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Deployment is a fundamental issue inwireless sensor networks (WSNs), which affects the performance and lifetime of the networks.
Usually the sensor locations are precomputed based on “perfect” sensor detection model, whereas sensors may not always provide
reliable information, either due to operational tolerance levels or environmental factors. Therefore, it is very important to take
into account this uncertainty in the deployment process. In this paper, we address the problem of sensor deployment in a mixed
sensor network where the mobile and static nodes work collaboratively to perform deployment optimization task. We consider
the Gaussian white noise in the environment and present a centralized algorithm (FABGM for short) which discoveres vacancies
by using detection model based on false alarm and moves the mobile nodes according to the method based on bipartite graph
matching in this study. In this algorithm, the management node of the WSNs collects the geographical information of all of the
static and mobile sensors. Then, the management node executes the algorithm to get the best matches between mobile sensors and
coverage holes. Simulation results are presented to demonstrate the effectiveness of the proposed approach.

1. Introduction

Wireless sensor networks have received intensive research
interest in recent years due to their potential capability of
monitoring real physical environments and collecting data.
WSNs have been used in various applications, such as forest
monitoring, precision agriculture [1], battlefield surveillance,
and target tracking. However, in order to conduct their
tasks successfully, it is very important that they be deployed
properly.

Sensor deployment is at the initial stages in sensor net-
works research. It is an important issue which has attracted
much attention in recent years [2].The number and locations
of sensors deployed in a Region of Interest (RoI) determine
the topology of the network, which will further influence
many of its intrinsic properties, such as its coverage, connec-
tivity, cost, and lifetime. Consequently, the performance of a
sensor network depends to a large extent on its deployment.
A problem which impinges upon the success of any WSNs
deployment is the fact that sensory data are marred by the

flaw of uncertainty. Indeed, information provided by sensors
may not always reliable, either due to environmental factors
such as Gaussian white noise or operational tolerance levels.
Therefore, it is very important to take into account this
uncertainty in the deployment process.

However, WSNs cannot be deployed manually in many
working environments, such as remotemountainous regions,
battlefields, and regions polluted by poisonous gases. An
alternative method is scattering the sensors randomly, but
this is affected by many uncontrollable factors, and it is
difficult to achieve the desired deployment. In the last decade,
researchers have focused onmixed sensor networks, in which
the static nodes and mobile nodes work in a collaborative
fashion to perform deployment task. Such networks have the
advantage of mobility so they can be moved to appropriate
positions to enhance the extent of coverage and reduce the
number of nodes.

In this work, we explore the problem of uncertainty-
aware deployment in mixed wireless sensor networks. The
original contributions of this work are the following: first, we
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introduce a false alarm based detection model; a model con-
siders the existence of Gaussian white noise. Second, using
the detection model we compute joint detection probability
to discover the coverage vacancies. And then, we present
an approach which is based on bipartite graph matching to
determine the position of the mobile sensor nodes. Before
a mobile node moves to coverage vacancy, it will determine
whether there are static nodes within its sensing range. If
there are static nodes within its sensing range, it moves to
the coverage vacancy. Otherwise, it remains in its current
position. Experimental results are given to demonstrate the
efficiency of our approach.

The remainder of this paper is organized as follows.
Section 2 explains related works. Section 3 gives an overview
of the false alarm based detection model, and we detail our
deployment algorithm in Section 4. Section 5 presents our
experiments. This paper is concluded in Section 6.

2. Related Prior Works

According to the characteristics of the nodes that comprise
WSNs, there are three types of such networks, that is, (1) static
WSNs, in which all the nodes are static; (2) mobile WSNs,
in which all the sensors are mobile; and (3) mixed WSNs, in
which some of the nodes are static and some are mobile.

The greatest weakness of a random static WSN is that
there must be significant redundancy among the nodes in
order to achieve good coverage. And the deployment of a
deterministic static WSN is inefficient. In [3], the authors
use a sequential deployment of sensors that is, a limited
number of sensors; are deployed in each step until the desired
probability of detection of a target is achieved. Sensor place-
ment on two- and three-dimensional grids was formulated
as a combinatorial optimization problem and solved using
integer linear programming [4].Themain drawbacks of these
approaches are that the grid coverage approach relies on
“perfect” sensor detection; that is, a sensor is expected to
yield a binary yes/no detection outcome in every case. The
authors in [5] provide a polynomial-time, greedy, iterative
algorithm to determine the best placement of one sensor at
a time in a grid based scenario, such that each grid is covered
with a minimum confidence level. Uncertainty associated
with the predetermined sensor locations is considered in [6].
The authors propose two sensor placement algorithms, where
the sensor location is modeled as a random variable with
a Gaussian probability distribution. In [7, 8], the authors
define an evidence-based coverage model and conceive an
uncertainty-aware deployment algorithm, which determines
theminimumnumber of sensors and their locations to ensure
full area coverage.The evidence-based sensor coveragemodel
is a generalization of the probabilistic model.

In mobile WSNs, a fundamental issue is the coverage
problem. Many techniques have been developed to deal with
this issue, such as coverage pattern-based movement [9–12],
virtual force-based movement [13, 14], and Voronoi-based
movement [15]. A distributed energy-efficient deployment
algorithm is proposed by Heo and Varshney [9]. The goal
is the formation of an energy-efficient node topology for a

longer system lifetime. In order to achieve this goal, they
employ a synergistic combination of cluster structuring and
a peer-to-peer deployment scheme. Moreover, an energy-
efficient deployment algorithm based on Voronoi diagrams is
also proposed here.The authors in [13] propose a deployment
strategy to enhance coverage after an initial random place-
ment of sensors using virtual forces. A cluster head computes
the new locations of all the sensors after an initial deployment
that would maximize coverage, and then nodes reposition
themselves to the designated locations. Wang et al. [15] use
Voronoi diagrams to discover the coverage vacancies and
design three movement-assisted sensor deployment proto-
cols, including VEC (vector based), VOR (Voronoi based),
and minimax. The greatest weakness of a mobile WSN is its
price, which is significantly greater than the price of a static
WSN, because the price of mobile sensors is much greater
than the price of static sensors.

The mixed wireless sensor networks that are composed
of a mixture of mobile and static sensors are the tradeoff
between cost and coverage. To provide the required high
coverage, the mobile sensors have to move from dense areas
to sparse areas. In [16], the authors proposed a collaborative
coverage enhancing algorithm (coven) which uses a “Voronoi
polygon” to determine the placed positions and the number
of estimated holes. However, it is not feasible to applyVoronoi
diagrams in WSNs due to their excessive complexity. A grid
deployment method is proposed in [17], where the map is
divided into multiple individual grids, and the weight of
each grid is determined by environmental factors such as
predeployed nodes, boundaries, and obstacles. The grid with
minimum values is the goal of the mobile node. The authors
in [18] proposed a novel, centralized algorithm to deploy
a mixture of mobile and static sensors to construct sensor
networks which used Delaunay triangulation rather than a
Voronoi diagram to detect the coverage holes.

To the best of our knowledge, almost all related works
assume either a binary or a probabilistic-based coverage
model. The binary coverage model is overly simplistic and
does not reflect reality, while the probabilistic coverage
model is limited and does not allow the easy integration
of some related issues, such as sensor reliability. This paper
presents a centralized algorithm in which the management
node executed the algorithm to discover vacancies by using
detection model based on false alarm and then to get the
bestmatches betweenmobile sensors and coverage holes.The
detectionmodel used in our work considers the environment
factor and reflects reality well. Simulation results show the
effectiveness of our algorithm.

3. Detection Model

3.1. Assumptions. Our algorithm is based on the following
assumptions.

(i) The location of each sensor node is known, which can
be obtained at a low cost fromGlobal Positioning Sys-
tem (GPS) or through location discovery algorithms.

(ii) It is assumed that all sensor nodes have identical
capability for sensing and communication.
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(iii) The mobile nodes have the ability to move and can
move to the optimized position accurately.

3.2. Sensor DetectionModel. We assume that theWSNswork
in an environment with a Gaussian white noise, and each
sensor involved in the signal detection transmits a signal with
the same energy 𝑒tr. Thus, the signal received at a distance
of 𝑟 meters away will have energy of 𝑒tr/𝑟

𝛾. Here, a simple
geometric path lossmodel [19] is assumed, and the path loss is
proportional to 1/𝑟𝛾, where 𝛾 is the path loss exponent, which
is an environment-dependent constant typically between 2
and 4. We assume that the number of sensors which perform
signal detection is 𝑛.Thus, at sensor 𝑖, the observations under
the two different hypotheses are given by [20]

𝑦𝑖 =

{
{

{
{

{

𝛽

𝐷
𝛾/2

𝑡𝑖

+ 𝑛𝑖 𝐻1, 𝑖 = 1, 2, . . . , 𝑛,

𝑛𝑖 𝐻2, 𝑖 = 1, 2, . . . , 𝑛,

(1)

where 𝐻1 denotes the target-present hypothesis, and 𝐻0 is
the null hypothesis; 𝑦𝑖 is the received signal; 𝑛𝑖 is zero-mean,
complexGaussian noise with variance𝜎2;𝛽 is a scalar defined
by 𝛽 = √𝑒tr/2

𝛾; and 𝐷𝑡𝑖 denotes the distance between the
target (𝑥𝑡, 𝑦𝑡) and the sensor (𝑥𝑖, 𝑦𝑖); that is,

𝐷𝑡𝑖 =
√(𝑥𝑡 − 𝑥𝑖)

2
+ (𝑦𝑡 − 𝑦𝑖)

2
. (2)

It is noted that under hypothesis 𝐻1, the distance that
the active sensing signal traverses is given by 𝑟 = 2𝐷𝑡𝑖.
Therefore, for the 𝑖th sensor, the likelihood (probability
density function) under𝐻1 is given by

Pr (𝑦𝑖 | 𝐻1) =
1

√2𝜋𝜎
2
exp

{

{

{

−

1

2𝜎
2
(𝑦𝑖 −

𝛽

𝐷
𝛾/2

𝑡𝑖

)

2
}

}

}

, (3)

and the likelihood under𝐻0 is

Pr (𝑦𝑖 | 𝐻0) =
1

√2𝜋𝜎
2
exp{−

𝑦
2

𝑖

2𝜎
2
} . (4)

Now, let us focus on the Neyman-Pearson criterion.
The Neyman-Pearson criterion maximizes the probability
of detection 𝑃𝐷 subject to a predetermined bound on the
probability of false alarm 𝑃𝐹. In other words, the optimal
decision rule 𝜗 according to the Neyman-Pearson criterion
is the solution to the following constrained optimization
problem [21]:

max
𝜗

𝑃𝐷 (𝜗) subject to 𝑃𝐹 (𝜗) ≤ 𝛼. (5)

The Neyman-Pearson optimum test is a likelihood ratio test
[13]. From (3) and (4), the likelihood ratio for sensor 𝑖 can be
written as

𝐿 𝑖 (𝑦𝑖) =

𝑃𝑟 (𝑦𝑖 | 𝐻1)

𝑃𝑟 (𝑦𝑖 | 𝐻0)

= exp{ 1

2𝜎
2
(

2𝛽𝑦𝑖

𝐷
𝛾/2

𝑡𝑖

−

𝛽
2

𝐷
𝛾

𝑡𝑖

)} .

(6)

Since the 𝑛𝑖, 𝑖 ∈ [1, 𝑛], are assumed to be statistically inde-
pendent, the joint probability of the observations is simply
the product of the individual probability densities. Thus, let
us define 𝑦 = [𝑦1, . . . , 𝑦𝑛], for the 𝑛 sensors, the overall
likelihood ratio is

𝐿 (𝑦) =

𝑛

∏

𝑖=1

𝐿 𝑖 (𝑦𝑖) . (7)

For convenience, we consider the log-likelihood ratio, which
is given by

ln 𝐿 (𝑦) =

𝑛

∑

𝑖=1

ln 𝐿 𝑖 (𝑦𝑖)

=

1

2𝜎
2

𝑛

∑

𝑖=1

(

2𝛽𝑦𝑖

𝐷
𝛾/2

𝑡𝑖

−

𝛽
2

𝐷
𝛾

𝑡𝑖

) .

(8)

Therefore, the likelihood ratio test is given by [21]

1

2𝜎
2

𝑛

∑

𝑖=1

(

2𝛽𝑦𝑖

𝐷
𝛾/2

𝑡𝑖

−

𝛽
2

𝐷
𝛾

𝑡𝑖

) ≥ ln 𝜂 𝐻1,

1

2𝜎
2

𝑛

∑

𝑖=1

(

2𝛽𝑦𝑖

𝐷
𝛾/2

𝑡𝑖

−

𝛽
2

𝐷
𝛾

𝑡𝑖

) < ln 𝜂 𝐻0,

(9)

where 𝜂 is uniquely determined by solving 𝑃𝐹 = 𝛼. Equiva-
lently, we can reformulate (9) into

𝑛

∑

𝑖=1

𝑦𝑖

𝐷
𝛾/2

𝑡𝑖⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑔

≥

1

𝛽

𝜎
2 ln 𝜂 + 1

2

𝑛

∑

𝑖=1

𝛽

𝐷
𝛾

𝑡𝑖⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝜏

𝐻1,

𝑛

∑

𝑖=1

𝑦𝑖

𝐷
𝛾/2

𝑡𝑖⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑔

<

1

𝛽

𝜎
2 ln 𝜂 + 1

2

𝑛

∑

𝑖=1

𝛽

𝐷
𝛾

𝑡𝑖⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝜏

𝐻0,

(10)

where we have further defined the test statistics𝑔 and the new
threshold 𝜏. For a fixed set of sensors, the second part of 𝜏
will be fixed and known.The variable 𝑔 is actually a sufficient
statistic, and whenmaking a decision, knowing the value of 𝑔
will be just as good as knowing 𝑦. Then, invoking the model
for 𝑛𝑖, the hypothesis pair can be written as

𝐻0 : 𝑔 ∼ 𝑁(0,

𝑛

∑

𝑖=1

𝜎
2

𝐷
𝛾

𝑡𝑖

) versus

𝐻1 : 𝑔 ∼ 𝑁(

𝑛

∑

𝑖=1

𝛽

𝐷
𝛾

𝑡𝑖

,

𝑛

∑

𝑖=1

𝜎
2

𝐷
𝛾

𝑡𝑖

) .

(11)

For notational convenience, let us define

𝜇1 =

𝑛

∑

𝑖=1

𝛽

𝐷
𝛾

𝑡𝑖

, 𝜎
2

1
=

𝑛

∑

𝑖=1

𝜎
2

𝐷
𝛾

𝑡𝑖

. (12)
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Thus, the false alarm probability is

𝑃𝐹 = Pr (𝑔 > 𝜏 | 𝐻0)

= Pr(
𝑔

𝜎1

>

𝜏

𝜎1

| 𝐻0)

= 1 − Φ(

𝜏

𝜎1

) ,

(13)

where Φ(⋅) is the standard Gaussian cumulative distribution
function; that is,

Φ (𝑧) = ∫

𝑧

−∞

1

√2𝜋

exp(−𝑧
2

2

)𝑑𝑧. (14)

Similarly, the detection probability is given by

𝑃𝐷 = Pr (𝑔 > 𝜏 | 𝐻1)

= Pr(
𝑔 − 𝑢1

𝜎1

>

𝜏 − 𝑢1

𝜎1

| 𝐻1)

= 1 − Φ(

𝜏 − 𝜇1

𝜎1

) .

(15)

It is clearly seen that with the aid of (11), the false alarm
probability𝑃𝐹, the detection probability𝑃𝐷, and the detection
threshold 𝜏 (or 𝜂) are connected by some one-to-one rela-
tions. Suppose that we define the allowed level of false alarm
as 𝑃𝐹 = 𝛼, then from (13), we obtain

𝜏

𝜎1

= Φ
−1
(1 − 𝛼) . (16)

By the definitions of 𝜇1 and 𝜎1 in (12), we can write

𝜇1

𝜎1

=

𝛽

𝜎

(

𝑛

∑

𝑖=1

1

𝐷
𝛾

𝑡𝑖

)

1/2

. (17)

Therefore, by using (16) and (17), we can reformulate 𝑃𝐷 of
(15) into

𝑃𝐷 = 1 − Φ(Φ
−1
(1 − 𝛼) −

𝛽

𝜎

(

𝑛

∑

𝑖=1

1

𝐷
𝛾

𝑡𝑖

)

1/2

) . (18)

We assume that the target may appear at a random position
𝑘 in the detection area. By using (18), we can obtain the
detection probability of the target at any position 𝑘.

Consider

𝐶𝑘 (𝑃) = 1 − Φ(Φ
−1
(1 − 𝛼) −

𝛽

𝜎

(

𝑛

∑

𝑖=1

1

𝐷
𝛾

𝑘𝑖

)

1/2

) , (19)

where 𝑛 denotes the number of nodes which is deployed in
the detection area. Here, 𝐷𝑘𝑖 denotes the distance between
the point 𝑘(𝑥𝑘, 𝑦𝑘) and the 𝑖th sensor (𝑥𝑖, 𝑦𝑖); that is, by using
(19), we can formulate the detection probability of any point
𝑘 in the detection area.

4. Deployment Algorithm

In this paper, we evaluate the coverage performance by
area coverage rate. We assume that 𝑁 static nodes and 𝑀

mobile nodes are deployed in the 𝐿 × 𝐿 area. The 𝐿 × 𝐿m2
square monitored area is divided into 𝐿 × 𝐿 small uniform
square grids. Each grid has the same length of 1m. For
simplicity, here we transform the area coverage problem of
WSN into grid coverage problem.We compute joint detection
probability 𝐶𝑘(𝑃) of the center point of grid 𝑘 and use the
detection probability 𝐶𝑘(𝑃) to measure whether each grid is
covered.The area coverage rate is defined as the ratio between
the coverage area 𝐴area(𝑃) of the node set and the total area
𝐴 𝑠 of the detection region. Thus, the area coverage rate is

𝑅area (𝑃) =
𝐴area (𝑃)

𝐴 𝑠

=

∑
𝐿×𝐿

𝑘=1
𝐶𝑘 (𝑃)

𝐿 × 𝐿

. (20)

4.1. The Discovery of Coverage Vacancies. At first, 𝑛 sensors
(include 𝑁 static nodes and 𝑀 mobile nodes) have been
scattered randomly in a 𝐿 × 𝐿 area. After the initial random
deployment of the sensor nodes, the distribution function
of the detection probability of the nodes approximates to
exponential form. In the two-dimensional detection area, we
can obtain the joint detection probability of any grid 𝑘 in
the detection region by the sensor detection model based on
false alarm (19). Then, we will search grids at 𝐶min(𝑃) (see
Figure 1). The𝑀 (the number of mobile nodes) girds which
have the lowest detection probability are defined as coverage
vacancies. Since the detection probability of each position is
continuous, the probability around the point which has lower
probability is also low. Thus, moving the mobile nodes to the
coverage vacancies can improve the coverage performance
of the network. Repeating this process until the iteration
times 𝑡 reaches the preset value (𝑡pre) or 𝐶min(𝑃) achieves
satisfactory probability (𝑃𝑠). In order to avoid that themoving
distance of a single node is too large, we deploy virtual nodes
at the position of coverage vacancies per iteration. When the
iteration process terminates, wemove themobile nodes to the
position of virtual nodes.

4.2. The Movement of Mobile Nodes. After the termination
of iteration, the position of the virtual nodes is defined
as coverage vacancies. For the initial network deployment,
Firstly we construct a bipartite graph𝐺 = (𝑉, 𝐸),𝑉 = 𝑉1 ∪𝑉2,
where 𝑉1 denotes the set of mobile nodes and 𝑉2 denotes the
set of virtual nodes. We take the moving distance as cost to
illustrate the construction method of the bipartite graph.The
concrete method is given by the following.

(1) Add all the movable nodes into 𝑉1.
(2) Add all the virtual nodes into 𝑉2.
(3) For ∀𝑢 ∈ 𝑉1 and ∀] ∈ 𝑉2, if mobile node 𝑢 can reach

V, (the distance between 𝑢 and V does not exceed the
maximum moving distance 𝑑𝑢 of 𝑢 or the remaining
energy of 𝑢 is within a certain range 𝐸residual) then
add an edge (𝑢, V) into the bipartite graph; the weight
of the edge (𝑢, V) which is defined as 𝑤(𝑢, V) denotes
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Figure 1: Schematic of joint detection probability. (a) Detection probability before iteration. (b) Detection probability after iteration.

the distance between sensor node 𝑢 and virtual node
V, otherwise, 𝑤(𝑢, V) = 0.

A set 𝐻 of independent edges in a graph 𝐺 = (𝑉, 𝐸) is
called amatching (see [22]).𝐻 is amatching of𝑈 ⊆ 𝑉 if every
vertex in 𝑈 is incident with an edge in 𝐻. The vertices in 𝑈
are then calledmatched (by𝐻); vertices not incident with any
edge of 𝐻 are unmatched. Because the two ends of any edge
of 𝐺 lie in different set of vertices, the number of edges in
𝐻 denotes that |𝐻| virtual nodes (that is coverage holes) are
covered by |𝐻|mobile nodes. Corresponding cost is given by
𝐶𝐻 = ∑

(𝑢,V) 𝑤(𝑢, V). Thus, maximizing the network coverage
andminimizing the moving distance in this condition can be
transformed into a problem of finding a maximummatching
𝐻opt of bipartite graph 𝐺 which has a minimum cost, that is,
for any matching 𝐻 of 𝐺, |𝐻| ≤ |𝐻opt|; If |𝐻| = |𝐻opt|, then
𝐶(𝐻) ≥ 𝐶(𝐻opt). A maximum matching 𝐻opt of bipartite
graph 𝐺 which has a minimum cost represents an optimal
mobile solution.Deploying themobile nodes according to the
optimal mobile solution, the coverage of the network can be
improved while the moving distance is the smallest.

For illustration, an example is given here. We assume that
the vertex set of bipartite graph 𝐺 is 𝑉 = 𝑉1 ∪ 𝑉2. The
mobile node set 𝑉1 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5}, and virtual node
set 𝑉2 = {𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5}. Here, we just consider movement
distance. As introduced above, if the distance between 𝑥𝑖 and
𝑦𝑗 does not exceed themaximummoving distance 𝑑𝑥𝑖 of 𝑥𝑖, it
indicates that mobile node 𝑥𝑖 can reach 𝑦𝑗, then add an edge
(𝑥𝑖, 𝑦𝑗) into the bipartite graph 𝐺.The weight of edge (𝑥𝑖, 𝑦𝑗)
is defined as 𝑤(𝑥𝑖, 𝑦𝑗) which denotes the distance between
sensor node 𝑥𝑖 and virtual node 𝑦𝑖; otherwise, 𝑤(𝑢, V) = 0.
Otherwise, add an edge whose weight is 0 into the bipartite
graph 𝐺. For example, if the distance between 𝑥1 and 𝑦1 is 3,
it is assumed that the maximum moving distance of 𝑥1 is 10,
then add an edge (𝑥1, 𝑦1) whose weight is 3 into the bipartite
graph𝐺. Similarly, we can obtain the weight of other edges of
bipartite 𝐺, as shown in Figure 2(a). After the construction
of the bipartite graph 𝐺, then we can obtain a maximum
matching𝐻opt of bipartite graph𝐺which has aminimumcost
𝐻opt = {𝑥1𝑦5, 𝑥2𝑦3, 𝑥3𝑦4, 𝑥4𝑦2, 𝑥5𝑦1}.

3 5 5 4 1
2 2 0 2 2
2 4 4 1 0
0 1 1 0 0
1 2 1 3 3

x1
x2
x3
x4
x5

y1 y2 y3 y4 y5

(a)

x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

(b)

Figure 2: An example of bipartite graph construction (a) Weight
matrix of edges of bipartite graph (b) the constructed bipartite
graph.

Table 1: Settings of simulation parameter.

Parameter Value
The area of 𝐴

𝑠
80 × 80m2

The iteration times 𝑡 30
Total number of nodes: 𝑛 60
The value of 𝛾 2
The value of 𝜎 1
The value of 𝛽 7
The value of 𝑃

𝐹
= 𝛼 5%

According to𝐻opt, wewillmove𝑥1 to𝑦5, 𝑥3 to𝑦4, 𝑥4 to𝑦2,
and 𝑥5 to 𝑦1, respectively. For 𝑤(𝑥2, 𝑦3) = 0, we do not move
node 𝑥2. The corresponding cost is 4.The concrete algorithm
is as found in Algorithm 1.

5. Simulations Results

Now we present simulation results regarding the proposed
algorithm. All of the simulation results given in the following
are obtained by programs in C++ and Matlab. We consider a
specific WSNs scenario where the field has a square shape of
size 80 × 80m2; 60 sensor nodes (including static and mobile
nodes) are randomly distributed over this field. We ran 100
simulations for every result and calculated the average result.
The experimental parameters are shown in Table 1.
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input: Static nodes 𝑆 = {𝑠
1
, 𝑠
2
, . . . , 𝑠

𝑁
}, Mobile nodes 𝑉

1
= {V
1
, V
2
, . . . , V

𝑀
}, 𝐸residual, 𝑑𝑢, 𝑢 ∈ 𝑉1, 𝑡pre, 𝑃𝑠

False-alarm probability parameter 𝛼, 𝛽, 𝛾, 𝜎, 𝑒tr
Output:

(1) 𝑡 ← 0.
(2) Calculate 𝐶

𝑘 (
𝑃) of the target at any position 𝑘 of area 𝐴 𝑠 using (19).

(3) Repeat:
(4) Search 𝐶min(𝑃), construct set of virtual node 𝑉2 = {(𝑥𝐸,1, 𝑦𝐸,1), (𝑥𝐸,2, 𝑦𝐸,2), . . . ,

(𝑥
𝐸,𝑀

, 𝑦
𝐸,𝑀

)}.
(5) Update the static node set 𝑆 = {𝑠

1
, 𝑠
2
, . . . , 𝑠

𝑁
} ∪ 𝑉
2
.

(6) Update iteration times, set 𝑡: 𝑡 = 𝑡 + 1.
(7) Calculate 𝐶

𝑘 (
𝑃) of the target at any position 𝑘 of area 𝐴 𝑠 using (19).

(8) Until (iteration time 𝑡 is larger than 𝑡pre or 𝐶min(𝑃) is larger than 𝑃𝑠)
(9) Construct bipartite graph 𝐺 = (𝑉, 𝐸), calculate𝐻opt.
(10) Adjust the position of the mobile node V

𝑖
, V
𝑖
∈ 𝑉
1
according to optimal mobile solution

which is in consistent with𝐻opt.

Algorithm 1: Algorithm FABGM.
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Figure 3: Position of mobile nodes before and after optimization.

Figure 3 shows the schematic diagram of movement
condition of the mobile nodes. The circle represents the
mobile node and the five-pointed star represents coverage
void. If a circle 𝑖 and a five-pointed star 𝑗 are connected by a
line, it indicates that mobile node represented by circle 𝑖 can
move to the coverage hole represented by the five-pointed star
𝑗. As introduced above, if the distance between mobile node
𝑢 and coverage hole V exceeds themaximummoving distance
𝑑𝑢 of 𝑢 or the remaining energy of 𝑢 is less than a preset value
𝐸residual, we set 𝑤(𝑢, V) = 0. Thus, according to practical situ-
ation, we can set different 𝑑𝑢 and 𝐸residual, then we can obtain
a different weight matrix regarding edges of the constructed
bipartite graph and different optimalmobile solutions.There-
fore, the proposed algorithm is more flexible and reflects
reality well. After performing FABGM algorithm, the sensors
are distributed uniformly in the detection area, which helps to
increase the system efficiency, improve energy conservation,
and decrease the probability of missing an event.

Figure 4 provides the schematic diagram of detection
probability distribution comparison between the random
method and our deployment method. It is obvious that there
are many coverage vacancies and points with low probability
in the network after the initial random deployment. From
Figure 4(b), we know that the proposed algorithm in this
paper can decrease the coverage void and improve the
coverage performance of the network. Figure 5 shows the
coverage performance of FABGMalgorithmwhen themobile
nodes percentage varies from 0% to 80%. Due to the lack of
reference system, we compare the proposed algorithm with
the initial deployment. We can see that our deployment can
enhance coverage compared to the initial random deploy-
ment and that the network coverage quality increases with
the number of mobile nodes increase. However, when the
mobile node percentage is larger than 50%, network coverage
increases slowly along with the increase of the number of
mobile nodes.
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Figure 4: Distribution of joint detection probabilities. (a) Random deployment. (b) Distribution after running FABGM.
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Figure 5: Coverage quality before and after optimization.

In order to analyze the relationship between coverage
performance and the value of 𝛽, we discuss the network
coverage condition when the value of 𝛽 is 1, 3, 6, and 8
separately. From Figure 6, we know that when the value of
𝛽 is fixed, the network coverage improves with the increase
of number of mobile nodes. When the value of 𝛽 is small,
the network coverage improves apparently. When the value
of 𝛽 is large (e.g., = 6, 8), increasing the number of mobile
nodes will not improve network coverage significantly. That
is because the value of 𝛽 is proportionate to 𝑒tr when 𝛾 is
fixed, when the value of 𝛽 is large, 𝑒tr is also large. It indicates
that each sensor node consumes much energy to transmit
signal, so its detection range increases. The initial deployed
sensors can almost cover thewhole area, and so increasing the
number of mobile nodes does not enhance network coverage
significantly. The value of 𝛽 can be determined according to
practical application.

Figure 7 gives the minimum number of sensors required
to reach a certain coverage percent when the percentage of
mobile sensors varies from 0% to 80%, in 10% increments. As
shown in Figure 7, the sensor nodes required in the mixed

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80

C
ov

er
ag

e (
%

)

Mobile nodes (%)

𝛽 = 1

𝛽 = 3

𝛽 = 6

𝛽 = 8

Figure 6: Coverage comparison of different 𝛽.

WSN are less than that in the static WSN. As the percentage
of mobile sensors is 40%, the number of sensors in the mixed
WSN is about half the number of sensors in the static WSN.
The number of sensors needed decrease with the increase
of the number of mobile nodes. When the percentage of
mobile sensors increases from 0% to 30%, the number of
sensors for 80% coverage decreases from 65 to 35, but when
the percentage increases from 50% to 70%, the effect is not
as significant as before. Considering that the price of mobile
sensors is higher than the price of static sensors, it is necessary
to determine proper number of mobile nodes in a network.
However, the number of mobile nodes is related to the ratio
of the price of mobile sensors to the price of static sensors.

Figure 8 shows the cost of WSN to reach 85% coverage
at different ratios of the price of mobile sensors to the price
of static sensors.When the price discrepancy ofmobile nodes
and static nodes isminor, increasing the proportion ofmobile
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sensors can reduce the overall cost ofWSN.When the ratio is
between 2 and 6, the mixedWSN has the lower cost, and also
the proportion of mobile sensors is not very high (e.g., 20% ≤

the percentage ofmobile sensors≤ 50%). Butwhen the ratio is
greater than 6, it is better that the nodes in the network are all
static nodes. It is apparent that themixedWSN is a best choice
when the ratio between the price of the mobile sensor and
the price of the static sensor is 2–6. Under this circumstance,
our proposed algorithm is useful and can provide a tradeoff
between the cost and the coverage.

6. Conclusion

Sensor deployment is at the initial stages in sensor networks
research. Here, we explore the problem of uncertainty-aware
WSNs deployment, andwe start with a “random” distribution
of the nodes (including mobile nodes and static nodes) over

the region of interest. In this paper, we propose a false-alarm
deployment algorithm to improve an initial deployment of
nodes. After going through the proposed algorithm, the area
of interest is covered by uniformly nodes. Simulation results
demonstrate the effectiveness of the proposed approach.
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