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A Kadison Kastler row metric and intermediate subalgebras

Liam Dickson∗

July 25, 2014

Abstract

In this paper we introduce a row version of Kadison and Kastler’s metric on the set of C*-
subalgebras of B(H). By showing C*-algebras have row length (in the sense of Pisier) of at
most 2 we show that the row metric is equivalent to the original Kadison Kastler metric. Ino
and Watatani have recently proved that in certain circumstances sufficiently close intermediate
C*-algebras occur as small unitary perturbations. By adjusting their arguments to work with
the row metric we are able to obtain universal constants independent of inclusions.

1 Introduction

In [16] Kadison and Kastler initiated the study of the uniform perturbations of operator algebras.
They introduced a metric on the set of linear subspaces of operators on a given Hilbert space,
and conjectured that sufficiently close operator algebras are necessarily spatially isomorphic. This
conjecture was the focus of much research in the 1970’s with seminal results being obtained by
Christensen [4], Johnson [13], Phillips and Raeburn [21], establishing a strong form of the conjecture
in the case of injective von Neumann algebras: a von Neumann algebra N sufficiently close to an
injective von Neumann algebra M arises as a small unitary perturbation of M , i.e. N = uMu∗ for
a unitary with u ≈ 1.

Analogous questions in the context of C∗-algebras have recently been the focus of considerable
research activity, and remarkable progress has been made by Christensen et al. [7] using point-norm
techniques to verify the conjecture in the separable nuclear case, vastly generalising the AF case
established in [6] and the continuous trace case of [18]. Both separability and point norm techniques
are necessary due to the counterexamples in the non-separable case of Choi and Christensen [3]
and Johnson’s construction of close representations of C[0, 1] ⊗ K which are not small unitary
perturbations of each other [14]. An embedding theorem for near inclusions involving separable
nuclear C∗-algebras has also been obtained by combining these ideas with a strengthening of the
completely positive approximation property, [11].

The focus of this paper is on close subalgebras of a fixed C∗-algebra. In [5] Christensen shows that
sufficiently close von Neumann subalgebras of a finite von Neumann algebra arise from small unitary
perturbations, and his work gives uniform estimates valid for all finite von Neumann algebras. In
their recent paper Ino and Watatani [12] prove an analogous theorem in the context of intermediate
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C∗-subalgebras [12, Proposition 3.6]: given an inclusion of C*-algebras C ⊆ D with a finite index
conditional expectation, and intermediate subalgebras A,B with C ⊆ A,B ⊆ D, if A and B are
sufficiently close then they are necessarily small unitary perturbations of each other. In contrast
to Christensen’s work, the estimates obtained by Ino and Watatani are given in terms of the basis
for C ⊆ D and so depend on the inclusion C ⊆ D. The main purpose of this paper (Theorem 3.7)
is to obtain uniform estimates valid for all finite index inclusions.

The main ingredient in the proof of Theorem 3.7 is to work with a “row” version of the Kadison-
Kastler metric. Natural variants of the metric have been considered previously. In particular there
is a completely bounded version of the metric, where the distance between A and B is obtained
as the supremum of the distances between the matrix amplifications Mn(A) and Mn(B). There is
a deep connection between the Kadison-Kastler perturbation conjecture and Kadison’s similarity
problem (which asks whether every bounded unital homomorphism A→ B(H) from a C∗-algebra is
similar to a ∗-homomorphism) dating back to [6] which is exemplified by the characterisation that
the similarity problem is true for all C∗-algebras if and only if the completely bounded Kadison-
Kastler metric is equivalent to the Kadison-Kastler metric, [2, 7]. The row metric naturally fits
between the usual metric and the completely bounded metric, and the main technical observation,
which is of interest in its own right, is that the row metric is equivalent to the Kadison-Kastler
metric. With this it is shown that Ino and Watatani’s techniques can be performed working with
row metric estimates leading to universal constants.

To establish the equivalence of the row metric and the Kadison-Kastler metric we use Haagerup’s
Little Groethendick Inequality ([9, Lemma 3.2]) as an ingredient in Pisier’s intrinsic characteri-
sation of the similarity property in terms of matrix factorisation length [19]. This enables us to
demonstrate that rows over C∗-algebras can always be factorised in a uniform fashion, with fac-
torisation length at most 2. The equivalence of two metrics then follows using an argument from
[20].

The paper is structured as follows: firstly, we prove the existence of length 2 factorisations for rows
over unital C*-algebras from which we deduce the equivalence of the original Kadison- Kastler
metric and the row metric. In the second section we modify the techniques of Ino and Watatani to
work with the row metric.

2 Row Factorisations and the Row Metric

We recall the definition of the Kadison Kaslter metric from [16], which measures the Hausdorff
distance between the unit ball of two C*-algebras, and the completely bounded metric (see [7] and
[8] for properties of dcb).
Definition 2.1. Let C be a C*-algebra with closed linear subspaces A and B. We define the
distance d(A,B) from A to B as

d(A,B) = max{ sup
y∈B1

inf
x∈A1

‖x− y‖, sup
x∈A1

inf
y∈B1

‖x− y‖} (1)

and the completely bounded distance

dcb(A,B) = sup
n∈N

d(Mn(A),Mn(B)). (2)
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We now introduce an intermediate metric on the set of C*-subalgebras by taking the supremum of
the distance over all row amplifications. We will see (Corollary 2.11) that this metric is, in fact,
equivalent to d.
Definition 2.2. Let C be a C*-algebra with closed linear subspaces A and B. Write

drow(A,B) = sup
n∈N

d(M1,n(A),M1,n(B)), (3)

where M1,n(A) and M1,n(B) can be thought of as closed linear subspaces of the C*-algebra Mn(C).

Given C*-algebras A and B and a linear map φ : A→ B for m,n ∈ N, write

φ(m,n)((xij)ij) = (φ(xij))ij , (xij)ij ∈Mm,n(A). (4)

We will use the shorthand φ(m) to denote φ(m,m). We define the row norm of a linear map by taking
the supremum of row amplifications

‖φ‖row = sup
n∈N
‖φ(1,n)‖. (5)

The definition below is due to Pisier [19]. Finite length reflects the ability to factorise elements in
all matrix amplifications of the algebra into diagonal matrices and scalar matrices, simultaneously
controlling the length and the norm of factorisations. The final definition of row length only requires
the existence of uniform factorisations, as above, for row amplifications of the algebra. Finite row
length is, therefore, a weaker condition than finite length.
Definition 2.3. An operator algebra A has length at most d if there exists a positive constant
K such that for every n,m ∈ N and x ∈ Mm,n(A) there exists an integer N ∈ N and matrices
C1, . . . , Cd+1, D1, . . . , Dd where;

• C1 ∈Mm,N (C),

• Ck ∈MN (C) for 2 ≤ k ≤ d,

• Cd+1 ∈MN,n(C),

• Dl are diagonal matrices with entries in the unit ball of A for 1 ≤ l ≤ d

which satisfy
x = C1D1C2D2 . . . CdDdCd+1 (6)

and
d+1∏
i=1

‖Ci‖ ≤ K‖x‖. (7)

If no such constants d and K exist we say that A has inifinite length.

If we only insist that for every n ∈ N every element of M1,n(A) can be factorised as above then we
say the operator algebra A has row length at most d.

To encapsulate these factorisations for each positive integer d, define a norm ‖ · ‖(d) on matrix
amplifications of A as follows, for x ∈Mm,n(A) set

‖x‖(d) = inf{
d+1∏
i=1

‖Ci‖ : x = C1D1C2D2 . . . CdDdCd+1} (8)
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where the infimum is taken over all factorisations into scalar and diagonal matrices as described
above.

We now recall the definition of the maximal operator space (see Chapter 14 of [17]).
Definition 2.4. Let V be a normed vector space, the maximal norm ‖ · ‖MAX(V) is defined for
m,n ∈ N and (xij)ij ∈Mm,n(V ) by

‖(xij)ij‖MAX(V ) = sup{‖(φ(xij))ij‖Mm,n(B(H))}, (9)

where the supremum is taken over all Hilbert spaces H and linear isometries φ : V → B(H).

For use in the sequel we define a scaling of the maximal operator space. For c > 0 define MAX(V )c
to be the operator space MAX(V ) with norms ‖ · ‖MAX(V )c defined as follows; for m,n ∈ N and
x ∈Mm,n(V ) then

‖x‖MAX(V )c = c‖x‖MAX(V ). (10)

Recall that we may always view an abstract operator space as a closed subspace of the universal
operator algebra as set out below (see Chapter 19 of [17] for more details).
Definition 2.5. Let V be a normed vector space and let F(V ) =

∑∞
n=0⊕V ⊗n be the vector space

of finite direct sums of elements from the algebraic tensor powers of V . Define a multiplication �
on F(V ) as follows; if u = u1 ⊗ · · · ⊗ uk and v = v1 ⊗ · · · ⊗ vl are elementary tensors in F(V ) then

u� v = (u1 ⊗ · · · ⊗ uk)� (v1 ⊗ · · · ⊗ vl) = u1 ⊗ · · · ⊗ ul ⊗ v1 ⊗ · · · ⊗ vl. (11)

The above multiplication gives F(V ) an algebra structure and satisfies the following universal
property: if A is an algebra and φ : V → A a linear map then there exists a unique algebra
homomorphism πφ : F(V )→ A. It is defined on elementary tensors u1 ⊗ · · · ⊗ uk as

πφ(u1 ⊗ · · · ⊗ uk) = φ(u1) . . . φ(uk). (12)

Now if V is also an operator space we may define the norm ‖ · ‖1 on all matrix amplifications of
F(V ) as follows, if m,n ∈ N and x = (xij)ij ∈Mm,n(F(V )) then

‖x‖1 = sup{‖(πφ(xij))ij‖ : ‖φ‖cb ≤ 1}, (13)

where the supremum is taken over all Hilbert spaces H and all linear maps φ : V → B(H) with
‖φ‖cb ≤ 1. Let OA1(V ) be the operator algebra obtained by completing F(V ) with respect to the
norm ‖ · ‖1.

Furthermore OA1(V ) has the property that if A is an operator algebra and φ : V → A is completely
contractive then πφ extends to a completely contractive map πφ : OA1(V )→ A.

Haagerup showed in [9, Theorem 1.10] (this was also independently obtained by Hadwin [10] and
Wittstock [23]) that a bounded non-degenerate homomorphism from a C*-algebra on a Hilbert
space H is completely bounded if and only if it is similar to a *-representation. Therefore, the
similarity problem may be phrased for unital C*-algebras by asking whether every bounded unital
homomorphism into B(H) is completely bounded. In [19] Pisier shows that the latter property is
equivalent to finite length which, therefore, provides an intrinsic characterisation of the similarity
property. That all unital C*-algebras have row length at most 2 follows implicitly from [19, Theorem
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2.6] and Lemma 2.9 below. However, we include a proof for the reader’s convenience and in order
to obtain an explicit constant. The proof is a modification of Paulsen’s exposition ([17]) of Pisier’s
results in [19].

Theorem 2.6. Let A be a unital C*-algebra, then A has row length at most 2 with

‖x‖(2) ≤ inf
c>
√
2+1

(√
2(c3 − 1)

c−
√

2− 1

)
‖x‖ < 55‖x‖, (14)

for x ∈M1,n(A) for some n ∈ N.

Firstly, we extract a lemma from Paulsen’s exposition [17, Chapter 19] of Pisier’s theorem for use in
the sequel. It allows us to factorise elements of an operator algebra A provided we can lift certain
elements under the maps described below.

Fix c > 1 and let ι : MAX(A)c → A be the inclusion map. For m,n ∈ N and x ∈Mm,n(A) we have

‖x‖MAX(A)c = c‖x‖MAX(A) ≥ ‖x‖MAX(A) ≥ ‖x‖ (15)

and hence ι is completely contractive. Therefore ι extends to a homomorphism

πι,c : OA1(MAX(A)c)→ A (16)

which satisfies πι,c(a) = a for a ∈ A ⊆ OA1(MAX(A)c) and is a complete contraction by the
universal property described in the paragraph following Definition 2.5.

Lemma 2.7. Let M > 0, c > 1 and A be a unital operator algebra. For m,n ∈ N suppose that
for each element a ∈ Mm,n(A) with ‖a‖ ≤ 1/M there exists an element y ∈ Mm,n(F(MAX(A)c))

in the open unit ball of OA1(MAX(A)c) satisfying π
(m,n)
ι,c (y) = a. If d is an integer satisfying

cd(c− 1) > M then each element in x ∈Mm,n(A) satisfies

‖x‖(d) ≤
M(cd+1 − 1)

cd+1 − cd −M
‖x‖. (17)

Proof. The proof of this is the last sentence of the second paragraph and final paragraph of [17,
Proposition 19.9] followed by the proof of [17, Theorem 19.11].

The next step is to establish that a bounded homomorphism from a unital C*-algebra into B(H)
is automatically bounded in the row norm. This follows from Haagerup’s Little Groethendick
inequality, stated below.

Lemma 2.8 (Haagerup, Lemma 3.2 of [9]). Let A be a C*-algebra, let H be a Hilbert space, and
let T : A→ H be a bounded linear map. Then there exist two states f and g on A, such that

‖T (x)‖2 ≤ ‖T‖2(f(x∗x) + g(xx∗)), x ∈ A. (18)

The next lemma is a direct consequence of Lemma 2.8. The author would like to thank Erik
Christensen for suggesting this estimate which improves those used in an the earlier version of this
work.
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Lemma 2.9. Let A be a unital C*-algebra then every unital bounded homorphism φ : A → B(H)
satisfies

‖φ‖row ≤
√

2‖φ‖2. (19)

Proof. Let x ∈ A have polar decomposition x = hv in A∗∗ (with h = (xx∗)1/2). Let φ̄ : A∗∗ →
B(H)∗∗ denote the extension of φ to the bi-dual of A, so that φ(x) = φ(h)φ̄(v). Hence

φ(x)φ(x)∗ = φ(h)φ̄(v)φ̄(v)∗φ(h)∗ ≤ ‖φ‖2φ(h)φ(h)∗. (20)

Let ξ ∈ H be a unit vector. Applying Lemma 2.8 to the bounded linear map x 7→ φ(x∗)∗ξ gives
states f and g on A, such that

‖φ(x)∗ξ‖2 ≤ ‖φ‖2‖φ(h)∗ξ‖2 ≤ ‖φ‖4(f(h2) + g(h2)) = ‖φ‖4(f(xx∗) + g(xx∗)). (21)

Fix n ∈ N, let x = (x1, . . . , xn) ∈M1,n(A) then,

‖φ(1,n)(x)∗ξ‖2 =

n∑
j=1

‖φ(xj)
∗ξ‖2 ≤ ‖φ‖4

n∑
j=1

(f(xjx
∗
j ) + g(xjx

∗
j )) ≤ 2‖φ‖4‖xx∗‖ = 2‖φ‖4‖x‖2. (22)

It follows that ‖φ(1,n)(x)‖ = ‖φ(1,n)(x)∗‖ ≤
√

2‖φ‖2‖x‖.

The previous result provides the ingredient needed to apply Lemma 2.7 to rows of a unital C*-
algebra. The proof follows the first two pages of [17, Proposition 19.9].

Lemma 2.10. Let c > 1 and A be a unital C*-algebra then for each n ∈ N and element a ∈M1,n(A)
satisfying ‖a‖ < 1√

2c2
there exists an element y ∈ M1,n(F(MAX(A)c)) in the open unit ball of

OA1(MAX(A)c) satisfying π
(1,n)
ι,c (y) = a.

Proof. Using the notation of the paragraph preceding Lemma 2.7, the restriction πι,c|F(MAX(A)c) :
F(MAX(A)c)→ A is completely contractive.

Let I = ker(πι,c)∩F(MAX(A)c) which is a closed ideal in F(MAX(A)c). The algebra F(MAX(A)c)
inherits the operator space structure from OA1(MAX(A)c) and hence is a non-complete operator
algebra and so is the quotient Z := F(MAX(A)c)/I.

As noted in the proof of Theorem 1.7 [19], the completion Z̃ inherits operator space structure
induced by OA1(MAX(A)c) and the multiplication is completely contractive so is an abstract
operator algebra. The map induced by πι,c,

π̃ : Z̃ → A (23)

is a completely contractive homomorphism and is onto and injective when restricted to Z. Let the
homomorphism ρ : A→ Z̃ be the inverse of π̃|Z . Recall, for a ∈ A, we have πι,c(a) = a, therefore

ρ(a) = ρ(πι,c(a)) = ρ(π̃(a+ I)) = a+ I (24)

and so
‖ρ(a)‖ = ‖a+ I‖Z̃ ≤ ‖a‖c = c‖a‖. (25)
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Therefore the unital homorphism ρ satisfies ‖ρ‖ ≤ c. Now let n ∈ N be fixed and let a =
(a1, . . . an) ∈ M1,n(A) such that ‖a‖ < 1√

2c2
. By the BRS theorem (which first appeared in [1],

see [17, Corollary 16.7] for the formulation we use here) we may assume that Z̃ is isometrically
represented on B(H) for some Hilbert space H and so we may apply Lemma 2.9 to yield

‖ρ(1,n)(a)‖ ≤
√

2c2‖a‖ < 1. (26)

On the other hand

ρ(1,n)(a) = (ρ(a1), . . . , ρ(an)) = (a1 + I, . . . , an + I) ∈M1,n(Z), (27)

so we may find elements z1, . . . , zn ∈ I such that

‖(a1 + z1, . . . , an + zn)‖OA1(MAX(A)c) < 1. (28)

Let y = (a1 + z1, . . . , an + zn) ∈M1,n(F(MAX(A)c). Then π
(1,n)
ι,c (y) = a as required.

To complete the proof of Theorem 2.6 we firstly restrict ourselves to row elements of small radius.
We use Lemma 2.10 to find a lift into the universal operator algebra and then directly apply Lemma
2.7 to obtain row factorisations.

Proof of Theorem 2.6. Fix n ∈ N and c >
√

2 + 1. Set M =
√

2c2 and let a ∈ M1,n(A) such that
‖a‖ < 1

M . Applying Lemma 2.6 we may find an element y ∈ M1,n(F(MAX(A)c)) in the unit ball

of OA(MAX(A)c) satisfying π
(1,n)
ι,c (y) = a. Since c >

√
2 + 1 implies that

c2(c− 1) >
√

2c2 = M, (29)

the hypothesis of Lemma 2.7 are satisfied with d = 2 and so any element of x ∈M1,n(A) satisfies

‖x‖(2) ≤
M(c3 − 1)

c3 − c2 −M
‖x‖ =

√
2(c3 − 1)

c−
√

2− 1
‖x‖, (30)

for any c >
√

2 + 1. Since n was arbitrary the proof is complete.

With this factorisation in hand, we are in a position to translate bounds involving the original
Kadison Kastler metric to bounds in the row metric for unital C*-algebras.

Theorem 2.11. The metrics d and drow are equivalent on unital C*-algebras. In particular, if
A,B ⊆ B(H) are unital C*-algebras, the following inequality holds:

drow(A,B) ≤ 220d(A,B). (31)

The proof is a modification of [8, Proposition 2.10], which was first observed by Pisier in the remark
following Theorem 10.13 in [20].
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Proof. Fix m ∈ N and let x be in the unit ball of M1,m(A). Since

inf
c>
√
2+1

(√
2(c3 − 1)

c−
√

2− 1

)
< 55 (32)

we may apply Theorem 2.6 to find a factorisation

x = C1D1C2D2C3 (33)

with N ∈ N; C1 ∈M1,N (C), C2 ∈MN (C) and C3 ∈MN,m(C) scalar matrices satisfying

3∏
i=1

‖Ci‖ ≤ 55 (34)

and D1, D2 are diagonal matrices with entries D
(j)
i in the unit ball of A for 1 ≤ j ≤ N . For each

i = 1, 2 and 1 ≤ j ≤ N let E
(j)
i be an element of the unit ball of B such that ‖D(j)

i − E
(j)
i ‖ ≤ γ

using the hypothesis d(A,B) ≤ γ. Let Ei be the diagonal matrix in MN (B) with E
(j)
i in the (j, j)

entry. Then for i = 1, 2 we have
‖Di − Ei‖ ≤ γ. (35)

By construction the element
y′ = C1E1C2E2C3. (36)

is in M1,m(B). Furthermore

‖x− y′‖ ≤ ‖C1(D1 − E1)C2D2C3‖+ ‖C1E1C2(D2 − E2)C3‖ ≤ 110γ (37)

Finally the element y = y′/‖y′‖ is in the unit ball of M1,m(B) and satisfies ‖x − y‖ ≤ 220γ. The
same argument may be repeated to approximate elements in the unit ball of M1,m(B) with those
in M1,m(A) and, since m was arbitrary, the bound is as claimed.

Remark. Automatic row closeness also follows in the non-unital case. To see this suppose that A
and B are non-unital C*-subalgebras of a C*-algebra C with d(A,B) small. Let C̃ = C ⊕ C then
for the unital C*-subalgebras Ã = A⊕ C and B̃ = B ⊕ C of C̃ we will have d(Ã, B̃) small. It now
follows from Theorem 2.11 that drow(Ã, B̃) will be small and since the quotient map π : C̃ → C is
row contractive we have drow(A,B) small.

3 Universal Constants for Ino and Watatani’s Theroem

The C*-basic construction is studied in detail in [22], it provides a C*-analogue of techniques
developed by Jones in his work on subfactors of von Neumann algebras [15].We recall some details,
starting with the definition of the index of a conditional expectation.
Definition 3.1. Let C ⊆ D be C*-algebras. A conditional expectation E : D → C is of finite
index if there exists a finite set v1, . . . , vn ∈ D such that

x =
n∑
i=1

viE(v∗i x) (38)

for all x ∈ D. The set {v1, . . . , vn} is called a quasi-basis for E and the index of E is defined by∑n
i=1 viv

∗
i .
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The index is independent of the choice of quasi-basis and, furthermore, it is an invertible, central
element of D [22, Proposition 1.2.8 and Lemma 2.3.1].

Suppose B ⊆ D is an inclusion of C*-algebras with a faithful conditional expectation EB : D → B.
We assign a sesquilinear form to D as follows. For x, y ∈ D write

〈x, y〉B = EB(x∗y). (39)

The completion E of D with respect to the norm ‖ · ‖B = ‖〈·, ·〉B‖1/2 is a Hilbert B-module when
equipped with the inner product above. Let η : D → E be the natural inclusion map which is
injective as EB was assumed to be faithful. Let B(E) denote the C*-algebra of adjointable operator
on E .

The Jones projection eB ∈ B(E) is defined by extending

eB((η(x)) = η(EB(x)), x ∈ D (40)

to E by continuity.

The left regular representation is given by the *-homomorphism λ : D → B(E) where, for x ∈ D,
λ(x) is defined by extending

λ(x)(η(y)) = η(xy), y ∈ D (41)

to E by continuity. We recall the following facts relating the left regular representation and the
Jones projection [22, Lemma 2.1.1.].

Lemma 3.2. With EB, eB and λ as above we have;

1. for all x ∈ D we have λ(x)eB = eBλ(x) if and only if x ∈ B,

2. eBλ(x)eB = λ(EB(x))eB for all x ∈ D,

3. x 7→ λ(x)eB is an isomorphism of B into B(E).

We now provide row versions of the estimates from [12] starting with a ‘row version’ of [12, Lemma
3.2].

Lemma 3.3. Suppose that A and B are C*-sublagebras of a C*-algebra D and suppose that
EB : D → B is a conditional expectation. Let ιA : A→ D be the inclusion map, then

‖EB|A − ιA‖row ≤ 2drow(A,B). (42)

Furthermore, for m ∈ N and an element x in the unit ball of M1,m(A) we have

‖E(1,m)
B (x)E

(m,1)
B (x∗)−EB(xx∗)‖ ≤ 4γ and ‖E(m,1)

B (x∗)E
(1,m)
B (x)−E(m)

B (x∗x)‖ ≤ 4γ. (43)

Proof. Let ε > 0 and set γ = drow(A,B) + ε. For m ∈ N and x in the unit ball of M1,m(A), there
exists x′ in the unit ball of M1,m(B) such that ‖x− x′‖ ≤ γ. We have

‖E(1,m)
B (x)− x‖ ≤ ‖E(1,m)

B (x− x′)‖+ ‖x′ − x‖ ≤ 2γ, (44)
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since ε was arbritrary this proves (42), and

‖xx∗ − x′x′∗‖ ≤ ‖(x− x′)x∗‖+ ‖x′(x∗ − x′∗)‖ ≤ 2γ. (45)

Since x′, x′∗ and x′x′∗ are in M1,m(B), Mm,1(B) and B respectively, we have EB(x′x′∗) = x′x′∗ =

E
(1,m)
B (x′)E

(m,1)
B (x′∗). Combining this with (45) yields

‖E(1,m)
B (x)E

(m,1)
B (x∗)− EB(xx∗)‖ ≤ ‖E(1,m)

B (x)(E
(m,1)
B (x∗)− E(m,1)

B (x′∗))‖

+ ‖((E(1,m)
B (x)− E(1,m)

B (x′))E
(m,1)
B (x′∗)‖

+ ‖EB(x′x′∗)− EB(xx∗)‖ ≤ 4γ. (46)

As above this establishes (43) since ε was arbitrary. The final estimate follows in a similar fashion.

Next we show how statements about the approximate multiplicativity of the conditional expectation
can be translated to statements about the norm of operators in B(E).

Lemma 3.4. Suppose that D is a C*-algebra and B is a C*-subalgebra with faithful conditional
expectation EB : D → B with eB ∈ B(E) as defined above. Let m ∈ N and x = (x1, . . . , xm) ∈
M1,m(D). Then the following identities hold

‖E(1,m)
B (x)E

(m,1)
B (x∗)− EB(xx∗)‖ = ‖eBλ(1,m)(x)(diag(m)(1E − eB))λ(m,1)(x∗)eB‖B(E)

and

‖E(m,1)
B (x∗)E

(m,1)
B (x)−E(m)

B (x∗x)‖Mm(D) = ‖diag(m)(eB)λ(m,1)(x∗)(1E−eB)λ(1,m)(x)diag(m)(eB)‖Mm(B(E))

Proof. Since the map b 7→ λ(b)eB is a *-isomorphism so is its amplification

(xij)ij 7→ (λ(xij)eB)ij (47)

which takes Mm(B) into Mm(B(E)). Writing x = (x1, . . . , xm) we use the observation in the
previous sentence and condition 1 of Lemma 3.2 to compute

‖E(1,m)
B (x)E

(m,1)
B (x∗)− EB(xx∗)‖ = ‖λ(E

(1,m)
B (x)E

(m,1)
B (x∗)− EB(xx∗))eB‖B(E)

= ‖
m∑
j=1

λ(EB(xj)EB(x∗j )− EB(xjx
∗
j ))eB‖B(E)

= ‖
m∑
j=1

eBλ(xj)eBλ(x∗j )eB − eBλ(xjx
∗
j )eB‖B(E)

= ‖
m∑
j=1

eBλ(xj)(1E − eB)λ(x∗j )eB‖B(E)

= ‖eBλ(1,m)(x)(diag(m)(1E − eB))λ(m,1)(x∗)eB‖B(E) (48)
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and

‖E(m,1)
B (x∗)E

(1,m)
B (x)− E(m)

B (x∗x)‖Mm(D) = ‖(EB(x∗i )EB(xj)− EB(x∗ixj))ij‖Mm(D)

= ‖(λ(EB(x∗i )EB(xj)− EB(x∗ixj))eB)ij‖Mm(B(E))

= ‖(eB(λ(x∗i )(1E − eB)λ(xj)eB)ij‖Mm(B(E))

= ‖diag(m)(eB)λ(m,1)(x∗)(1E − eB)λ(1,m)(x)diag(m)(eB)‖Mm(B(E)).

(49)

We now modify [12, Lemma 3.4] to work with the row metric obtaining universal constants inde-
pendent of the inclusion C ⊆ D. The argument is based on techniques developed by Christensen
in [4] and [5].

Lemma 3.5. Let C ⊆ D be a unital inclusion of C*-algebras. Suppose that B ⊆ D is a C*-algebra
containing C such that there exists a faithful conditional expectation EDB : D → B. Suppose that
A ⊆ D is another C*-algebra containing C with a finite index conditional expectation EAC : A→ C
such that drow(A,B) ≤ γ < 1/16. Let ιA : A → D denote the inclusion map. Then there exists a

*-homomorphism φ : A→ B such that ‖φ− ιA‖row ≤ 8
√

2γ
1
2 + 2γ and φ|C = idc.

Proof. Let E be the completion of D with the norm derived from EDB as described in the paragraph
preceding Lemma 3.2 and Jones projection eB ∈ B(E). Let (vi)

n
i=1 be a quasi-basis for EAC in A

with T =
∑n

i=1 viv
∗
i the index of EAC , which we recall is central in A and invertible. We set

t =
n∑
i=1

λ(T−1/2vi)eBλ(T−1/2v∗i ), (50)

a symmetrised version of the element defined in [12, Lemma 3.4] and by a similar argument to the
last displayed equation on page 5 of [12] it follows that t ∈ λ(A)′ since T−1/2 is central in A. The
row

M := (T−1/2v1, . . . , T
−1/2vn) (51)

is in the unit ball of M1,n(A) since MM∗ = 1A . By modifying the estimates in the last displayed
equation on page 6 of [12] to work with rows we have

‖t− eB‖ = ‖
n∑
i=1

λ(T−1/2vi)(eBλ(T−1/2v∗i )− λ(T−1/2v∗i )eB)‖

= ‖λ(1,n)(M)(diag(n)(eB)λ(n,1)(M∗)− λ(n,1)(M∗)eB)‖
≤ ‖diag(n)(eB)λ(n,1)(M∗)− λ(n,1)(M∗)eB‖
= ‖diag(n)(eB)λ(n,1)(M∗)(1E − eB)− diag(n)(1E − eB)λ(n,1)(M∗)eB‖

= max{‖diag(n)(eB)λ(n,1)(M∗)(1E − eB)λ(1,n)(M)diag(n)(eB)‖
1
2 ,

‖eBλ(1,n)(M)diag(n)(1E − eB)λ(n,1)(M∗)eB‖
1
2 } ≤ 2γ

1
2 , (52)

where the final bound is obtained by applying Lemma 3.4 and Lemma 3.3 to each expression. We
are now in a position to closely follow [12, Lemma 3.4] for the rest of the proof. Set δ = 2γ

1
2 so
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by (52) and by following the argument in [12, Lemma 3.4] we may find a projection q ∈ λ(A)′ ∩
C∗(λ(A), eB, 1E) with

‖q − eB‖ ≤ 2δ < 1. (53)

and a unitary w ∈ C∗(λ(A), eB, 1E) such that wqw∗ = eB and

‖w − 1E‖ ≤ 2
√

2δ. (54)

By the choice of q and w the map φ̃ : A→ λ(B)eB defined for x ∈ A by

φ̃(x) = wqλ(x)qw∗ = eBwλ(x)w∗eB (55)

is a *-homomorphism. The map θ : B → λ(B)eB defined by b 7→ λ(b)eB = eBλ(b)eB is a*-
isomorphism so φ := θ−1 ◦ φ̃ : A→ B is *-homomorphism which satisfies φ(c) = c (see [12, Lemma
3.4]).

For m,n ∈ N and x in the unit ball of Mm,n(A)

‖φ(m,n)(x)− E(m,n)
B (x)‖ = ‖diag(m)(eBw)λ(m,n)(x)diag(n)(w∗eB)− diag(m)(eB)λ(m,n)(x)diag(n)(eB)‖

(56)

≤ 2‖1E − w‖ ≤ 4
√

2δ. (57)

Thus ‖φ− EB‖cb ≤ 4
√

2δ hence, by Lemma 3.3 we have the following estimate

‖φ− ιA‖row ≤ 4
√

2δ + 2γ = 8
√

2γ
1
2 + 2γ. (58)

We now modify [12, Lemma 3.5], again working with the row norm and obtaining universal con-
stants.

Lemma 3.6. Let C ⊆ D be a unital inclusion of C*-algebras and suppose A ⊆ D is a C*-subalgebra
containing C with a finite index conditional expectation EAC : A→ C. Let φ1, φ2 : A→ D be unital
*-homomorphisms such that φ1|C = idC = φ2|C and there exists a constant γ such that 0 ≤ γ < 1
and ‖φ1 − φ2‖row ≤ γ. Then there exists a unitary u ∈ C ′ ∩ D such that Ad(u) ◦ φ1 = φ2 and
‖1− u‖ ≤ 2γ, in particular, ‖φ1 − φ2‖cb ≤ 4γ.

Proof. Let (vi)
n
i=1 be a quasi-basis for EAC and T be the index. As above, we symmetrise the element

defined in [12, Lemma 3.5] and set

s =
n∑
i=1

φ1(T
−1/2vi)φ2(T

−1/2v∗i ). (59)

By a calculation similar to the second equation block in the proof of [12, Lemma 3.5] we have
φ1(a)s = sφ2(a) for all a ∈ A.

As in the previous lemma, the row

M := (T−1/2v1, . . . , T
−1/2vn) (60)
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is in the unit ball of M1,n(A). Since φ1 is unital, using the row norm estimate in the hypothesis we
have

‖1− s‖ = ‖
n∑
i=1

φ1(T
−1/2vi)(φ1(T

−1/2v∗i )− φ2(T−1/2v∗i ))‖

= ‖φ(1,n)1 (M)(φ
(n,1)
1 (M∗)− φ(n,1)2 (M∗))‖ ≤ γ < 1 (61)

and hence s is invertible in D. The polar decomposition s = u|s| has unitary u such that ‖1−u‖ ≤√
2γ. As in [12, Lemma 3.5] it follows that φ1(a) = uφ2(a)u∗ for all a ∈ A.

Finally, we turn to the proof of our version of [12, Proposition 3.6].

Theorem 3.7. Let C ⊆ D be a unital inclusion of C*-algebras. Suppose thatB ⊆ D is a C*-algebra
containing C such that there exists a faithful conditional expectation EDB : D → B. Suppose that
A ⊆ D is another C*-algebra containing C with a finite index conditional expectation EAC : A→ C
such that d(A,B) ≤ γ < 10−6. Then there exists a unitary u ∈ C ′ ∩D such that uAu∗ = B with

bound ‖u− 1‖ ≤ 16
√

110γ
1
2 + 880γ.

Proof. We set γ′ = 220γ so Theorem 2.11 implies drow(A,B) ≤ γ′ < 1/2066 so the hypothesis of
Lemma 3.5 are satisfied. Hence there exists a *-homomorphism φ : A → B with φ|C = idc such
that

‖φ− ιA‖row ≤ 8
√

2γ′
1
2 + 2γ′ < 1 (62)

by the choice of γ′. We apply Lemma 3.6 to the *-homomorphisms φ and ιA to yield a unitary
u ∈ C∗(A,B) such that φ = Ad(u), in particular we have uAu∗ ⊆ B, and

‖1− u‖ ≤ 16
√

2γ′
1
2 + 4γ′ = 16

√
110γ

1
2 + 880γ. (63)

Let b ∈ B1, we may find an element a ∈ A1 such that ‖a− b‖ ≤ γ. Applying the triangle inequality
and using the bound (63) we compute

‖uau∗ − b‖ ≤ ‖(u− 1)au∗‖+ ‖a(u∗ − 1)‖+ ‖a− b‖

≤ 32
√

2γ′
1
2 + 8γ′ + γ < 1 (64)

by the choice of γ. Since b ∈ B1 was arbitrary and ‖uau∗‖ = ‖a‖ ≤ 1 we have d(uAu∗, B) < 1 and
so it follows from a standard argument (see [7, Proposition 2.4]) that uAu∗ = B.
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