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Assessing the importance and expression of the 6 year
geomagnetic oscillation
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[1] The first time derivative of residual length-of-day observations is known to contain a
distinctive 6 year periodic oscillation. Here we theorize that through the flow accelerations
at the top of the core the same periodicity should arise in the geomagnetic secular
acceleration. We use the secular acceleration of the CHAOS-3 and CM4 geomagnetic field
models to recover frequency spectra through both a traditional Fourier analysis and an
empirical mode decomposition. We identify the 6 year periodic signal in the geomagnetic
secular acceleration and characterize its spatial behavior. This signal seems to be closely
related to recent geomagnetic jerks. We also identify a 2.5 year periodic signal in CHAOS-3
with unknown origin. This signal is strictly axially dipolar and is absent from other
magnetic or geodetic time series.

Citation: Silva, L., L. Jackson, and J. Mound (2012), Assessing the importance and expression of the 6 year geomagnetic
oscillation., J. Geophys. Res., 117, B10101, doi:10.1029/2012JB009405.

1. Introduction

[2] The residual length of day (LOD), after accounting
for the variations in atmospheric angular momentum [Ponsar
et al., 2003], contains a broad range of periods but the high-
frequency part of its spectrum features a strong signal with a
period of approximately 6 years [Abarca del Rio et al., 2000;
Mound and Buffett, 2006]. This signal is thought to be the
consequence of the interactions between the Earth’s core and
mantle [Mound and Buffett, 2006, 2007] and can be related
to the fluid flow at the top of the core if this flow is assumed
to be representative of the motions deeper inside the core
[Jault et al., 1988; Jault and Le Mouël, 1991; Jackson et al.,
1993]. Since the flow at the top of the core is responsible for
the geomagnetic secular variation (SV), it is plausible to
think that the 6 year periodic signal present in LOD should
have a counterpart in the magnetic signal [Gillet et al., 2010].
We show this to be the case provided that the time variations
of the magnetic field are dominated by low frequencies
(section 3).
[3] We use a time series of LOD (R. Holme, personal

communication, 2010) to confirm the existence of this 6 year
periodic signal exposed by Abarca del Rio et al. [2000]. This
time series extends from 1962 to 2008 and has a sampling
rate of 17 days. To emphasize the shorter periods we look at
the first time derivative of LOD. We also compute frequency
spectra of the secular acceleration (SA) provided by the
CHAOS-3 [Olsen et al., 2010] and CM4 [Sabaka et al.,
2004] models. CHAOS-3 represents Earth’s main magnetic

field between 1997 and 2010 with time-varying Gauss
coefficients up to spherical harmonic degree and order 20.
The time varying coefficients of the SV are expanded in
terms of order 6 B splines, with a 6 month knot spacing. This
13 year long model has high spatiotemporal resolution and
accuracy, making it ideal to study short time scale oscilla-
tions of the field. Although CHAOS-3 may be too short a
time series to resolve signals with a period of the order of
6 years unequivocally, it allows us to consider whether they
are a possible element of the solution. To account for the
small length of the CHAOS-3 time series, we also analyze
CM4 for periodic signals. CM4 represents the main magnetic
field of the Earth for 42.5 years between 1960 and 2002.5.
Coefficients of the SV are expanded in terms of cubic B
splines up to spherical harmonic degree and order 13. A
42.5 year time span may allow for a much better assessment
of periods up to 20 years with a Fourier analysis but a knot
spacing of 2.5 years may not be ideal for the correct recovery
of shorter periods.
[4] We take two different approaches to evaluate the

Fourier spectrum of the SA. First, we take the frequency
spectrum of the SA globally (see section 4.1). We then
compare these results with the average of spectra taken at 44
locations (see section 5.1). To assess whether aliasing effects
associated with the application of Fourier analysis on rela-
tively short time series (i.e., CHAOS-3) contaminated our
results, we also use an empirical mode decomposition
(EMD) [Huang et al., 1998; Roberts et al., 2007; Jackson
and Mound, 2010] of time series obtained from CHAOS-3
and CM4 at the above 44 locations. The procedure is
described in section 4.2 and the corresponding results are
shown in section 5.2.
[5] Finally, we present maps of the SA (section 5.3),

filtered to the period range between 5 and 8 years at the core-
mantle boundary (CMB), highlighting its spatial features.
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A general discussion of the results and the conclusions are
presented in section 6.

2. Fourier Spectra of dLOD/dt

[6] We computed the discrete Fourier transform of a time
series of dLOD/dt reported by Holme and De Viron [2005]
and extended by Holme [2010]. This time series is a penal-
ized least squares spline fit to the data after removal of
atmospheric contributions and periodic annual and semian-
nual signals. Holme [2010] tested two penalizations for the
spline fits resulting in “smooth” and “rough” curves. Figure 1a
shows these signals as a function of time for both the smooth
and rough cases. Figure 1b shows the amplitude of these
signals as a function of the period of oscillation. Most of the
power is restricted to periods above 5 years with a clear peak
close to 6 years (as was also seen by Mound and Buffett
[2006]). Considering the rough time series instead of the
smooth one increases the energy of the short period noise and
further emphasizes the 6 year signal.

3. Relation Between dLOD/dt, Flow Acceleration,
and Secular Acceleration

[7] The fastest oscillations of dLOD/dt are thought to orig-
inate from mantle-atmosphere and mantle-ocean interactions.

These contributions being corrected for, the remaining signal
is thought to result from the interaction between the core and
the mantle and reflect the changes in flow at the top of the
core. The part of the SA generated by the flow acceleration at
the top of the core should, therefore, evolve in a fashion
coherent with that of the dLOD/dt.
[8] To investigate that relation, we start by describing the

flow acceleration, _~u, at the top of the free stream, just below
the CMB, which can be written in terms of surface vector
spherical harmonics as

_~u tð Þ ¼
X∞
p¼1

Xp
q¼0

X
k¼c;s

_sqkp tð Þ~S qk

p þ _tqkp tð Þ~T qk
p

n o
: ð1Þ

Here, the ~S
qk

p ¼ ro~rHYqk
p are the poloidal and ~T

qk
p ¼

ro~rH� r̂Yqk
p

� �
the toroidal elementary vectors of degree p

and order q and either k = c for cosine or k = s for sine. ro is
the radius of the outer core and the Yp

qc/s and Yp
qc/s are

Schmidt seminormalized spherical harmonics. ~rH is the
horizontal part of the del operator in spherical coordinates.
Here, as in the remainder of this paper, dots over symbols
represent a partial derivative with respect to time, of order
equal to the number of dots.
[9] To first order, the pressure forces inside Earth’s core

are thought to be balanced by the Coriolis force. This bal-
ance of forces implies that zonal motions inside the core are
invariant with respect to the direction along the axis of
rotation of the mantle. It follows that such cylindrical
motions are completely determined by the zonal motions at
the surface of the core and, therefore, by the tp

0c coefficients
of the surface flow. Jault et al. [1988] and Jault and Le
Mouël [1991] have shown that the axial angular momen-
tum of the core relies only on the t1

0c and t3
0c coefficients of

the flow. Conservation of the angular momentum of the
whole Earth then implies that only these coefficients con-
tribute to the changes in length of day [Jault et al., 1988;
Jault and Le Mouël, 1991; Jackson et al., 1993]. The _t0c1 and
_t0c3 coefficients of the flow acceleration are then trivially
related to dLOD/dt through

dLOD=dt ¼ T0ð Þ2
2p

Ic
Ic þ Im

_t0c1 þ 12

7
_t0c3

� �
; ð2Þ

where Ic and Im are the moments of inertia of the core and
mantle, respectively and (T0)

2/(2p) � Ic/(Ic + Im) equals
1.138 � 103 ms2. The coefficients of the flow acceleration,
_t0c1 and _t0c3 are given in yr�2 and the standard length of day is
T0 = 8.64 � 107 ms. To obtain a dLOD/dt in ms/yr, we must
perform a reduction amounting to dividing the result by the
number of milliseconds in a year (3.156 � 1010 ms/yr).
[10] The flow acceleration at the top of the core also takes

part in generating the SA. The first time derivative of the
radial, frozen-flux induction equation

€Br ¼ �~rH � _~uBr

� �
� ~rH � ~u _Br

� �
; ð3Þ

relates the flow and the flow acceleration to the geomagnetic
field and its evolution with time. It indicates that the flow
advects some of the SV to produce some SA but also that the

Figure 1. Filtered time series of dLOD/dt from Holme
[2010]: (a) original signal and (b) frequency spectrum.
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field itself interacts with the flow acceleration. The second
term on the right hand side of equation (3) is known to be
negligible with respect to the first (2% to 10% of the total SA
depending on the degree and epoch) [Maus et al., 2008;
Lesur et al., 2010; Silva and Hulot, 2012]. The SA can,
therefore, be well approximated by the interactions between
the flow acceleration and the main geomagnetic field

€Br ≈� ~rH � _~uBr

� �
: ð4Þ

[11] Equations (2) and (4) tell us that only the _t0c1 and _t0c3
coefficients of the flow acceleration can relate to both
dLOD/dt and SA. To understand this relation, we start by
expanding equation (4) in terms of spherical harmonics
using the standard decomposition of the radial component of
the field and SA:

Br ¼
X∞
n¼1

Xn
m¼0

nþ 1ð Þ a

r

� � nþ2ð Þ
gmn Y

mc
n þ hmnY

ms
n

� � ð5Þ

€Br ¼
X∞
i¼1

Xi

j¼0

iþ 1ð Þ a

r

� � iþ2ð Þ
€gj
iY

jc
i þ €h

j
iY

js
i

� �
: ð6Þ

We can now substitute equations (1), (5), and (6) at the CMB
into equation (4) to give

X∞
i¼1

Xi

j¼0

iþ 1ð Þ a

ro

� � iþ2ð Þ
€g j
iY

jc
i þ €h

j
iY

js
i

� �

≈�~rH �
X∞
n¼1

Xn
m¼0

nþ 1ð Þ a

ro

� � nþ2ð ÞX∞
p¼1

Xp
q¼0

X
k¼c;s

_sqkp ~S
qk

p þ _tqkp ~T
qk
p

� �h

� gmn Y
mc
n þ hmnY

ms
n

� �i
: ð7Þ

[12] The contribution of the toroidal zonal flow accelera-
tion coefficients _t0c1 and _t0c3 to the secular acceleration is then
given by

€G j
i ≈

X∞
n¼1

2iþ 1ð Þ
4p

nþ 1

iþ 1

a

ro

� � n�ið ÞXn
m¼0

_t0c1 h
m
n I1sc

mj
ni þ _t0c3 h

m
n I3sc

mj
ni

n o

ð8Þ

€H j
i ≈

X∞
n¼1

2iþ 1ð Þ
4p

nþ 1

iþ 1

a

ro

� � n�ið ÞXn
m¼0

_t0c1 g
m
n I1cs

mj
ni þ _t0c3 g

m
n I3cs

mj
ni

n o
;

ð9Þ

with

I1scmjni ¼
ZZ

S

~T
0
1 � ~rHY

ms
n

� �
Yjc

i dW; ð10Þ

I3scmjni ¼
ZZ

S

~T
0
3 � ~rHY

ms
n

� �
Yjc

i dW; ð11Þ

I1csmjni ¼
ZZ

S

~T
0
1 � ~rHY

mc
n

� �
Yjs

i dW; ð12Þ

I3csmjni ¼
ZZ

S

~T
0
3 � ~rHY

mc
n

� �
Yjs

i dW; ð13Þ

where results obtained by equation (16) of Hulot et al.
[1992] were used to eliminate the integrals that evaluate to
zero. The integrals I1scni

jj, I3scni
jj, I1csni

mj and I3csni
mj will only

evaluate to a nonzero value if the field and SA coefficients
are of the same nonzero spherical harmonic order, m = j.
These integrals have been shown to be bounded and con-
vergent for large values of i and n [Hulot et al., 1992].
Values of I1scni

jj and I3scni
jj up to degree and order 5 are

shown in Table 1. For brevity, we will focus on the €G j
i , but a

similar analysis can be performed for the €Hj
i.

[13] We applied a Fourier transform to equation (8) so that
a given oscillation frequency of the SA can be associated
with the oscillation frequencies of both the field and flow
acceleration. This leads to

~€G
j

i wð Þ ≈
X∞
n¼1

2iþ 1ð Þ
4p

nþ 1

iþ 1

a

c

� � n�ið Þ Z
~h
j
n w� wuð Þ ~_t

0

1 wuð ÞI1scjjni
�

þ ~_t
0

3 wuð ÞI3scjjni
�
dwu; ð14Þ

where wu is the frequency of the flow and dLOD/dt and �
over symbols represents the Fourier transform of the quan-
tity given by the symbol.
[14] The integral in equation (14) is only appreciable

for those values of w that make hn
j(w � wu) appreciable.

McLeod [1996] has shown that most of the energy of the
field is in its low-frequency component. This is especially
true for the large spatial scales of the field, which dominate

even at the CMB, making ~h
j
n w� wuð Þonly appreciable when

wu is close to w. Therefore, the SA generated by interactions
between the field and the _t0c1 and _t0c3 coefficients of the flow

Table 1. Values of the Interaction Integrals (Equation (8)) for the
First Five Degrees of the SA and Main Fielda

i j n I1scni
jj I3scni

jj

1 1 1 0.70710678 0
2 1 2 0.23570226 0.40406102
2 2 2 0.47140452 �0.20203051
3 1 1 0 0.74230749
3 1 3 0.11785113 0.23570226
3 2 3 0.23570226 0.23570226
3 3 3 0.35355339 �0.23570226
4 1 2 0 0.30737963
4 2 2 0 0.43470044
4 1 4 0.07071068 0.14876792
4 2 4 0.14142136 0.21488700
4 3 4 0.21213203 0.11570838
4 4 4 0.28284271 �0.23141676
5 1 3 0 0.16939909
5 2 3 0 0.28345889
5 3 3 0 0.28345889
5 1 5 0.04714045 0.10153328
5 2 5 0.09428090 0.16680468
5 3 5 0.14142136 0.15955230
5 4 5 0.18856181 0.04351426
5 5 5 0.23570226 �0.21757132

aHere i and n are the degrees of the SA and main field, respectively, and j
is the common order.
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acceleration should oscillate in a manner close to that of the
dLOD/dt; deviations from an exact match and dispersion
result from the fact that the field has some energy on fre-
quencies higher than zero.
[15] The above exercise serves to show that the dominant

frequencies present in dLOD/dt also gives a contribution to
the SA. This contribution to the SA may be generated by the
very large scale toroidal zonal flow acceleration interacting
with the nonzonal field if the latter is steady on short time
scales, a situation that seems to be applicable to the Earth.
Should the field vary more quickly at the CMB, the spec-
trum of its SA would bear much less resemblance to that of
dLOD/dt.

4. Frequency Analysis of the Secular Acceleration

4.1. Fourier Approach

[16] The frequency spectrum of the secular acceleration
can be computed in a number of ways. It is therefore useful
to define this spectrum. The Fourier transform of the radial
component of the main field’s secular acceleration can be
written as (recall equation (5))

~€Br ¼
X∞
i¼1

Xi

j¼0

iþ 1ð Þ a

r

� � iþ2ð Þ
~€g
j
i wð ÞYjc

i þ ~€h
j

i wð ÞYjs
i ;

� �
ð15Þ

where ~€g
j
i wð Þ and ~€h

j

i wð Þ are the Fourier transforms of the
second time derivatives of the Gauss coefficients, €gj

i tð Þ and
€h
j
i tð Þ.

4.1.1. Global Analysis
[17] ~€Br is a complicated quantity; its representation in

space is difficult to visualize and interpret. Using the squared

amplitude of ~€Br is still not satisfactory as it requires a series
of map representations, one for each recovered frequency.
We thus define the frequency spectrum of radial SA as the
surface integral of the squared amplitude of equation (15).
We can explicitly write this quantity as

Z
j~€Brj2dW ¼

X∞
i¼1

X∞
l¼1

iþ 1ð Þ l þ 1ð Þ a

r

� � lþiþ4ð ÞXi

j¼0

Xl

k¼0

� ~€g
j*
i wð Þ~€gk

l wð Þ
Z

Yjc
i Y

kc
l dWþ ~€h

j*
i wð Þ~€h

k

l wð Þ
�

�
Z

Yjs
i Y

ks
l dW

	
; ð16Þ

where we used the orthogonality conditions for the parity of
spherical harmonics to make the separation between even
and odd coefficients [Abramowitz and Stegun, 1964]. An
asterisk denotes the complex conjugate of a complex quan-
tity. Evaluating the integrals in equation (16) and summing
over k and l leads to the desired expression for the spectrum
f(w):

f wð Þ ¼ 1

4p

Z
j~€Brj2dW

¼
XN
i¼1

iþ 1ð Þ2
2iþ 1

a

r

� �2 iþ2ð ÞXn
j¼0

j~€gj
i wð Þj2 þ j~€h

j

i wð Þj2
� �

: ð17Þ

Equation (17) is the form used in the numerical imple-
mentation of the global spectrum. Calculations were per-
formed for fixed radius, r = a = 6371 km (the Earth’s
surface).
4.1.2. Localized Analysis
[18] An alternative way of computing the frequency

spectrum of the geomagnetic SA is to sample it at point
locations over the surface of the Earth and then average
those estimates. We use 10 equally spaced locations around
the equator, 20 at midlatitudes (10 at 30�N, and 10 at 30�S),
12 at high latitudes (6 at 60�N and 6 at 60�S), and one at
each of the poles. For each location the frequency spectrum
is computed by taking the discrete Fourier transform (DFT)
of the corresponding time series. In all cases, a best fit linear
trend was first subtracted from the data. A cosine tapper was
then applied and the data were padded with zeros up to four
times its original length before computing DFTs. Making
these changes does not greatly influence the final result but
allows for a better resolution around the region of interest in
frequency space.

4.2. Empirical Mode Decomposition Approach

[19] Although the Fourier approach is effective in finding
the periodic components of a given signal, it does not cope
well with periodic signals whose amplitudes vary with time.
Furthermore, spurious periodicities and dispersion can arise
from Fourier analysis if periods of similar length to the time
series exist. In such cases empirical mode decomposition
(EMD) can be used to decompose the series into a number
of simple oscillations. The method, first outlined by Huang
et al. [1998] and reviewed by Huang and Wu [2008], has
been used in a variety of contexts including the study of
periodicities of the geomagnetic field [e.g., Roberts et al.,
2007; Jackson and Mound, 2010].
[20] EMD is an analysis method which decomposes a time

series into a set of quasiperiodic signals (intrinsic mode
functions, IMF) and a residual. The sum of all the IMFs and
the residual returns the original series. The IMFs are bounded,
quasiperiodic functions with zero mean. When a periodicity
exists, their autocorrelation function has semiregularly
spaced maxima and minima that exceed a 95% confidence
interval. The first minimum corresponds to half period ( p/2),
the first maximum to p, the second minimum to 3p/2 and so
on [Roberts et al., 2007].

5. Results

5.1. Fourier Spectra of the Secular Acceleration

[21] Fourier spectra of the SA are shown in Figure 2. Thin
light gray lines represent the spectra at the specified loca-
tions, while thick dark gray lines represent their average.
Black dashed lines show the output of equation (17). It is
clear that the spectral content varies quite significantly with
the location at Earth’s surface. Nevertheless, on average, the
local and global methods seem to agree on the dominant
periods of the signal.
[22] For CM4 (Figure 2a), a peak at around 5.5 years and

another at roughly 7.5 years can be seen. However, the clear
6 year peak present in the dLOD/dt spectrum (Figure 1)
corresponds here to a trough. We explain this by the fact that
the 6 year signal has a time-dependent amplitude causing a
splitting of the energy into two peaks, one with energy at
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shorter periods and the other with energy at longer periods.
In fact, the periods are so close that they can be interpreted
as the components of a beat. Using the periods of 5.5 and
7.5 years as the period of two interfering waves, the resulting
beat would have a period of approximately 6.35 years and an
envelope with a period of 41.25 years. In the next section we
will see that this is indeed the case by analyzing the EMD
decomposition of the signal. For periods above 8 years we
can see a large energy dispersion which we do not try to
interpret other than that it may contain the signature of the
spectral timescale proposed by Holme et al. [2011].
[23] CHAOS-3 (Figure 2b), on the other hand, shows a

clear and isolated peak at 2.5 years, with a large dispersion
of the remaining energy at periods between 4 and 13 years.
The highest energy seems, nevertheless, to be centered
around a period of 6 years. Note that the amplitude of the
average is an indication of how many locations registered a
given frequency and not only the amplitude of the signal at
that particular frequency. This will be made clearer with the
EMD decomposition.

[24] To better understand the spatial composition of these
features, we split the global Fourier spectrum of the
CHAOS-3 model into terms of the same spherical harmonic
degree (Figure 3a) and terms of the same spherical harmonic
order (Figure 3b). The 6 year signal seems to be composed
mostly by nonzonal terms. It is dominated by the coeffi-
cients of spherical harmonic degree 1 and 3 and of order 1.
Such a signal can easily be generated by the toroidal zonal
terms of the flow acceleration. Recalling Table 1, the degree
1 (i = 1), 6 year periodic signal is dominantly generated by _t0c1
(high values of I1scni

jj) and the degree 3 (i = 3), by _t0c3 (high

values of I3scni
jj). Which of _t0c1 or _t0c3 dominates the budget for

dLOD/dt is, therefore, linked to which of €G0
1 ( €H0

1) or
€G0
3 ( €H0

3)
dominate the SA at each instant. This separation may be used
in the future to assess whether and which different processes
contribute to both the generation of the secular acceleration
and dLOD/dt.
[25] The 2.5 year signal in CHAOS-3, on the other hand,

seems to result from an oscillation of the axial dipole (i = 1
and j = 0, see Figure 3). It has also been seen at observatory
locations distributed worldwide [Ladynin and Popova,
2008] but no definite origin has been found for this signal.

Figure 2. Frequency spectra of the secular acceleration for
periods up to 13 years in (a) CM4 and (b) CHAOS-3. Thin
gray lines are the frequency spectra for each location. Their
average is shown by the thick dark gray line. The spectrum
computed according to equation (17) is shown as a black
dashed line.

Figure 3. Frequency spectra of the secular acceleration
from CHAOS-3. (a) Only the summation was carried over
the order j in equation (16), each line corresponding to a
degree i. (b) The summation was carried over the degree i,
each line corresponding to an order j.
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At the CMB, an SA with i = 1 and j = 0 cannot be generated
by the interactions of the field with the toroidal zonal flow
acceleration (see equation (14) and Table 1) responsible for
the changes in LOD, but can be the result of flow accelera-
tions contributing to changes in pressure at the CMB [e.g.,
Chulliat and Hulot, 2000]. If these changes in pressure result
in torques that are not aligned with the axis of rotation they
may contribute to changes in the orientation of the Earth’s
rotation axis (the Earth orientation parameters, EOP)
[Hinderer et al., 1987, 1990; Greff-Lefftz and Legros, 1995;
Hide et al., 1996; Hulot et al., 1996], although this signal
should be small. A 2.5 year periodic signature of this process
is, however, not present in the EOP data [see, e.g., Gibert
and Le Mouël, 2008], rejecting the above hypothesis. This
signal may either be of external (or induced) origin
[Wardinski, 2005] or a consequence of the methods used to
construct the CHAOS-3 model.

5.2. EMD Analysis of the SA

[26] We applied the EMD method to time series derived
from both CM4 and CHAOS-3 for the 44 locations
described above. Figure 4 shows the result of performing
EMD upon an example time series extracted from CM4 at a
point 60�N, 18�E. The same analysis was repeated for all
time series obtained from both CM4 and CHAOS-3.

[27] Note that a given IMF does not strictly correspond to
one given frequency. A certain frequency may even be
present in two distinct IMFs although only at different times.
Furthermore, for two different signals, a given IMF may
correspond to totally different oscillations. This is the case
for the IMFs of time series obtained at different locations. In
this respect, grouping data by frequency rather than by IMF
is a better choice (see Figure 5). Figure 5 shows the number
of locations that registered a period within 1 year bins for
both CM4 and CHAOS-3. The first bin in each panel
represents signals with periods between 0 and 1 year.
[28] For CM4 (Figure 5a), a very large number of obser-

vatories register signals with a period between 5 and 7 years.
Figure 4b shows that typical IMFs vary in amplitude over
time but have a rather constant period, justifying the spectral
splitting seen in the previous section. Periods between 11 and
13 years are also observed at a smaller number of locations.
This latter signal is dominated by order 1 components as was
the case for CHAOS-3 (see Figure 3b) which excludes a
contamination from the solar cycle. This signal may, how-
ever, be a manifestation of the spectral timescale proposed by
Holme et al. [2011]. We thus validate the spectra obtained
with the Fourier methods, where energy was found at periods
of 5.5 and 7.5 years followed by a spectral gap at 8.5 years
and energy dispersion for periods above 10 years.

Figure 4. Empirical mode decomposition of a time series extracted from CM4 at position 60�N, 18�E.
(a) The original signal. (b) First, (c) second, and (d) third IMFs. (e) The residual after the decomposition.
(f) The autocorrelation function of IMF 1. Black horizontal lines in Figure 4f bound the 95% confidence
interval.
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[29] For CHAOS-3 (Figure 5b), a signal with periods
between 2 and 3 years is registered at a large number of
locations, validating the result of the Fourier analysis where
this signal was characterized as an oscillation of the axially
dipolar part of the SA. For the remaining period bins, the
observatory count is nearly normally distributed around the
6 to 7 year bin with a predominance of signals with a period
between 4 and 5 years. The longer period signals that make
for a large contribution in the Fourier case are now absent
from the EMD analysis. This is because the longer periods
are accounted for by the residuals (see Figure 4f). The big
dispersion of the energy around periods of 6 years makes it
difficult to identify conclusively a geomagnetic oscillation
that could directly be related to the changes in dLOD/dt. The
dispersion observed might be due to contamination from the
2–3 year periods which, we recall, may well be an artifact
of the CHAOS-3 model. Nevertheless, a large number of
observatories register signals with a period between 5 and
8 years, as was the case for CM4.

5.3. Spatial Features

[30] Following the suggestion of the previous section that
a significant part of the signal of CHAOS-3 has periods
between 5 and 8 years, we filtered the SA from this model to
that particular band. As done for the Fourier analysis, we
detrend, correct and pad the data with zeros before trans-
forming to spectral space. Figure 6 shows maps of €Br at the
CMB, filtered to the period range 5–8 years between 2000.6
and 2009.6. Notice that even though signals could have any
periodicity within the 5 to 8 year bracket, the strongest fea-
tures cycle in periods of roughly 6 years.
[31] The 6 year periodic signal seems to be composed of

two main effects. In the Eastern hemisphere, flux patches of
different sign seem to originate at high latitudes and migrate
to the equatorial region where they then circle each other. At
high latitudes, these patches are well correlated with strong
patches in the field and the flow accelerations computed by
Silva and Hulot [2012]. The changes happening below India
correlate remarkably well with the pattern of both the 2003
(see, e.g., Figure 9 of Olsen and Mandea [2007] or Figures 2
and 3 of Olsen and Mandea [2008]) and 2007 [see, e.g.,
Chulliat et al., 2010] geomagnetic jerks. In the Atlantic
hemisphere another two flux patches oscillate between pos-
itive and negative sign, again strongly resembling the var-
iations suggested by Olsen and Mandea [2008]. We argue
that this resemblance is not a coincidence. The 2003 and
2007 events could well be a consequence of the 6 year
geomagnetic oscillation at a time when the long-term secular
variation is nearly constant (as is the case for most obser-
vatories over the last decade) and carry the signature of the
associated dLOD/dt.

6. Conclusions

[32] We have looked at the secular acceleration of Earth’s
main magnetic field between 1997 and 2010 using CHAOS-
3 and between 1960 and 2002.5 using CM4. We did this
with the goal of identifying and characterizing a 6 year
geomagnetic signal brought forth by Gillet et al. [2010],
which can be related to the periodic changes in the observed
LOD [Mound and Buffett, 2006, 2007].
[33] Our results show the existence of a 6 year periodic

signal in both CM4 and CHAOS-3, although the identifica-
tion is considerably less robust for the latter. For an SA
signal to bear a relation to dLOD/dt it must be the result of
interactions of the field with the toroidal zonal flow accel-
eration at the top of the core, specifically its _t0c1 and _t0c3 terms.
The magnetic signal generated by such interactions should,
furthermore, be nonzonal. We verify that this is the case. The
6 year periodic magnetic signal is found to be dominated by
spherical harmonics of order 1 and of degree 1 and 3 and
relate to interactions with the flow acceleration of those
degrees, respectively.
[34] The spatial features of the 6 year cycle were estimated

by filtering of the CHAOS-3 SA. The dominant patches are
constrained to the latitudinal band within 30� of the equator
and mostly localized under the Atlantic and Indian Oceans.
These patches correlate well with recent estimates of the
geometry of the 2003 and 2007 geomagnetic jerks [Olsen
and Mandea, 2007, 2008; Chulliat et al., 2010] and of the
changes in flow acceleration related to them [Silva and

Figure 5. Number of locations reporting SA with period
within each 1 year bin. The first bin represents periods between
0 and 1 year. Shades of gray represent results obtained for
different IMFs. (a) Results from CM4 and (b) results from
CHAOS-3.
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Figure 6. Sequence of maps of filtered €Br at the CMB. The last two maps show the €Br and Br main field
at epoch 2008.6 as provided by CHAOS-3 for comparison. All the maps of SA were truncated to degree
and order 8. The map of the main field is truncated at degree and order 13. The map of the main field is in
units of mT. The map of the CHAOS-3 SA at 2008.6 is in units of mT/yr2. The scale for the filtered SA is
given below the 2009.6 map.
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Hulot, 2012]. The pattern also seems to be close to that
presented by Le Huy et al. [1998] for the 1969, 1979 and
1992 geomagnetic jerks. If such a correlation is confirmed
for further geomagnetic jerks, the spatial and temporal fea-
tures of the 6 year cycle described in this paper could be
used to improve predictions of the evolution of the geo-
magnetic secular variation such as the ones used in IGRF
[Finlay et al., 2010].
[35] Our results also show that a 2.5 year periodic signal

exists in CHAOS-3 and that it is clearly separated from the
remaining oscillatory components of the SA. However, we
find that both on theoretical and observational grounds, it
bears no relation to LOD. The source for this signal still
needs to be determined but the possibilities include external
sources wrongly mapped onto the internal field, induced
sources in the mantle or even an unmodeled oceanic or
induced crustal contribution.

[36] Acknowledgments. This work was funded by the Natural Envi-
ronment Research Council (grants NE/G002223/1 and NE/H524673/1).
Maps were produced using GMT [Wessel and Smith, 1998].
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