of the lognormal
is 1.65 and the variance is 4.67), the gamma (shape = 1, rate
= 0.1), and the 𝑡(2) distributions, respectively. Notice that
for all three distributions, the true alarm rate goes below
the nominal rate of 0.001 for large sample sizes. In other
cases not shown (e.g., for the gamma (shape = 1, rate = 2)
distribution), the true alarm rate is larger than the nominal
rate for all sample sizes. If instead we correctly assume the
same distribution as that used to generate the data, then we
estimate parameters from the correct distribution to estimate
𝑝. For comparison, we return to this ideal situation in which
we know the correct distribution in Section 3.4.

In addition to the true alarm probability, the estimation
error in the alarm rate asmeasured, for example, by the RMSE
is also of interest. The RMSE combines both bias (defined
as the difference between the true alarm probability and the
long-run average of the estimated probability) and variance
in the well-known expression RMSE = bias2 + variance [28].

Figure 4 plots the RMSE versus sample size for the same
four distributions as in Figure 3(a), again assuming the true
distribution is normal as described above, which is incorrect
except for in Figure 4(a). The RMSEsim was calculated across
𝑛sim = 10

4 simulations using RMSEsim =

√

∑

𝑛sim
𝑖=1

(

̂

𝑝 − 𝑝)

2,
where 𝑝 is the true tail probability and ̂

𝑝 is defined by using,
for example, ̂𝑇 = 𝜇 + 3.09

̂
𝜎 as in Figure 3. Note that RMSEsim

approaches 0 as 𝑛 increases (Figures 3(a) and 4(a)) as one
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Figure 3: True alarm probability versus sample size (nominal alarm probability is 0.001) for (a) normal, (b) lognormal, (c) gamma (1, 0.1),
and (d) 𝑡(2). The true alarm probabilities were estimated by simulation of 104 observations in R, and results are repeatable to within ±0.0001.

would expect. Figure 4 includes a horizontal line at 10% of
0.001 (0.0001) for visual comparison.

Notice in Figure 4 that the RMSE does decrease as 𝑛

increases, even when we incorrectly assume a normal distri-
bution (Cases (b), (c), and (d)). Future work will investigate
the tradeoff between estimator bias and variance in the
RMSE in the context of assuming slightly wrong underlying
distributions. That is, the RMSE could be acceptably low in
Figures 4(b)–4(d) despite wrongly assuming that the true
distribution is normal. However, the obvious bias in ̂

𝑝 as an
estimate of𝑝does not vanish as 𝑛 increases (see Figure 3), so it
is unlikely to be acceptable to blindly assumePMdata streams
have a normal distribution. Therefore, we also consider Case
(b) in Section 3.2–Case (f) in Section 3.6.

3.2. Case (b): Assume the 𝑥
𝑖
Are aMixture of a KnownNumber

of Normal Distributions and Estimate the Mixture Means and
Variances and Relative Frequencies as a Way to Estimate 𝑝.

In Case (b) we assume the 𝑥

𝑖
are a mixture of a known

number of normal distributions, but we must infer which
𝑥

𝑖
belong to which mixture component. One tool to infer

groupmembership ismodel based clustering as implemented
in the Mclust function in R [30, 31]. Using Mclust to infer
group membership, we estimated the RMSE versus sample
size for a nominal alarm probability of 𝑝 = 0.001 for the
case of overlapping groups (see Figure 5(a)) and two well-
separated groups (see Figure 5(b)). Figure 5 was generated by
applying density estimation using the density function in R

to 104 simulated values from the overlapping-group case and
from thewell-separated group case. Figure 6 shows the RMSE
in the case of well-separated and overlapping groups. For
comparison, notice from Figure 6 that the RMSE is smaller
using Mclust than using a nonparametric option (based on
the sample quantiles as described in Section 3.7), and that the
RMSE is nearly the same whether the groups are overlapping
or well separated.
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Figure 4: log (RMSE) versus sample size (nominal alarm probability is 0.001) for (a) normal, (b) lognormal, (c) gamma (1, 0.01), and (d) 𝑡(2)
for two estimation options labeled 1 and 2, respectively. The true RMSEs were estimated by simulation of 104 observations in R, and results
are repeatable to within ±0.0001.

To explain our approach for estimating alarm thresholds
using Mclust, we can simply consider the case where
the means 𝜇

𝑖
differ among components, but the standard

deviations 𝜎
𝑖
are the same in each component, denoted 𝜎.

The mean and standard deviation of the mixture are then
𝜇mix = ∑

𝑁comp
𝑖=1

𝜋

𝑖
𝜇

𝑖
and 𝜎

2

mix = 𝜎

2
+ ∑

𝑁comp
𝑖=1

𝜋

𝑖
(𝜇

2

𝑖
− 𝜇

2

mix),
where 𝜋

𝑖
is the relative frequency of component 𝑖. Our

main interest is in the probabilities of exceeding specified
thresholds, such as a multiple 𝑘 of the standard deviation,
where 𝑘 is usually in the range of approximately 2 to 4. It can
be shown by straightforward calculation that when 𝑥

𝑖
are iid

from amixture of normal distributions, when testing only for
large positive outliers as we do in all our examples, then𝑃(𝑥−
𝜇mix > 𝑘𝜎mix) = ∑

𝑁comp
𝑖=1

𝜋i(1 − 𝜑((𝜇mix − 𝜇i)/𝜎 + 𝑘(𝜎mix/𝜎))),
where 𝜑 is the standard normal density. This expression for
𝑃(𝑥 − 𝜇mix > 𝑘𝜎mix) is used to estimate the threshold 𝑇 using
𝑁comp and using estimates provided by Mclust of the relative

frequency𝜋
𝑖
, themeans 𝜇

𝑖
, and standard deviations 𝜎

𝑖
of each

component.
For many mixtures, these tail probabilities are smaller

than those of the corresponding reference distribution, which
is a single-component normal having the same standard
deviation as the mixture, 𝜎mix.Therefore, higher probabilities
of mean-centered values exceeding 𝑘𝜎 are not necessarily
expected. However, for other mixtures, particularly those
having very unequal 𝜋

𝑖
, the tails are fatter (giving larger

probabilities to extreme values) than the reference normal.
For example, consider the random variable 𝑥 arising from a
mixture consisting of three components with 𝜋

1
= 0.0833,

𝜋

2
= 0.833, and 𝜋

3
= 0.0833; 𝜇

1
= −3, 𝜇

2
= 0, and 𝜇

3
= 5; 𝜎 =

1. For this random variable 𝑥 we have 𝑃(𝑥 − 𝜇mix > 𝑘𝜎mix) =

0.088, 0.013, and 0.0001 for 𝑘 = 2, 3, and 4, respectively.
The corresponding probabilities for the single-component
reference normal are 0.046, 0.003, and 0.00006, which are
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Figure 5: Overlapping (a) and well-separated (b) groups.
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Figure 6: The RMSE versus sample size for (a) overlapping groups and (b) well-separated groups for a known number of normals using the
“fit mixture” option and using the quantile-based nonparametric option described in Section 3.7.

significantly smaller, indicating that this particular mixture
has fatter-than-normal tails. On the other hand, consider
the random variable 𝑋 arising from a symmetric mixture
consisting of three components having 𝜋

1
= 0.25, 𝜋

2
= 0.5,

and 𝜋

3
= 0.25 and 𝜇

1
= −3, 𝜇

2
= 0, and 𝜇

3
= 3 with 𝜎 = 1.

Then 𝑃(𝑥 − 𝜇mix > 𝑘𝜎mix) = 0.023, 0.000014, and 4.4 × 10

−11

for 𝑘 = 2, 3, and 4, respectively, indicating that this mixture
has thinner-than-normal tails.

3.3. Case (c): Assume the 𝑥

𝑖
Are a Mixture of an Unknown

Number of Normal Distributions, and as in (b), Estimate
the Mixture Means and Variances and Relative Frequencies
as a Way to Estimate p . In Case (c) we must estimate
the number of components, unlike Case (b). We assume
the 𝑥

𝑖
are a mixture of an unknown number of normal

distributions, so we must infer which 𝑥

𝑖
belong to which

mixture component and how many mixture components are
present. As mentioned in Section 3.2, one tool to infer group
membership ismodel-based clustering as implemented in the
Mclust function in R [31]. As in Case (b), using Mclust, we
estimated the RMSE versus sample size for a nominal alarm
probability of 𝑝 = 0.001.

As in Figures 6 and 7 plots the RMSE versus sample size
for overlapping (Figure 7(a)) andwell-separated (Figure 7(b))
groups. Using the Bayesian information criterion option in
Mclust to choose the number of groups, the estimated
probability of inferring the correct number of groups (2)
when the candidate number of groups is any number from 1 to
10 is small tomoderate (0.3 to 0.5) for overlapping groups and
large (0.8 or higher) for well-separated groups. In comparing

Figures 6 to 7, we note that for the examples considered, the
RMSE is approximately the same whether we know there are
2 groups (Figure 6) or whether we estimate the number of
groups (Figure 7).

3.4. Case (d): Assume the 𝑥
𝑖
Are iid from an Unknown Distri-

bution (not aMixture but a Single-Component Distribution) to
Be Discovered Using Model Selection. First, assume we know
the correct distribution and use the same four distributions
(normal, lognormal, gamma (1,.1), 𝑡(2)) as in Figure 3. In this
case, using fitdistr in R (which uses maximum likelihood
fitting) to estimate the parameters of the known distribution,
the bias ̂

𝑝 is negligible for any of the four distributions. That
is, if we are fortunate enough to correctly estimate or know
the true distribution rather than blindly assume a normal,
then the bias and RMSE in ̂

𝑝 are approximately the same as
shown in the “generate normal, assume normal” case shown
in Figures 3(a) and 4(a).

Next, andmore relevant for applications, assume the gen-
erating distribution is unknown, but one could use features
of the data to select a distribution. Data features to choose
a distribution could be the observed sample quantiles, or a
quantitative assessment of a quantile-quantile plot that plots
expected quantiles assuming a candidate data distribution
versus the observed quantiles, or the raw data using model
selection options such as the Bayesian information criterion
(BIC). Here the BIC is defined as BIC = 2 log(ML) − 𝑘 ln(𝑛),
[28, 31] where ML is the maximum value of the likelihood, 𝑘
is the number of model parameters, and 𝑛 is the sample size.
Models having large BIC values are preferred. We note that
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Figure 7: The RMSE versus sample size for (a) well-separated and (b) overlapping groups for a mixture of an unknown number of normals
(same case as Figure 6, except the number of groups is unknown so it must be estimated).

the BIC is sometimes defined as −1 times the BIC definition
we use, in which case models having small BIC values are
preferred. We used the BIC as provided by Mclust in Case
(c), and we use the BIC in the next example and in other
examples to follow.

Figure 8 plots the RMSE versus sample size for the
following experiment. For each of 1000 simulations, let the
true likelihood be randomly selected with equal probability
to be normal, 𝑡, lognormal, or gamma. Use the BIC to infer
the likelihood and use estimated parameters of the chosen
(inferred) likelihood to estimate, for example, the 0.0975
quantile, corresponding to a 𝑝 = 0.025 tail area probability.
Figure 8 shows that in this small experiment, large sample
sizes are required in order for BIC-based model selection
to outperform option 2, which blindly assumes the normal
likelihood, or option 3 which blindly assumes a 𝑡 distribution.

A second set of 1000 simulations shows that these RMSE
results are repeatable to within 10% relative. In addition, it
is of interest to assess how often the BIC approach leads
to correct model selection in 1000 simulations, which is
illustrated in Table 1. The three entries in each cell are the
estimated probabilities of inferring the indicated distribution
in the column when the true distribution is given in the row.
The three cell entries correspond to sample sizes of 𝑛 = 25, 50,
and 1000, respectively. For example, when the true likelihood
is the normal distribution, there is high probability, 0.86, 0.90,
and 0.99, of correctly inferring the normal distribution for
𝑛 = 25, 50, and 1000, respectively.

The RMSE results in Figure 8 are for the specific small
experiment described. If a different collection of candidate
likelihoods are used, we suggest using simulation to assess
whether the BIC-based approach to choose a distribution
is likely to lead to smaller RMSE than blindly assuming a
particular likelihood such as the normal or 𝑡.

3.5. Case (e): Assume the 𝑥

𝑖
Are a Mixture of an Unknown

Number of Unknown Distributions. In case (e) we assume
the 𝑥

𝑖
are a mixture of an unknown number of unknown

distributions, so we must infer which 𝑥

𝑖
belong to which

mixture component and how many mixture components are
present. One tool to infer group membership is model based
clustering as implemented in the mixtools package in R [32].

Using npEM (nonparametric estimationmaximization) in
mixtools, we estimated the number of components in three
cases (each case has 100 observations): a single-component
normal, a mixture of two overlapping and equal proportion
component (50 observations in each component) normal
distributions as in Figure 6(b), and a mixture of two well-
separated normal distributions (50 observations in each com-
ponents) as in Figure 6(a). Figure 9 compares the BIC values
from npEM (which does not assume a distributional form
for the component) to the BIC values from Mclust (which
assumes that each component has a normal distribution)
for the three cases. Because the components are normal
distributions in all three cases, we expect Mclust results
to be better than npEM results. However, we also expected
npEM results to do reasonably well even when the underlying
distributions are all normal. Notice however in Figure 9(d)
(for the case of two overlapping normal distributions) that
npEM predicts 9 or 10 components rather than 2 components.

In repeated experiments such as this, npEM performs very
erratically in the case of overlapping components. Apparently,
using density estimation (see Section 3.6) in the manner
that npEM does is not effective for the case of overlapping
normal distributions. Of course Mclust is tuned to work
best when the component distributions are normal, so we
repeated the above experiment in which the true number
of components is 1, 2 overlapping, and 2 well separated, but
each component was lognormal. The estimated number of
components was 2, 2, and 4, respectively for npEM and was
2, 3, and 9, respectively for Mclust, so neither Mclust nor
npEM performed well, but Mclust did worse than npEM. The
poor performance of Mclust is not surprising because of
the lognormal distribution for each component, but npEM
does not assume any particular distribution so its poor
performance is disappointing. These experiments indicate
that mixture fitting is difficult [33], and that npEM performs
erratically for all sample sizes unless the groups are distinct
and well separated.

Using either npEM or Mclust to infer the number of
groups, we have a choice regarding how to estimate quantiles
using the inferred groupings. For example, we could fit a
distribution to each inferred component and follow options
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Table 1: The estimated probability rounded to the nearest 0.01 of inferring the likelihood model using BIC. The inferred likelihood is in
columns and the true likelihood is in rows, for sample sizes 𝑛 = 25, 50, and 1000. The true likelihood is either normal, 𝑡(2), lognormal, or
gamma(1, 0.1) in the experiment.

True Inferred
Normal 𝑡(2) Lognormal Gamma(1, 0.1)

Normal 0.86, 0.90, 0.99 0.02, 0.07, 0 0, 0, 0 0.11, 0.03, 0
𝑡(2) 0.81, 0.83, 0.98 0.06, 0.10, 0.02 0, 0, 0 0.13, 0.07, 0
Lognormal 0, 0, 0 0, 0, 0 0.64, 0.83, 1.0 0.36, 0.17, 0
Gamma(1, 0.1) 0, 0, 0 0, 0, 0 0.37, 0.24, 0.01 0.63, 0.76, 0.99
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Figure 8: The RMSE versus sample size using the BIC to select the
model, or blindly assuming the normal or 𝑡 distribution.

described in Section 3.1.3 to estimate the tail behavior within
each component. Because of the extremely slow run time and
erratic performance of npEM, we do not experiment further
with this option in this paper.

3.6. Case (f): Assume Almost Nothing about the Distribution
of 𝑥
𝑖
Except That It Has Finite Moments of All Orders. In

Case (f) we assume almost nothing about the distribution
of 𝑥

𝑖
except that it has finite moments of all orders and

consider a nonparametric (“distribution free”) approach to
quantile estimation. We note that the term “nonparametric,”
although well established in statistical literature, is somewhat
misleading. The term “nonparametric” refers in this paper
to the fact that the approach works for any distribution that
has finite moments of all orders. All such distributions have
parameters such as the mean and variance, but we follow
convention and use the term “nonparametric.”

Accurate nonparametric estimation of quantiles, partic-
ularly extreme quantiles, requires large 𝑛. Therefore, it is
reasonable to consider whether there other options besides

brute force nonparametric (sample quantiles) to estimate 𝑇.
This subsection describes an option based on nonparamet-
ric density estimation and on empirical likelihood. A tail-
behavior modeling option such as that in [20] will also be
investigated in future work.

3.6.1. Density Estimation. The function density in R uses
a kernel density estimation approach [28]. Most readers are
familiar with histograms, which are crude density estima-
tors. Improved density estimators essentially are smoothed
histograms (as in Figures 1(c) and 2(c)). Typically, a density
estimator at value 𝑥 is given by ̂

𝑓(𝑥) = (1/𝑛)∑

𝑛

𝑖=1
𝐾(𝑥, 𝑥

𝑖
, ℎ),

where𝐾 is a symmetric “kernel” function such as the normal
density function 𝐾(𝑥, 𝜇, 𝜎) = (1/𝜎

√

2𝜋) exp{−(𝑥 − 𝜇)

2
/2𝜎

2
}

so ̂

𝑓(𝑥) = (1/𝑛ℎ

√

2𝜋)∑

𝑛

𝑖=1
exp{−(𝑥 − 𝑥

𝑖
)

2
/2ℎ

2
}.The estimate

̂

𝑓(𝑥) can be used to estimate 𝑝 for a candidate value of
a quantile 𝑞 simply by using ̂

𝑝 = ∫

𝑞

−∞

̂

𝑓(𝑥)𝑑𝑥. The main
technical challengewith kernel density estimation is choosing
an effective bandwidth ℎ [28] and cross validation as used
in the function density in R is reasonably effective for
bandwidth selection.

3.6.2. Empirical Likelihood. Empirical likelihood methods
use likelihood methods but do not require a parametric
family for the data. In the context of quantile estimation,
smoothed versions of the empirical cumulative distribution
function (which puts probability 1/𝑛 on each of 𝑛 observa-
tions) are used with or without the sorted data 𝑥

(1)
, 𝑥
(2)
, . . .,

𝑥

(𝑛)
.The versions that use the sorted data are extensions of the

options available in the quantile function in R. We found
that all 9 options in the quantile function give very similar
RMSE results, and that all 9 options use weighted averages of
the sample quantiles as described briefly in Section 2 and also
in Section 3.7.

Motivated by empirical likelihood,we added a 10th option
for nonparametric quantile estimate that uses a weighted
average of all of 𝑥

(1)
, 𝑥
(2)
,. . ., 𝑥

(𝑛)
rather than a weighted

average of the two sorted values 𝑥
(𝑖)
, 𝑥
(𝑖+1)

that bracket the
desired 𝑝th quantile such that 𝑥

(𝑖)
/𝑛 ≤ 𝑝 ≤ (𝑥

(𝑖+1)
/𝑛)𝑥

(𝑖)
.

All 10 options give very similar results; however, if there
is interest in providing a confidence interval for ̂

𝑝, then
[29] claims good accuracy (the nominal confidence interval
behavior is close to the actual confidence interval behavior)
with empirical likelihood [29].
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Figure 9: Comparison of npEM to Mclust for fitting: (a) single-component normal; (b) mixture of two overlapping normals as in Figure 6(b);
(c) mixture of two well-separated normals as in Figure 6(a). In the application of both npEM and Mclust, the BIC is used to select the number
of components, with the maximum BIC value corresponding to the chosen number of components.

3.7. Comparing Three Quantile Estimation Options for the
0.95, 0.99, 0.995, and 0.999 Quantiles. In this section we
compare three of the presented quantile estimation options
for four small false alarm probabilities (0.05, 0.01, 0.005, and
0.001). The three options are as follows: (1) assume a single-
component normal (Section 3.1), (2) use aweighted average of
the sample quantiles (Section 3.7.1 below), and (3) use density
estimation (Section 3.6.1). For the sake of brevity here, we
omit other options such as mixture fitting.

3.7.1. Using the Sample Quantiles. Section 2 described a
nonparametric approach that uses the sample quantiles,
which is robust to distributional assumptions but less efficient
than option 1 if the true distribution is normal. To estimate
the RMSE of ̂𝑝 for option 2 we used the quantile function
to estimate the 0.999 quantile of the original simulated data.
To estimate the true𝑝 corresponding to ̂

𝑇, which is how often
a data value would be above the estimated 0.999 quantile, we

simulated 106 observations and tallied the number of times
the simulated data exceeded the estimated quantile. Alterna-
tively, to estimate 𝑝we could use the known true distribution
in cases such as the𝑁(𝜇, 𝜎2) for which integration is simple.
The RMSE was then estimated as before, using 104 simula-
tions for each evaluated sample size. There are many ways
to estimate the 0.999 quantile and the quantile function in
R implements the nine options described in [21] to estimate
quantiles from data without explicitly assuming a parametric
distribution. We experimented with all nine options avail-
able in the quantile function. In addition [29] considers
weighted averages of the sample quantiles (see Section 3.6.2).

For option 2, we found almost no difference in average
RMSE values among the nine quantile function options
we tried (such as ordinary sample quantiles or linearly
interpolating between sample quantiles) and report results
here for option 4 in quantile, which linearly interpolates
between sample quantiles.
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Figure 10: RMSE versus sample size assuming a normal distribution for three estimation options labeled 1–3.The true RMSEs were estimated
by simulation of 104 observations in R, and results are repeatable to within ±0.001. Option 1 correctly assumes a normal distribution. Option
2 uses the quantile function in R. Option 3 is density estimation as discussed in Section 3.6.1.

3.7.2. RMSE Results for Options 1–3 in This Section. Figure 10
plots the RMSE in 104 realizations for sample sizes ranging
from 5 to 200 for the case in which the true distribution
is a single-component normal for false alarm probabilities
of (a) 0.05, (b), 0.01, (c) 0.005, and (d) 0.001. We know
that the “assume a single-component normal” is the best
possible method, and we know that density estimation is
nonparametric and therefore performs fairly well for a wide
range of underlying true distributions.Therefore, for the case

in Figure 10, we expect the RMSE for most other methods to
lie between the RMSE of option 1 and option 3.

Figure 11 is the same as Figure 10, except the true distri-
bution is a 𝑡(2) distribution, so option 1 would not perform
well, so we assumed (correctly) that the true distribution was
known to be a 𝑡(2) distribution. Notice in Figure 11 that we
did not attempt to use the BIC to select a distribution (but
see Case (d) in Section 3.4 where it appears that selecting a
single-component distribution can be reasonably effective).
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Figure 11: RMSE versus sample size assuming a normal distribution for three estimation options labeled 1–3.The true RMSEs were estimated
by simulation of 104 observations in R, and results are repeatable to within ±0.001. Option 1 correctly assumes a t(2) distribution. Option 2
uses the quantile function in R. Option 3 is density estimation as discussed in Section 3.6.1. This is the same as Figure 10, but for a 𝑡(2)
distribution rather than a normal distribution.

3.8. Extensions. Extensions needed beyond those previously
discussed include (1) evaluate our ability to estimate alarm
limits for non-iid data such as Page’s statistic (which could
be applied to iid data, but would still not be iid due to the
sequential nature of Page’s statistic), (2) extend (1) to the
multivariate setting, and (3) consider nonstationary data or
“concept drift.”

Regarding extension (1), Page’s test [3, 27] is defined as
𝑃

𝑡
= max(0, 𝑃

𝑡−1
+𝑥

𝑡
−𝑘). InmonitoringPMand/orNMAdata

streams, Page’s test has been found to be simple and effective,

and Page’s test alarms if 𝑃
𝑡
> ℎ at any time 𝑡 during the

evaluation for some threshold ℎ. Reference [34] and others
in quality control outside of safeguards advocate the use of
two Page’s tests (one test for abrupt, one test for protracted).
For good abrupt loss or diversion detection, use large 𝑘 and
very small ℎ. For good protracted loss or diversion detection,
use smaller 𝑘 and larger ℎ [34].

Regarding extension (2), note that we have considered
only scalar data 𝑥, but multivariate versions of Page’s test
have been applied in safeguards [3]. Estimating multivariate
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quantiles is more challenging, but we anticipate that multi-
variate density estimation is a feasible candidate for up to 5
or 10 dimensions.

Regarding extension (3), a real concern with some PM
residual streams is that their behavior could change over
time. In the sparse literature on such nonstationary behavior,
“concept drift,” includes the time lag from the past to the
current observation and works with blocks of near-stationary
residuals.

4. Case Studies from Nuclear Safeguards

In traditional safeguards, periodic nuclear materials account-
ing (NMA) measurements confirm the presence of special
nuclear material (SNM) in accountability units to within
relatively smallmeasurement error. Processmonitoring (PM)
is used to confirm the absence of undeclared flows that could
divert SNM for illicit use. Despite occasional attempts to
quantify the diversion detection capability of PM, nearly
all quantified statements regarding safeguards effectiveness
involve NMA, with PM used as a added qualitative measure
or to support very frequent NMA, which is called near real
time accounting (NRTA).

To assess the extent to which PM can provide quantitative
assessment in effectiveness evaluation is one of ten technical
challenges in the anticipated increased use of PM data that
were discussed during the “2011 Consultancy Meeting on
Proliferation Resistance Aspects of Process Management and
Process Monitoring/Operating Data” held at the Interna-
tional Atomic Energy Agency. This paper describes tradi-
tional roles for PM in support of NRTA and also describes
possible front-line roles for PM. If PM data is to be usedmore
quantitatively than it currently is, then historical training data
is required in order to estimate PM data behavior under
normal operating conditions. Normal operating conditions
typically exhibit process variation, so PM data analysis can
require relatively long periods of diversion-free training data.

The goal of this case study is to support the goal of using
PM data in a more quantitative manner than it currently is.
One obstacle to quantitative use of PM data is the need to
estimate alarm limits using training data that is free from
facility misuse.

In the context of nuclear safeguards, [3] describes how
both traditional nuclear material accounting (NMA) data
and process monitoring (PM) data analyses lead to time
series of residuals that can be monitored, as in statistical
process control settings. Unlike standard statistical process
control, NMA and PM residuals are usually on different
time scales, are serially and cross-datastream correlated, and
exhibit departure from standard statistical distributions such
as the normal distribution [3]. By “cross-datastream,” we
mean, for example, that a time series of NMA residuals could
be cross correlated with a time series of PM residuals. An
example is a waste stream measurement that is used as part
of the material balance in NMA and is also used in PM [1–3].

In the context of quantitatively combining PM and NMA
subsystems for an improved overall system, some PM data
streams [1–3] and/or NMA data streams could be recorded

at very high frequency, requiring a very low false alarm
rate (extreme quantile) such as 0.0001. For comparison to
nonparametric quantile estimation in cases having a few tens
or hundreds of observations, we also considermoremoderate
false alarm rates such as 0.05 or 0.025.

In most applications of PM, some type of training period
duringwhichwe assume there are no diversions is required in
order to learn normal behavior. The goal is to assess training
data needs for various PM data types. This section considers
two examples. These two case studies examine the amount of
training data required for accurate estimation of alarm limits
for a range of assumptions regarding the data generation
mechanism.

4.1. Example 1: Mixture Fitting for Solution Monitoring Data.
Initial studies on solution monitoring data indicate various
nonnormal behavior in residuals that arise from monitoring
tanks during nontransfer (“wait”) modes and also during
transfer modes [33, 35, 36]. And, one study considers the
impact of nonnormal behavior on loss detection probabilities
[37].

Figure 12 plots the estimated probability density (a
smoothed histogram) for residuals during 73 wait modes for
U storage tank named B3-1 and during 74 tank wait modes
for storage tank named 17-2 at Savannah River National
Laboratory. The residual is the tank level at the end of the
wait mode minus the tank level at the beginning of the wait
mode. There is qualitative evidence for mixture behavior
and Figure 13 provides quantitative assessment using the
BIC as in Section 3 [34, 35, 38, 39]. The normal probability
plots in Figure 12 provide additional qualitative evidence
for nonnormal behavior. For most mixtures [33] found that
approximately 100 training observations are required for
adequate estimation of mixture components.

To illustrate the impact of modeling assumptions on
estimated tail probabilities, we scale the 73 residuals from
tank B3-1 by dividing by the observed standard deviation
and estimate the probability the scaled residual exceeds
the sample mean by 2. For a standard normal random
variable, the estimate is 0.023. If we fit a mixture with 3
components as suggested by the BIC in Figure 13 (differences
in BIC of 10 or more are strong evidence for favoring
one model over another), the mixture-based estimate is
0.0065, which is considerably smaller than 0.023. Similarly,
we scale the 74 residuals from tank 17-3 by dividing by
the observed standard deviation deviation and estimate the
probability the scaled residual exceeds the sample mean
by 2. If we fit a mixture with 2 components (the BIC
in Figure 13 suggests that 1 component is adequate so
this calculation is purely for illustration), the mixture-
based estimate is 0.04, which is considerably larger than
0.023.

Examples with mixtures in Section 3 and in [33] suggest
that approximately 100 or more observations are required in
order to have a reasonably high probability of inferring the
correct number of components. In solutionmonitoring, each
component has a physical explanation, such as a period of
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Figure 12: Qualitative evidence of mixtures during (a) 73 (from tank B3-1) and (c) 74 (from tank 17-2) tank wait modes.
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Figure 13:The BIC values versus candidate number of components for the 73 wait mode residuals in tank B3-1 and the 74 wait-mode residuals
in tank 17-2.

evaporation leading to slight loss during the “wait” mode or
condensation leading to slight gain during the “wait” mode.

4.2. Example 2. As an example of batch-to-batch cross talk,
in a Pu oxide powder-handling facility, it is common to weigh

each can of oxide as it enters [40] and exits a glove box
operation. Waste generated during the glove box operation
is periodically recovered using a partial or full cleanout [40],
and thematerial not recovered there is distinguished as either
“hidden” inventory and “holdup.” Hidden inventory remains
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Figure 14: Simulated examples of MB sequences in arbitrary units (a.u.). In (a) and (b) there is no batch-to-batch cross talk and in (c) and
(d) there is batch-to-batch cross talk. Plots (c) and (d) have batch-to-batch cross talk due to periodic cleanout of glove box waste.

even after thorough cleanout and is not accessible even to
indirect measurement while holdup can partly remain after
cleanout but is accessible to indirect measurement.

In this example, the periodically recovered Pu powder is
allocated to an estimate of holdup for each batch occurring
during the period between glove box cleanouts. For example,
suppose 100mg of Pu powder is recovered after 3 batches
of processing Pu oxide cans in a glove box. Then 100/3 =
33.3mg of Pu powder is reassigned to each of batch 1, batch 2,
and batch 3. Figure 14 is an example, with two realizations
in a situation with zero holdup, and two realizations in a
situation as just described, but with some variation in how
many batches of cans are processed before the glove box
is cleaned out, with batch-to-batch cross talk arising from
periodic cleanout of holdup.

Section 3 described quantile estimation for desired small
tail probabilities for several cases, including assuming the

data 𝑥 is normally distributed and assuming the distribution
of 𝑥 is a mixture of distributions. Process variation arising
from varying amounts of waste generated per batch will
generally lead to batchMBs having an unknown distribution.
Therefore, either mixture fitting (because mixtures of normal
distributions are known to provide an effective approxima-
tion tomany distributions) or BIC-based likelihood selection
can be considered as a way to estimate desired quantiles.

The residuals in nuclear material accounting (NMA) are
the material balances defined as MB = 𝑇in + 𝐼begin − 𝑇out −
𝐼end, where 𝑇 is a transfer and 𝐼 is an inventory. In the
absence of process variation such as irregular amounts of
SNM deposited to holdup per period, and periodic cleanout
of the holdup, then the MB will have approximately a normal
distribution (because of the central limit effect that arises
from combiningmanymeasurements in theMB calculation).
However, facilities have sometimes observed nonnormal
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Figure 15: Realizations of 600 values in arbitrary units (a.u.). In (a) there are 600 MBs with cleanout between every batch of 3MBs, with the
amount to holdup each period having a normal distribution. Subplot (b) is the same as (a), but with the amount to holdup each period having
a uniform distribution. Subplots (c) and (d) are for 600 realizations from a normal distribution for comparison.

MBs, particularly if holdup can fluctuate wildly, as assumed
in Example 2.

Figure 15 plots nonparametric density estimates from
600 simulated batches, with cleanout between every set of 3
batches, so there are 200 cleanouts. In Figure 15, the assumed
throughput is 100 units, inventory is 100 units, and amount
deposited to the glove box is 5 units per batch. The assumed
measurement error standard deviations are 0.5% relative
random and systematic, with 10% process variation in the
average amount deposited to holdup of 5 units.The recovered
powder is measured with 1% relative random and systematic
error standard deviation. Figure 15(a) assumes the amount
deposited to holdup each batch is 𝐻 ∼ 𝑁(5,.5). Figure 15(b)
assumes the amount deposited to holdup each batch is 𝐻 ∼

Uniform with a mean of 5 and width corresponding to a
standard deviation of 0.5. For comparison, Figures 15(c) and
15(d) are each for 600 simulated normal random variables.

There is evidence for mixture behavior in Figures 15(a) and
15(b) and also evidence for thinner-than-normal tails in
Figures 15(a) and 15(b).

For a more quantitative assessment of whether the result-
ing distribution of the 600MBs is approximately normally
distributed, one can estimate the 0.025 and 0.975 quantiles
for a normal distribution by using 𝜇 ± 1.96

̂
𝜎, where 𝜇 is

the sample mean and ̂
𝜎 is the sample standard deviation.

Alternatively, one can simply use the observed quantiles of
the 600 observations to estimate the 0.025 and 0.975 quantiles
(or use any of the options described in Section 3). For
Figure 15(b), the (0.025, 0.975) quantiles are estimated as
(−3.72, 6.04) using the observed quanttiles or (−3.44, 5.82)
using 𝜇 ± 1.96

̂
𝜎. The differences −3.44 − (−3.72) = 0.28 and

(6.04 − 5.82) = 0.22 are both much too large to occur by
chance (which we confirmed by simulation in R), so there is
strong evidence that it is not adequate to assume a normal
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distribution. For Figure 15(b), the (0.025, 0.975) quantiles are
estimated as (−2.43, 3.06) using the observed quantiles and
(−2.46, 3.16) using 𝜇 ± 1.96

̂
𝜎. In this case, the differences

−2.46 − (−2.43) = −0.03 and 3.16 − 3.06 = 0.10 are not too
large to have occurred by chance; however, the differences
are in the direction of evidence for a thinner-than-normal
distribution.

This batch-to-batch cross talk illustrates the possibility of
nonnormal MBs when MBs are computed for each batch.
Batch MBs are currently regarded as PM residuals rather
than NMA residuals. In either case, sequences of batch MBs
are very likely to require cautious analyses, with attention to
alarm threshold estimation as in Section 3.

To end this Examples section, we mention that although
pyro-reprocessing options are only in the development stages,
similar batch-to-batch cross talk is expected, for example, to
arise from partial cleanouts of the electrorefiner (ER) [40–
47]. PM residual streams associated with the ER are therefore
likely to exhibit batch-to-batch “cross-talk” that complicates
safeguards, largely due to Uranium and U/TRU (transUra-
nium) behavior in the ER and other process equipment. That
is, apparent losses in one batch can appear as a gain in another
batch as in our example above.

5. Summary

We presented options to estimate an alarm threshold cor-
responding to a small false alarm probability 𝑝 for a range
of assumptions regarding the data-generating mechanism.
Because analytical evaluation is very difficult, depending on
the case, we recommend simulation studies such as presented
here to estimate the root-mean-squared estimation error in ̂

𝑝

to estimate a false alarm probability for candidate threshold
estimation options.

In some cases, parametric distributions such as the
normal or lognormal or a mixture of normals can provide a
reasonable approximation upon which to base alarm thresh-
old estimation. Not surprisingly, the more one correctly
assumes about the underlying data-generation mechanism,
the smaller the required sample size for accurate estimate of
𝑝. As a rough rule of thumb, approximately 100 observations
are required for reasonably effective estimation of 𝑝. The rule
of thumb is motivated by finding in our examples that either
(a) there is a very slow decrease in the RMSE as 𝑛 increases
beyond 100, so increasing PM training data requirements
beyond approximately 𝑛 = 100 observations is probably not
necessary, or (b) the RMSE is very small for some value of
𝑛 near 100 or less. Of course there are exceptions to any
such rule. For example, we considered mixture distributions
for which none of the components was extremely rare. If
one or more mixture components is rare (such as less than
5% of the overall distribution), then larger sample sizes are
needed.

Two process monitoring case studies from nuclear safe-
guards were presented. The case studies support a safeguards
systems option that combines PM and NMA residuals on
equal footing [31]. The option requires estimating quantiles
in PM residuals corresponding to user-specified small tail

probabilities per residual stream, such as 0.001 or 0.025, in
order tomaintain a small (such as 0.05) per-year system-wide
false alarm probability.
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