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Abstract

The normalisation constant in the distribution of a discrete ran-
dom variable may not be available in closed form; in such cases the
calculation of the likelihood can be computationally expensive. Ap-
proximations of the likelihood or approximate Bayesian computation
(ABC) methods can be used; but the resulting MCMC algorithm may
not sample from the target of interest. In certain situations one can effi-
ciently compute lower and upper bounds on the likelihood. As a result,
the target density and the acceptance probability of the Metropolis-
Hastings algorithm can be bounded. We propose an efficient and exact
MCMC algorithm based on the idea of retrospective sampling. This
procedure can be applied to a number of discrete distributions, one of
which is the COM-Poisson distribution. In practice the bounds on the
acceptance probability do not need to be particularly tight in order to
accept or reject a move. We demonstrate this method using data on
the emergency hospital admissions in Scotland in 2010, where the main
interest lies in the estimation of the variability of admissions, since it
is considered as a proxy for health inequalities.

Keywords: Bayesian methods; likelihood; Markov chain Monte Carlo; re-
gression
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1 Introduction

Bayesian and likelihood inference require the repeated evaluation of the like-
lihood function, the probability (density) function π(y|θ) of the observed
data y, regarded as a function of the model parameter θ. In some sam-
pling models the function π(y|θ) is completely specified, in others it is only
available up to a constant of proportionality Z(θ), which must be taken into
account when making inference about θ. We propose an MCMC algorithm
which only makes use of cheaply computed, arbitrarily precise, upper and
lower bounds on Z(θ). We consider in detail the case of the COM-Poisson
distribution.

Approximating the normalisation constant with respect to the observed
data can make MCMC methods inaccurate. Instead, we propose an MCMC
scheme based on the idea of retrospective sampling: first draw the uni-
form random variable U which is used to decide on the outcome of the
Metropolis-Hastings acceptance/rejection move and then perform any calcu-
lations needed on the acceptance ratio. Depending on the value of U , the
acceptance ratio (which involves Z both in the numerator and denominator)
may not be needed to be known exactly.

The article is organised as follows. Sections 2 and 3 present an overview
of the COM-Poisson distribution and the basic idea behind the proposed
retrospective sampling scheme. In Section 4 we describe a general approach
to the construction of the bounds on Z(θ) for the case of discrete random
variables. In Section 5 we apply the method to data on hospital emergency
admissions in Scotland, where identifying geographical areas with high vari-
ance is the main interest since variation in admissions is a proxy for health
inequalities. Concluding remarks can be found in Section 6.

2 COM-Poisson distribution

The COM-Poisson distribution (Conway &Maxwell, 1962) is a two-parameter
generalisation of the Poisson distribution that allows for different levels of
dispersion. The probability mass function of the COM-Poisson(λ, ν) distri-
bution is

P (Y = y|λ, ν) =
λy

(y!)ν
1

Z(λ, ν)
y = 0, 1, 2, . . . (1)

for λ > 0 and ν ≥ 0, where Z(λ, ν) =

∞∑
j=0

λj

(j!)ν
. The additional parameter ν

allows the distribution to model under- dispersed (ν > 1) or over-dispersed
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(ν < 1) data. The Poisson distribution is a special case (ν = 1).
The normalisation constant Z(λ, ν) does not have a closed form (for ν 6=

1) and has to be approximated, but can be upper bounded. An asymptotic
approximation exists, which is reasonably accurate for λ > 10ν (Minka et al.,
2003).

Shmueli et al. (2005) describe methods for estimating the parameters of
the COM-Poisson and show its flexibility in fitting count data compared to
other distributions. They show that

E[Y ] ≈ λ
1
ν +

1

2ν
− 1

2
,V[Y ] ≈ λ

1
ν

ν
. (2)

This parametrisation of the COM-Poisson does not have a clear centering
parameter, so we will use the reparametrisation µ = λ

1
ν as proposed by

Guikema & Coffelt (2008). The probability mass function is then

P (Y = y|µ, ν) =

(
µy

y!

)ν 1

Z(µ, ν)
y = 0, 1, 2, . . . (3)

with Z(µ, ν) =

∞∑
j=0

(
µj

j!

)ν
. The mean and variance can be approximated by

E[Y ] ≈ µ+
1

2ν
− 1

2
,V[Y ] ≈ µ

ν
. (4)

Thus, in the new parametrisation µ closely approximates the mean, un-
less both µ and ν are small. The mode of the distribution is bµc, as this
formulation is just a tempered Poisson distribution.

The fact that Z(µ, ν), and thus the probability mass function P (Y =
y|µ, ν), is very expensive to compute, has been a key limiting factor for the
use of the COM-Poisson distribution. In particular, in a Bayesian approach
using the Metropolis-Hastings algorithm, each move requires an evaluation
of Z(µ, ν) in order to compute the acceptance ratio. In Section 3 we will
present an MCMC algorithm that does not need Z(µ, ν) to be computed
exactly. In Section 4 we will then derive arbitrarily precise lower and upper
bounds for Z(µ, ν).

3 Retrospective sampling

In simulation-based Bayesian inference we are interested in drawing sam-
ples from the posterior distribution of the parameters π(θ|y) ∝ π(y|θ)π(θ),
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where π(θ) denotes the prior distibution of θ. In the Metropolis-Hastings
algorithm a Markov chain is constructed in which, when the current state
is θ, a candidate state θ∗ is drawn from a proposal distribution q(θ∗|θ) and
then accepted with probability min{1, p} with

p =
π(y|θ∗)π(θ∗)

π(y|θ)π(θ)

q(θ|θ∗)
q(θ∗|θ)

. (5)

If θ∗ is rejected, the chain remains at the current state θ. In order to ac-
cept the candidate θ∗ with probability min{1, p}, the acceptance ratio p is
compared to a random U ∼ Unif(0, 1) and θ∗ is accepted if U < p. The key
idea of the proposed algorithm is that p needs to be known exactly only if U
and p are very close. This requires exchanging the order of simulation. This
idea, known as retrospective sampling, was first proposed by Papaspiliopou-
los & Roberts (2008) as a way of sampling from a Dirichlet process. It has
been used, amongst other things, for simulation of diffusion sample paths by
Beskos et al. (2006) and Sermaidis et al. (2013).

Suppose we have a sequence of increasingly and arbitrarily precise lower
and upper bounds for π(y|θ), denoted by π̌(y|θ) and π̂(y|θ), respectively.
Plugging these bounds into (5) yields lower and upper bounds for the accep-
tance probability

p̌n =
π̌n(y|θ∗)π(θ∗)

π̂n(y|θ)π(θ)

q(θ|θ∗)
q(θ∗|θ)

p̂n =
π̂n(y|θ∗)π(θ∗)

π̌n(y|θ)π(θ)

q(θ|θ∗)
q(θ∗|θ)

(6)

By construction p̌n ≤ p ≤ p̂n as well as p̌n → p and p̂n → p as n → ∞.
The proposed algorithm for deciding on the acceptance of θ∗ then proceeds
as follows.

1. Draw U ∼ Unif(0, 1) and set the number of refinements n = 0.

2. Compute p̌n and p̂n and compare them to U .

• If U ≤ p̌n, accept the candidate value.

• If U > p̂n, reject the candidate value.

• If p̌n < U < p̂n, refine the bounds, i.e increase n and return to
step 2.

Figure 1 illustrates this idea. Panel 1a shows the Metropolis-Hastings
strategy where p is the acceptance ratio and u1, u2 are two realizations of
the Unif(0, 1) distribution. In the first case we accept the candidate value
θ∗ since u1 < p whereas in the second case we reject it since u2 > p. The
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acceptance and rejection regions can also be seen in the figure. Panel 1b
shows the retrospective sampling strategy along with the refinement region.
When a realization of the Unif(0, 1) falls into the refinement region (e.g.
u3), then in order to make a decision we have to refine the bounds. Panel 1c
shows the new bounds, where the refined lower bound is above u3 and as a
result we accept the candidate value θ∗.

Because the bounds p̌n and p̂n are arbitrarily tight, the algorithm will
eventually accept or reject a candidate value θ∗.

4 Piecewise geometric bounds

This section explains how the bounds required in the previous algorithm
can be constructed for discrete distributions with probability mass function
given by

π(y|θ) = Z(θ)−1pθ(y), (7)

where the normalisation constant Z(θ) =
∑

y pθ(y) is not available in closed
form. The COM-Poisson distribution is an example of such a distribution.

For ease of presentation we will assume that only computing the right
tail is computationally challenging. At the end of the section we will explain
how the method can be applied to bounding the left tail as well.

A simple way of reducing the computational burden is to compute the
normalisation constant Z(θ) up to a kth term and use this as a lower bound
for Z(θ). An upper bound can be obtained by also considering an upper
bound for the remaining terms. For the approach to be computationally
efficient, k should be chosen to be not too large, which in turn implies that
the upper bound for the remaining terms will be rather loose.

On the other hand, if the ratio of consecutive probabilities is bounded
by constants over a certain range of y

ǎy0,y1 ≤
pθ(y + 1)

pθ(y)
≤ ây0,y1 , y ∈ {y0, y0 + 1, . . . , y1 − 1}, (8)

then tighter bounds can be obtained, at little excess computationally cost.
We will now construct bounds based on the constants ǎy0,y1 , ây0,y1 . These

tighter bounds are based on including piecewise bounds on a sequence of
increasingly large blocks of probabilities in the tails. This corresponds to
using the following lower bound and upper bound for Z(θ):

Ž(θ) = E(θ) + B̌(θ), Ẑ(θ) = E(θ) + B̂(θ) + R̂(θ),
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where E(θ) =
∑k1

j=0 pθ(j) is obtained by computing the sum of the first k1
terms exactly. B̌(θ) and B̂(θ) are piecewise bounds on blocks of probabilities,
computed as set out below. R̂(θ) is an upper bound on the remaining terms.

If (8) holds, then for all j ∈ {0, . . . , r} with r = y1 − 1− y0

(ǎy0,y1)j ≤ pθ(y0 + j)

pθ(y0)
=
pθ(y0 + 1)

pθ(y0)
· · · pθ(y0 + j)

pθ(y0 + j − 1)
≤ (ây0,y1)j . (9)

We can rewrite the sum of the block of r + 1 probabilities as
r∑
j=0

pθ(y0 + j) = pθ(y0)
r∑
j=0

pθ(y0 + j)

pθ(y0)
. (10)

Taking advantage of (9) and (10) we obtain the bounds:

b̌y0,y1(θ) = pθ(y0)

r∑
j=0

(ǎy0,y1)j = pθ(y0)
1− (ǎy0,y1)r+1

1− ǎy0,y1
≤

r∑
j=0

pθ(y0 + j)

b̂y0,y1(θ) = pθ(y0)

r∑
j=0

(ây0,y1)j = pθ(y0)
1− (ây0,y1)r+1

1− ây0,y1
≥

r∑
j=0

pθ(y0 + j).

(11)

These bounds are computed in blocks of probabilities. Denote by s =
(k1, . . . , kln) the sequence of end-points of the piecewise bounds, we then
define

B̌(θ) =

ln−1∑
i=1

b̌ki,ki+1−1(θ), B̂(θ) =

ln−1∑
i=1

b̂ki,ki+1−1(θ), (12)

which satisfies B̌(θ) ≤
kln−1∑
j=k1

pθ(j) ≤ B̂(θ). Finally, using the tail bound

R̂(θ) = b̂kln ,∞(θ) ≥
∞∑

j=kln

pθ(j), (13)

we obtain the desired result that

Ž(θ) = E(θ) + B̌(θ) ≤
∞∑
j=0

pθ(j) ≤ E(θ) + B̂(θ) + R̂(θ) = Ẑ(θ) (14)

The previous bounds and the number of terms k1 should have n, the number
of refinements, as an extra index since everytime there is a need for refine-
ment we have to choose a larger k1 and the bounds will be different. For
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the rest of the section we will assume that n is fixed. The bounds are in-
creasingly tight as long as k1 →∞. In practice the values of k1 and kln are
chosen depending on θ and the magnitude the previous contribution to the
sum made. In our experience, choosing ks such that ks+1−ks = ds for d ≈ 2
works well in practice.

So far we have set out how to compute bounds for the right tail of the
distribution. If the mode of the distribution is large, then it is advisable
to use the same strategy as above for the left tail too. The approach is
essentially the same, with the main difference being that the bounds are
computed right to left and that the summation will stop at 0.

A graphical explanation of the procedure can be seen in Figure 2 where
the first two blocks are comprised of 3 and 5 probabilities respectively.

4.1 Bounds on the COM-Poisson normalisation constant

In the COM-Poisson case, the bounds in (8) and (11) are

ǎy0,y1 =

(
µ

y1

)ν
, ây0,y1 =

(
µ

y0 + 1

)ν
, (15)

for y0, y1 > bµc and

b̌y0,y1(θ) = p(y0)

(
µ

y1

)ν 1−
(
µr

yr1

)ν
1−

(
µ
y1

)ν , b̂y0,y1(θ) = p(y0)

(
µ

y0 + 1

)ν 1−
(

µr

(y0+1)r

)ν
1−

(
µ

y0+1

)ν ,

(16)
where r = y1−1−y0 and p(y0) =

(
µy0
y0!

)ν
is the unnormalised density of the

COM-Poisson. Bounds for the left tail of the distribution are computed in
a similar way.

4.2 Weighted Poisson distributions

Del Castillo & Pérez-Casany (1998) developed a family of distributions,
known as weighted Poisson distributions, that can handle both under- and
overdispersion. A random variable Y is defined to have a weighted Poisson
distribution if its probability mass function can be written as

P (Y = y) = e−λ
λywy
Wy!

y = 0, 1, 2, . . . (17)

where W = e−λ
∞∑
j=0

λjwj
j!

. The weight function is defined as wy = (y + a)r

with a ≥ 0, r ∈ R. The Poisson distribution is a special case when r = 0.
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These distributions are used for modelling data with partial recording: when
the event Y = y occurs, a Poisson variable is recorded with probability
proportional to wy.

The bounds, found in (8), for this distribution for r > 0 are

ǎy0,y1 =
λ

y1

wy1
wy1−1

, ây0,y1 =
λ

y0 + 1

wy0+1

wy0
. (18)

Similar bounds can be constructed for r < 0.

5 Application on emergency hospital admissions in
Scotland

As an illustration of the method, we consider data on the hospital emer-
gency admissions for each intermediate geography (1235 in total) in Scot-
land for the year 2010. Scotland is divided into 6505 small areas, called
datazones, each containing around 350 households. An intermediate geogra-
phy is comprised of neighbouring datazones. The Scottish Index of Multiple
Deprivation (SIMD) is the Scottish government’s official tool for identifying
datazones suffering from deprivation. This index provides a relative ranking
for each datazone, from 1 (most deprived) to 6505 (least deprived). The
Scottish government’s cut-off for a datazone to be considered deprived is to
belong in the 15% most deprived datazones in Scotland. Using the SIMD
ranks for areas larger than datazones (such as intermediate geographies) one
can consider the percentage of datazones within that intermediate geogra-
phy that are in the 15% most deprived e.g. if an intermediate geography
is comprised of 20 datazones and 10 of them are in the 15% most deprived
then its local share is 50%. This can also be applied in larger areas such as
local authorities.

Tables 1 and 2 refer to the local share of deprived datazones for each
local authority in Scotland. Local authorities in the west of Scotland such
as Glasgow City, Inverclyde, North Ayrshire, North Lanarkshire, and West
Dunbartonshire have a high local share of the most deprived datazones while
at the same time their local share of least deprived datazones is small. Parts
of the east of Scotland (Edinburgh City, East Lothian) show the opposite
trend. It is important to note that the local share percentages of each local
authority are not always showing which areas are deprived. Local authorities
such as Eilean Siar, Orkney Islands, and Shetland Islands do not have any
datazones in the 15% most deprived in the 2009 SIMD. This happens due
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to the small number of intermediate geographies they are comprised of and
not because they are considered to be affluent areas.

This approach, of using a cut-off point for the datazones, has its draw-
backs since datazones that just miss the 15% cut-off point are treated the
same as the ones that are far away from it. A better approach, and the one
followed in this paper, would be to weight every datazone and average over
all the datazones that belong to the same intermediate geography. Datazones
with a small SIMD rank (most deprived) will have a higher weight and each
datazone’s SIMD rank contributes for the deprivation of the intermediate
geography they belong to.

The Scottish Government classifies urban and rural areas across Scotland
based on two criteria: population and accessibility to areas of contiguous high
population density postcodes (that make up what is known as a settlement).
The joint classification can be seen in table 3. Using this classification as an
ordinal covariate is not appropriate due to how it is coded. For example the
6th class (accessible rural area) is closer to an urban area than the previous
two. Instead, we will use as covariates the percentages of those classes within
each intermediate geography, e.g. if an intermediate geography is comprised
of 6 datazones where 3 of them are coded as large urban areas and the other
3 as accessible small towns, the percentages of the first and the third class
will be 50% and 0% for all the other classes. For ease of interpretation we
center all covariates.

5.1 Regression model and results

Sellers & Shmueli (2010) propose a COM-Poisson regression model based on
the (λ, ν) formulation whereas Guikema & Coffelt (2008) prefer to work with
the (µ, ν) reformulation. Modifying the latter model we take into account
the population and age structure of each intermediate geography and include
expected counts (Ei) of hospital emergency admissions for each intermediate
geography. The expected counts are computed using the age structure of
each intermediate geography’s population, together with estimates of the
probabilities of hospitalisation in each age group. To account for the spatial
autocorrelation of the data we use a conditional autoregressive model, which
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is specified as follows

P (Yi = yi|µi, νi) =

(
µyii
yi!

)νi 1

Z(µi, νi)
,

Z(µi, νi) =

∞∑
j=0

(
µji
j!

)νi
,

log
µi
Ei

= xᵀ
iβ + φi ⇒ E[Yi] ≈ Ei exp {xᵀ

iβ + φi},

log νi = −xᵀ
i c ⇒ V[Yi] ≈ Ei exp {xᵀ

iβ + φi + xᵀ
i c}. (19)

Y is the dependent random variable being modelled (emergency hospi-
tal admissions), Ei is the expected emergency hospital admissions for the
i intermediate geography, φi are the random effects for the parameter µ,
while β and c are the regression coefficients for the centering link function
and the shape link function. Finally, the covariates xi are comprised of:
the deprivation weight of the intermediate geography i, the percentages of
each urban/rural class within the intermediate geography i (using large ur-
ban areas as the baseline model), and 32 dummy variables that relate the
intermediate geography i to its local authority.

The CAR prior being used for the random effects φi in this model is given
by

φk|φ−k ∼ N(
ρ
∑n

i=1wkiφi
ρ
∑n

i=1wki + 1− ρ
,

τ2

ρ
∑n

i=1wki + 1− ρ
) (20)

and was proposed by Leroux et al. (2000) for modelling varying strengths
of spatial autocorrelation. It can be seen as a generalisation of Besag et al.
(1991) CAR prior where the first model can only represent strong spatial
autocorrelation and produces smooth random effects. The random effects
for non-neighbouring areas are conditionally independent given the values of
the random effects of all the other areas. The parameter ρ can be seen as
a spatial autocorrelation parameter, with ρ = 0 corresponding to indepen-
dence, while ρ = 1 corresponds to strong spatial autocorrelation. In the first
case there is an absence of spatial correlation in the data and the overdisper-
sion is not caused by a spatial heterogeneity while in the second case all the
overdispersion is due to the spatial autocorrelation. When 0 < ρ < 1, the
random effects are correlated and the data present a combination of spatial
structured and unstructured components. Lee (2011) compares four of the
most common CAR models and concludes that the model by Leroux et al.
(2000) is the most appealing from both theoretical and practical standpoints.

In this formulation the coefficients have a direct link to either the mean or
the variance, providing insight into the behavior of the dependent variable.
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Larger values of β and c can be translated to higher mean and higher vari-
ance for the response variable. We implement a Bayesian approach for the
previous model, and propose an efficient and exact MCMC algorithm based
on the piecewise geometric bounds and the retrospective sampling algorithm.
We use noninformative multivariate normal priors for the regression coeffi-
cients with a mean of zero and a variance of 106. A uniform prior on the
unit interval is specified for ρ, and a uniform prior on the interval (0, 1000)
is adopted for τ2. In addition, the proposal distribution q is chosen to be a
multivariate normal centered at the current value. Thus, the second ratio in
(5) cancels out due to the symmetry of the multivariate normal distribution.
This algorithm is known as a random walk Metropolis-Hastings.

Table 4 shows the non-model-based regression coefficients for each lo-
cal authority (32 local authorities in total). These coefficients refer to the
intercepts of the 32 regression models (one for each local authority) where
the offset (e.g. logEi) is the only covariate. It must be noted that some of
the local authorities were comprised of a small number of data points, for
example Orkney Islands, Shetland Islands, and Eilean Siar include less than
10 intermediate geographies. Table 5 shows the regression coefficients for
the model in (19). The COM-Poisson coefficients for ν of most covariates
are positive which is a sign of overdispersion. Table 5 shows that there is
a wide range of values for the coefficients c. They can take negative values
(Orkney Islands) and up to greater than 2 (Dumfries & Galloway, Scot-
tish Borders). The regression coefficients b1, c1 for the deprivation weights
have positive posterior median estimates, 0.87 and 0.05 respectively, with
(0.84, 0.90) and (−0.36, 0.52) as their 95% credible intervals. This translates
to higher emergency hospital admissions for intermediate geographies with
high deprivation. This is not true for the variance, since the credible interval
includes negative values. The data have a strong spatial autocorrelation as
can be seen, in Table 6, from the credible intervals of the autocorrelation
parameter ρ.

Figure 3 shows the medians (plotted as diamonds) and the 95% credible
intervals (plotted as lines) for the regression coefficients for both models.
The black lines refer to the non-model-based coefficients whereas the red
lines refer to the regression model including all covariates. In the top panel
it can be seen that adjusting for the covariates (deprivation, urban/rural
classification, and local authorities) shifts the regression coefficients towards
zero. As we mentioned earlier, modelling the variance is the main interest
in this application since it helps us identify areas with health inequalities.
Comparing the panels in Figure 3 reveals a different pattern for the mean
effects and variance effects of the local authorities. Local authorities with
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large µ coefficients (corresponding to poor health) do not necessarily have
large ν coefficients (corresponding to large health inequalities). This can
be seen in local authorities such as North Ayrshire, North Lanarkshire and
South Ayrshire.

The coefficients for the percentages of each class can be seen in Figure
4 where large urban areas are considered to be the baseline model. The
remaining classes are plotted with regards to their distance from an urban
area. The black circle represents the large urban area class whereas the
blue, brown and violet lines represent the urban area, small town and rural
area classes respectively. It can be seen that very remote small towns have
higher (on average) emergency hospital admissions (see Panel 4a) and higher
variance (see Panel 4b) compared to large urban areas.

Finally, Figure 5 shows the standardised incidence ratio of the average
emergency hospital admissions using the non-model-based coefficients (on
the left) and the coefficients of the full model (on the right).

R (R Core Team, 2014) was used for all the computations in this paper.
Traceplots, density plots, autocorrelation plots (for every regression coeffi-
cient) and results for the Gelman and Rubin diagnostic, (Gelman & Rubin,
1992), were employed to assess convergence of the MCMC sampler to the
posterior distribution, using the coda package (Plummer et al., 2006).

5.2 Range of bounds for the acceptance probability

The computational speed of the proposed technique depends on which strat-
egy is chosen to refine the bounds. We chose to increase the number of terms
that are computed exactly for the estimation of the normalisation constant
and use the piecewise geometric bounds for the remaining terms. We start by
computing exactly 240 terms for every Z(µi, νi) and every time the bounds
needed to be refined we computed 100 more terms for the observations that
have a large difference between the upper and lower bound. One can increase
the precision by a specified amount every time a refinement is necessary. Ta-
bles 7 and 8 show the percentages of every possible outcome (acceptance,
rejection, or further refinement) for different number of refinements. Almost
half of the time, for both parameters, there is no need to refine the bounds
and we can make an accept/reject decision on just computing 240 terms.
Tables 9 and 10 show the mean values for the difference of the log bounds.
One can see that, even when a large number of refinements is needed in order
to make a decision, the difference of the log bounds is still large. This shows
that there is no need to be very precise in our approximations. The weighted
averages for the log differences and the computed terms are also shown. The
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weighted average for the log difference of the bounds when the MCMC re-
jects the candidate value for the first parameter is 2.51 which means that
a rejection decision can often be reached with very loose upper and lower
bounds.

6 Conclusion

In this paper we have focused on the problem of computing the normalising
constant in the probability mass function of a discrete random variable, when
it is not available in closed form and its computation is demanding. We have
shown that if the ratios of consecutive probabilities can be bounded over
ranges of the random variable, lower and upper bounds on the normalising
constant can be derived, leading to an exact and fast MCMC algorithm in
a Bayesian inferential setting. Furthermore, the results show that in order
for the MCMC algorithm to make a decision between accepting or rejecting
a candidate move, the approximation of the bounds of the acceptance prob-
ability does not need to be precise. We applied this method to emergency
hospital admissions data in Scotland, using the COM-Poisson distribution.
We concentrated on the COM-Poisson distribution, a very flexible general-
isation of the Poisson distribution, since it allows modelling the mean and
the variance explicitly. As a result, we were able to identify areas with a
high level of health inequalities.
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0 u1 p u2 1

Acceptance region Rejection region

(a) Metropolis-Hastings scheme

0 u1 p̌nu3 p̂n u2 1

Acceptance region Refinement region Rejection region

(b) Retrospective sampling scheme (before refinement)

0 u1 u3 p̌n+1 p̂n+1
u2 1

Acceptance region Refinement region Rejection region

(c) Retrospective sampling scheme (after refinement)

Figure 1: Illustration of the retrospective sampling algorithm (panels b and
c) in contrast to the standard Metropolis-Hastings algorithm (panel a).
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exacttail tailpiecewise geometric piecewise geometric exacttail tailpiecewise geometric piecewise geometric

Figure 2: Computing the lower and upper bounds of the normalisation con-
stant in blocks of probabilities. We first compute exactly the probabilities
close to the mode of the distribution, and then compute the lower and upper
bounds in blocks of probabilities where we only have to compute exactly the
first probability of each block.
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Table 1: The local share considers the percentage of a local authority’s
datazones that are amongst the 15% most deprived in Scotland.

Local Authorities Local Share Local Authorities Local Share
Aberdeen City 10.49 Highland 5.48
Aberdeenshire 1.33 Inverclyde 38.18
Angus 4.23 Midlothian 3.57
Argyll & Bute 8.20 Moray 0.86
Clackmannanshire 18.75 North Ayrshire 24.02
Dumfries & Galloway 5.70 North Lanarkshire 21.29
Dundee City 30.17 Orkney Islands 0.00
East Ayrshire 17.53 Perth & Kinross 3.43
East Dunbartonshire 3.15 Renfrewshire 20.09
East Lothian 2.50 Scottish Borders 3.85
East Renfrewshire 4.17 Shetland Islands 0.00
Edinburgh, City of 10.93 South Ayrshire 12.24
Eilean Siar 0.00 South Lanarkshire 14.57
Falkirk 8.63 Stirling 6.36
Fife 11.26 West Dunbartonshire 26.27
Glasgow City 43.52 West Lothian 9.00
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Table 2: The local share considers the percentage of a local authority’s
datazones that are amongst the 15% least deprived in Scotland.

Local Authorities Local Share Local Authorities Local Share
Aberdeen City 35.58 Highland 4.79
Aberdeenshire 21.93 Inverclyde 2.73
Angus 9.86 Midlothian 14.29
Argyll & Bute 4.10 Moray 8.62
Clackmannanshire 9.38 North Ayrshire 2.79
Dumfries & Galloway 4.15 North Lanarkshire 6.22
Dundee City 11.17 Orkney Islands 0.00
East Ayrshire 6.49 Perth & Kinross 12.57
East Dunbartonshire 47.24 Renfrewshire 17.76
East Lothian 18.33 Scottish Borders 4.62
East Renfrewshire 57.50 Shetland Islands 0.00
Edinburgh, City of 39.53 South Ayrshire 16.33
Eilean Siar 0.00 South Lanarkshire 12.31
Falkirk 13.20 Stirling 18.18
Fife 12.36 West Dunbartonshire 2.54
Glasgow City 4.76 West Lothian 16.11
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Table 3: Scottish Government joint Urban/Rural Classification.

Class Class name Description
1 Large Urban Areas settlements of over 125.000 people.
2 Other Urban Areas settlements of 10.000 to 125.000 people.
3 Accessible Small Towns settlements of between 3.000 and 10.000 people,

and within a 30 minute drive time
to a settlement of 10.000 or more.

4 Remote Small Towns settlements of between 3.000 and 10.000 people,
and with a drive time between 30 and 60 minutes
to a settlement of 10.000 or more.

5 Very Remote Small Towns settlements of between 3.000 and 10.000 people,
and with a drive time of over 60 minutes
to a settlement of 10.000 or more.

6 Accessible Rural Areas Areas with a population of less than 3.000 people,
and within a 30 minute drive time
to a settlement of 10.000 or more.

7 Remote Rural Areas Areas with a population of less than 3.000 people,
and with a drive time between 30 and 60 minutes
to a settlement of 10.000 or more.

8 Very Remote Rural Areas Areas with a population of less than 3.000 people,
and with a drive time of over 60 minutes
to a settlement of 10.000 or more.
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Table 4: Posterior medians of the non-model-based regression coefficients for
each local authority.

Local Authorities β0 c0 Local Authorities β0 c0
Aberdeen City -0.03 3.59 Highland -0.06 3.41
Aberdeenshire -0.26 2.10 Inverclyde 0.18 3.62
Angus -0.16 2.15 Midlothian -0.13 2.31
Argyll & Bute -0.07 3.05 Moray -0.25 2.27
Clackmannanshire -0.18 2.57 North Ayrshire 0.18 3.06
Dumfries & Galloway -0.18 3.23 North Lanarkshire 0.18 2.93
Dundee City 0.04 3.14 Orkney Islands -0.17 2.29
East Ayrshire 0.16 3.24 Perth & Kinross -0.13 3.02
East Dunbartonshire -0.15 3.14 Renfrewshire 0.06 3.59
East Lothian -0.25 2.48 Scottish Borders 0.01 3.10
East Renfrewshire -0.26 2.99 Shetland Islands -0.18 3.23
Edinburgh, City of -0.31 3.69 South Ayrshire 0.11 3.10
Eilean Siar -0.02 2.26 South Lanarkshire 0.01 2.54
Falkirk -0.15 2.26 Stirling -0.21 3.43
Fife -0.14 2.75 West Dunbartonshire 0.13 2.57
Glasgow City 0.20 3.59 West Lothian 0.09 3.08
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Table 5: Posterior medians for the regression coefficients of the full model.

Covariates βi ci Covariates βi ci
Deprivation weight 0.87 0.05 Eilean Siar 0.00 0.39
Other urban area 0.00 -0.31 Falkirk -0.19 1.48
Accesible small town -0.04 0.06 Fife -0.14 1.40
Remote small town -0.04 -0.12 Glasgow City 0.03 1.72
Very remote small town 0.15 0.91 Highland 0.00 1.87
Accesible rural area -0.08 -0.01 Inverclyde 0.04 1.39
Remote rural area -0.19 0.11 Midlothian -0.11 1.39
Very remote rural area -0.09 0.51 Moray -0.12 1.44
Aberdeen City 0.05 1.26 North Ayrshire 0.07 1.19
Aberdeenshire -0.05 1.49 North Lanarkshire 0.06 1.08
Angus -0.11 1.93 Orkney Islands -0.11 -0.33
Argyll & Bute -0.02 1.62 Perth & Kinross 0.03 1.26
Clackmannanshire -0.21 1.68 Renfrewshire 0.04 1.70
Dumfries & Galloway -0.10 2.42 Scottish Borders 0.12 2.38
Dundee City -0.07 1.58 Shetland Islands -0.13 1.04
East Ayrshire 0.07 1.87 South Ayrshire 0.12 1.17
East Dunbartonshire 0.05 1.57 South Lanarkshire -0.01 1.45
East Lothian -0.16 0.69 Stirling -0.08 1.75
East Renfrewshire -0.03 1.29 West Dunbartonshire -0.03 1.05
Edinburgh, City of -0.20 1.92 West Lothian 0.05 1.68

Table 6: Posterior medians for the variance and spatial autocorrelation of
the random effects.

Median 2.5% 97.5%

τ2 0.004 0.002 0.008
ρ 0.927 0.783 0.971
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Table 7: Percentages for refinements when updating the parameter µ.

Refinements Accepted Rejected Still need refinement
0 9.6% 43.2% 47.2%
1 11.5% 20.1% 15.6%

≥ 2 7.3% 8.3% 0%
Total 28.4% 71.6%

Table 8: Percentages for refinements when updating the parameter ν.

Refinements Accepted Rejected Still need refinement
0 11.9% 27.2% 60.9%
1 16.3% 23.8% 20.8%

≥ 2 9.6% 11.2% 0%
Total 37.8% 62.2%

Table 9: Mean values for the difference of the log bounds and the computed
terms when updating the parameter µ.

Refinements Accepted Acceptance Computed terms Rejected Rejection Computed terms
log p̂n − log p̌n log p̂n − log p̌n

0 33.9% 3.51 240 60.3% 3.55 240
1 40.5% 1.11 264.71 28.1% 1.13 264.66

≥ 2 25.6% 0.40 426.15 11.6% 0.43 420.55
Weighted average 1.74 297.84 2.51 267.75

Table 10: Mean values for the difference of the log bounds and the computed
terms when updating the parameter ν.

Refinements Accepted Acceptance Computed terms Rejected Rejection Computed terms
log p̂n − log p̌n log p̂n − log p̌n

0 31.5% 3.52 240 43.7% 3.55 240
1 43.1% 1.11 264.72 38.2% 1.13 264.70

≥ 2 25.4% 0.41 425.16 18.1% 0.43 420.06
Weighted average 1.69 297.82 2.07 281.52
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(b) Regression coefficients for ν
Figure 3: Credible intervals for the regression coefficients of the local au-
thorities. The non-model-based regression coefficients of table 4 are shown
in black and the full model of table 5 in red.
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Figure 4: Credible intervals for the regression coefficients for each class in
table 3.
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Figure 5: SIR for emergency hospital admissions.
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