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Synopsis
The protein kinase activity of the DNA-PKcs (DNA-dependent protein kinase catalytic subunit) and its autophosphoryla-
tion are critical for DBS (DNA double-strand break) repair via NHEJ (non-homologous end-joining). Recent studies have
shown that depletion or inactivation of DNA-PKcs kinase activity also results in mitotic defects. DNA-PKcs is auto-
phosphorylated on Ser2056, Thr2647 and Thr2609 in mitosis and phosphorylated DNA-PKcs localize to centrosomes,
mitotic spindles and the midbody. DNA-PKcs also interacts with PP6 (protein phosphatase 6), and PP6 has been
shown to dephosphorylate Aurora A kinase in mitosis. Here we report that DNA-PKcs is phosphorylated on Ser3205

and Thr3950 in mitosis. Phosphorylation of Thr3950 is DNA-PK-dependent, whereas phosphorylation of Ser3205 requires
PLK1 (polo-like kinase 1). Moreover, PLK1 phosphorylates DNA-PKcs on Ser3205 in vitro and interacts with DNA-PKcs
in mitosis. In addition, PP6 dephosphorylates DNA-PKcs at Ser3205 in mitosis and after IR (ionizing radiation). DNA-
PKcs also phosphorylates Chk2 on Thr68 in mitosis and both phosphorylation of Chk2 and autophosphorylation of
DNA-PKcs in mitosis occur in the apparent absence of Ku and DNA damage. Our findings provide mechanistic insight
into the roles of DNA-PKcs and PP6 in mitosis and suggest that DNA-PKcs’ role in mitosis may be mechanistically
distinct from its well-established role in NHEJ.
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INTRODUCTION

The DNA-PKcs (DNA-dependent protein kinase catalytic sub-
unit) plays critical roles in NHEJ (non-homologous end-joining),
the major pathway for the repair of IR (ionizing radiation)-
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induced DSBs (DNA double-strand breaks) in human cells [1–
3]. NHEJ is also required for V(D)J recombination and thus
functional T and B cells in the vertebrate immune system [4,5].
Moreover, merging evidence suggests that NHEJ is also required
for the prevention of chromosomal translocations and deletions,
thus preventing genomic instability, an enabling hallmark of
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cancer [6]. The protein kinase activity of DNA-PKcs is re-
quired for successful completion of NHEJ and V(D)J recom-
bination [7,8] and DNA-PKcs autophosphorylates on multiple
sites in vitro [9]. Many in vitro DNA-PKcs autophosphoryla-
tion sites, including Ser2056, Thr2609, Thr2638, Thr2647 and Thr3950

are phosphorylated in a DNA-PK-dependent manner after DNA
damage indicating that DNA-PKcs undergoes autophosphoryla-
tion in vivo [10–12]. Thr2609, Thr2647 and Thr2638 can also be
phosphorylated by the related protein kinases ATM (ataxia tel-
angiectasia mutated) and ATR (ATM- and Rad3-related) [13,14],
whereas Ser3205 is phosphorylated exclusively by ATM after DNA
damage [15]. Cells expressing DNA-PKcs in which the Thr2609

cluster of phosphorylation sites (also referred to as the ABCDE
cluster) has been mutated to alanine are extremely radiation sens-
itive, have DSB repair defects and, in V(D)J recombination, have
coding joint defects, consistent with decreased end processing
[10,11,16]. In contrast, DNA-PKcs with mutation at the Ser2056

cluster of autophosphorylation sites (also called the PQR cluster)
has increased end processing at coding joints [17] indicating that
autophosphorylation of DNA-PKcs at different sites can have re-
ciprocal effects on DNA-PKcs function (reviewed in [10]). Sub-
stitution of DNA-PKcs-dependent in vivo phosphorylation site
Thr3950 (located in the putative activation loop of DNA-PKcs)
with the phosphomimic aspartic acid abrogated DNA-PK en-
zymatic activity and NHEJ, suggesting that autophosphorylation
at this site negatively regulates DNA-PKcs protein kinase activity
[18]. In contrast, in vitro autophosphorylation site Ser3205 is phos-
phorylated in an ATM-dependent manner after DNA damage;
however, ablation of Ser3205 did not induce radiation sensitivity
[15] and its function remains unknown.

Given the importance of DNA-PK autophosphorylation in
NHEJ, we searched for protein phosphatases that might regu-
late DNA-PKcs protein kinase activity and function. DNA-PKcs
interacts with PP6 (protein phosphatase 6), which is composed
of catalytic (PP6c) and regulatory subunits (including SAPS1, 2
and 3 – also known as PP6R1, PP6R2 and PP6R3, respectively)
[19,20]. PP6 was shown to be required for activation of DNA-
PKcs [20]; however, PP6 did not dephosphorylate DNA-PKcs at
Ser2056 or Thr2609 after IR [19,20], and how PP6 regulates DNA-
PKcs function is uncertain. Recently PP6 was shown to dephos-
phorylate the mitotic protein kinase Aurora A on the regulatory
Thr288 in the kinase activation loop, inhibiting its activity [21].
Moreover, siRNA (small interfering RNA) depletion of PP6c in-
terfered with mitotic spindle formation and chromosome align-
ment due to increased Aurora A protein kinase activity [21,22],
revealing the important roles for PP6 in mitosis.

Recent studies have also uncovered new roles for DNA-PKcs
in mitosis. Proteomics studies have identified DNA-PKcs at mi-
totic spindles [23–26] and depletion of DNA-PKcs or inhibition
of its protein kinase activity leads to misalignment of mitotic
chromosomes as well as other features of abnormal mitoses
[23,27]. Moreover, DNA-PKcs is phosphorylated on Ser2056,
Thr2609 and Thr2647 in mitosis, and phosphorylation at these sites
is DNA-PK-dependent [23,27]. DNA-PKcs phosphorylated on
Thr2609 and Thr2647 localizes to centrosomes and DNA-PKcs
phosphorylated on Thr2609 is found at kinetochores in metaphase

and at the midbody as cells approach cytokinesis [23,27]. Thus,
in addition to its well-established role in DSB repair, emerging
evidence reveals unexpected roles for DNA-PKcs in mitosis.

Here, we show that DNA-PKcs is also phosphorylated on
Thr3950 and Ser3205 in mitosis. Like phosphorylation of Ser2056

and Thr2609, mitotic phosphorylation of Thr3950 is DNA-PK-
dependent and DNA-PKcs phosphorylated at Thr3950 localizes
to the midbody in cytokinesis. In contrast, phosphorylation of
DNA-PKcs on Ser3205 in mitosis requires PLK1 (polo-like kinase
1). Moreover, DNA-PKcs interacts with PP6 in mitosis and PP6
dephosphorylates Ser3205 when cells exit mitosis. Although DNA-
PKcs phosphorylates Chk2 protein kinase on Thr68 in mitosis
[28,29] to regulate BRCA1 Ser988 phosphorylation [29,30], in-
hibition of PLK1 did not affect Chk2 phosphorylation at Thr68,
suggesting that PLK1-dependent phosphorylation of DNA-PKcs
and DNA-PKcs-dependent phosphorylation of Chk2 represent
independent pathways in mitosis. Moreover, autophosphoryla-
tion of DNA-PKcs and DNA-PKcs-dependent phosphorylation
of Chk2 in mitosis appear to be independent of both Ku and
DNA damage. Collectively our data provide mechanistic insight
into the role of DNA-PKcs and PP6 in mitosis and suggest that
DNA-PKcs’ role in mitosis is mechanistically distinct from its
well-established roles in NHEJ and V(D)J recombination.

MATERIALS AND METHODS

Reagents and antibodies
Microcystin-LR, BSA, PMSF, Tris base, EGTA, leupeptin and
pepstatin were purchased from Sigma-Aldrich. The ATM inhib-
itor (KU55933) was from Tocris. The PLK1 inhibitor (BI2536),
the DNA-PK inhibitor (NU7441) and the Aurora A inhibitor
(Aurora A Inhibitor-1) were purchased from Selleck Chemic-
als. Antibodies to PP6c, SAPS1, SAPS2 and SAPS3 were from
Bethyl Laboratories. Antibodies to DNA-PKcs and CEP55 were
from Abcam. Phosphospecific antibodies to Ser3205 and Thr3950

of DNA-PKcs and antibodies to total DNA-PKcs were as in
[15,18]. Antibodies to actin, α -tubulin and FITC-conjugated α-
tubulin were from Sigma-Aldrich. Antibodies to TPX2 (targeting
protein for Xklp2) and Chk2 total were from Novus, whereas the
phosphospecific antibody to phospho-Thr68 of Chk2 was from
Cell Signalling. Antibodies to cyclin B and lamin A/C were from
Santa Cruz. The phosphospecific antibody to phospho-Thr210 of
PLK1 was from BD Pharmingen. The antibody to Ku 70 was
as in [31]. Antibodies to total PLK1, Aurora A and Aurora A
phospho-Thr288 were purchased from Abcam, Serotec and Cell
Signalling, respectively.

Cell culture
HeLa cells were cultured in DMEM (Dulbecco’s modified
Eagle’s medium) (Invitrogen) supplemented with 5 % (v/v)
FBS (Hyclone), 50 units/ml penicillin and 50 μg/ml strepto-
mycin. U2OS cells were cultured in the RPMI 1640 medium
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(Invitrogen) supplemented with 10 % (v/v) FBS (Hyclone),
50 units/ml penicillin, and 50 μg/ml streptomycin. Ku null xrs6
rodent cells were cultured in the MEM (Minimum Essential Me-
dium Alpha) (Invitrogen) supplemented with 10 % (v/v) FBS
(Hyclone), 50 units/ml penicillin, 50 μg/ml streptomycin and
2.5 μg/ml blasticidin. Ku null xrs6 rodent cells stably express-
ing GFP (green fluorescent protein)-tagged human DNA-PKcs
were cultured in MEM (Invitrogen) supplemented with 10 %
(v/v) FBS (Hyclone), 50 units/ml penicillin, 50 μg/ml strepto-
mycin and 0.4 μg/ml G418 as described [32]. DNA-PKcs null
rodent cells (V3), stably expressing human wild-type DNA-PKcs
were cultured in DMEM (Invitrogen) supplemented with 10 %
(v/v) FBS (Hyclone), 50 units/ml penicillin, 50 μg/ml strepto-
mycin and 0.4 mg/ml G418 as described previously [15]. All
cells were maintained at 37 ◦C under a humidified atmosphere of
5 % (v/v) CO2.

Preparation of cell extracts from asynchronous
cells
Asynchronously growing HeLa cells were harvested and deter-
gent (NP-40) lysates were prepared as in [19]. Where indicated,
cells were irradiated 10 Gy using a 137Cs source as described
previously [19], allowed to recover for 1 h or as indicated and
harvested as above.

Immunoblotting and immunoprecipitation
Immunoblotting and immunoprecipitation were carried out as in
[19]. Where indicated, the broad-spectrum nuclease benzonase
(Sigma Aldrich) was added to cell extracts (5 units/mg total pro-
tein) prior to the preclear step in immunoprecipitation experi-
ments to disrupt protein–DNA and protein–RNA mediated inter-
actions.

Isolation of mitotic spindles
Mitotic spindle preparations were isolated from taxol and
nocodazole-treated cells according to the published procedures,
resulting in a preparation enriched for mitotic spindles as well as
kinetochores and centrosomes [24,33]. Where indicated, extracts
were prepared in the presence of protein phosphatase inhibit-
ors (1 μM microcystin-LR, 50 mM NaF and 10 mM sodium or-
thovanadate) to preserve phosphorylation-dependent interactions
[34]. Briefly, HeLa cells were grown to mid-confluency, and in-
cubated with thymidine (2 mM) for 17 h. Thymidine-containing
medium was removed, cells were washed in the fresh medium and
after 7 h placed into the media containing nocodazole (40 ng/ml).
After a further 7 h, cells were harvested by mitotic shake off and
left to recover in fresh media for 35 min until most of them
reached metaphase [monitored by immunofluorescence analysis
of DAPI (4′,6-diamidino-2-phenylindole)-stained cells]. Micro-
tubules were subsequently stabilized with paclitaxel at 5 μg/ml
for 3 min at 37 ◦C. Cells were then harvested, washed with PBS
containing 2 μg/ml latrunculin B, 1 mM PMSF, 5 μg/ml taxol,

and then incubated for 15 min at 37 ◦C in lysis buffer: 100 mM
PIPES (1,4-piperazinediethanesulfonic acid) (pH 6.9), 1 mM
MgSO4, 2 mM EGTA, 0.5 % (v/v) Nonidet P40, 5 μg/ml taxol,
2 μg/ml latrunculin B, including nucleases (200 μg/ml DNase I,
10 μg/ml RNase A, 1 unit/ml micrococcal nuclease, 20 units/ml
benzonase), protease inhibitors (1 μg/ml pepstatin,1 μg/ml leu-
peptin, 1 μg/ml aprotinin, 1 mM PMSF) and, where indicated,
protein phosphatase inhibitors (1 μM microcystin-LR, 50 mM
NaF and 10 mM sodium orthovanadate). Lysed cells were cent-
rifuged at 700×g for 2 min and resuspended in the same buf-
fer, incubated for 5 min and harvested again by centrifugation.
The supernatant (Fraction 1) was boiled in SDS sample buf-
fer. Mitotic spindles were isolated by incubating the lysed cells
in isolation buffer [1 mM PIPES–KOH (pH 6.9), 1 mM PMSF,
5 μg/ml paclitaxel] for a further 10 min and collected by cent-
rifugation at 1500×g for 3 min. The supernatant (Fraction 2)
was removed and mixed with SDS cocktail. The remaining pellet
was resuspended in [25 mM Tris–HCl (pH 7.5), 0.1 mM EGTA,
0.1 % β-mercaptoethanol, 1 mM benzamidine, 0.1 mM PMSF]
with 600 mM NaCl and incubated for 10 min at room temperat-
ure before centrifugation at 52000×g for 35 min. The supernatant
was diluted to 420 mM salt (Fraction 3) and resuspended in SDS
sample buffer.

Preparation of extracts from mitotic cells
Where indicated, cells were incubated with nocodazole
(40 ng/ml) for 16 h, then harvested by shake off and lysed
either immediately, or placed in fresh, nocodazole-free media
and harvested after the recovery times indicated in the figure
legends. Detergent extracts were generated as described above.
To confirm that nocodazole treatment induced mitosis, an ali-
quot of cells was harvested after the nocodazole treatment and
after shake off, stained for histone H3–Ser10 phosphorylation
and analysed by flow cytometry as described previously [19].
At least 60 % of the nocodazole-treated cells in the shake off
fraction stained positive for H3-phospho-Ser10, confirming that
they were enriched for mitotic cells (Supplementary Figure S1 at
http://www.bioscirep.org/bsr/034/bsr034e113add.htm).

siRNA transfection
SMARTpool siRNA oligonucleotides were purchased from
Dharmacon (Lafayette). Transfection was carried out as de-
scribed in [19]. Twenty-four hours after transfection, fresh me-
dium was added. At 80 h cells were either left untreated or treated
with 40 ng/ml nocodazole for 16 h, then harvested by mitotic
shake-off and analysed as described in the figure legends. Altern-
atively, 24 h after transfection, cells were irradiated with 10 Gy
and harvested 1 h post-recovery as described above.

Immunofluorescence
Cells were grown on poly-L-lysine-coated coverslips and treated
with the indicated protein kinase inhibitors as described in
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the figure legends. Cells were fixed and analysed as described
in [19].

In vitro phosphorylation of DNA-PK by PLK1
His tagged PLK1 purified from baculovirus-infected insect cells
was a kind gift from Dr James Hastie and Dr Dario Alessi, Univer-
sity of Dundee, Scotland, U.K. DNA-PKcs and Ku were purified
from HeLa cells as described previously [35]. Purified DNA-PK
(equimolar amounts of DNA-PKcs and Ku) was incubated with
His-tagged purified PLK1, in the absence or presence of 5 μM
of the DNA-PK inhibitor (NU7441) or 100 nM of the PLK1 in-
hibitor (BI2536) in 25 mM Hepes-NaOH pH 7.5, 50 mM KCl,
10 mM MgCl2, 1 mM dithiothreitol, 0.2 mM EGTA, 0.1 mM
EDTA plus 10 μg/ml sonicated calf thymus DNA as indicated.
Reactions were started by the addition of 0.25 mM ATP and reac-
tions were incubated at 30 ◦C for 30 min then stopped by addition
of SDS sample buffer and analysed on SDS–PAGE followed by
Western blotting as above.

RESULTS

DNA-PKcs, Ku and PP6 localize to mitotic spindles
DNA-PKcs has a well-established role in NHEJ and is phos-
phorylated on multiple sites including Ser2056, Thr2609, Ser3205

and Thr3950 in response to DNA damage (Figure 1A). Recent
studies have also revealed a novel role for DNA-PKcs in mitosis.
siRNA depletion of DNA-PKcs or inactivation of DNA-PKcs
with the small molecule inhibitor NU7441 led to a significant
increase in misaligned mitotic chromosomes as well as an in-
crease in the number of lagging chromosomes in mitosis ([23,27]
and Supplementary Figure S2 at http://www.bioscirep.org/
bsr/034/bsr034e113add.htm).

To explore further the roles of DNA-PKcs and PP6 in mitosis,
HeLa cells were synchronized by thymidine/nocodazole block
and extracts were fractionated to enrich for mitotic spindles.
Where indicated, extracts were prepared in the presence of pro-
tein phosphatase inhibitors to preserve serine/threonine phos-
phorylation events and phosphorylation-dependent interactions
[34]. Fractions were analysed by SDS–PAGE, and probed for
DNA-PKcs, PP6 and known mitotic proteins. DNA-PKcs was
detected in spindle fractions and, when extracts were prepared in
the presence of protein phosphatase inhibitors, DNA-PKcs was
phosphorylated on Ser2056, Thr2609 and Thr3950 (Figure 1B). Also
present in the spindle fraction were Ku80, and, as expected, mi-
totic proteins, Aurora A, polo-like kinase 1 (PLK1) and TPX2
(Figure 1B). Spindle preparations were also probed for the cyto-
plasmic protein kinase ROCK2 as a negative control. PP6c and
its regulatory subunits SAPS1, SAPS2 and SAPS3 were also en-
riched in the mitotic spindle fraction when extracts were prepared
in the absence of protein phosphatase inhibitors, suggesting that
either the protein phosphatase activity of PP6 is required for its
association with spindles, or that phosphorylation of a spindle

component is required to anchor PP6 at mitotic spindles (Fig-
ure 1B).

Mitotic phosphorylation of DNA-PKcs on Thr3950 is
DNA-PK-dependent and Thr3950 phosphorylated
DNA-PKcs localizes to centrosomes in
prometaphase and the midbody at cytokinesis
Given that phosphorylation of DNA-PKcs at Ser2056, Thr2609

and Thr2647 in mitosis is DNA-PK-dependent [23,27], we next
asked whether phosphorylation of Thr3950 was also DNA-PK-
dependent. Mitotic spindles were prepared as above but treated
with the DNA-PKcs inhibitor NU7441 for 1 h prior to harvest.
As shown in Figure 1(C), phosphorylation on Thr3950 was also
DNA-PK-dependent in mitosis.

DNA-PKcs phosphorylated on Ser2056, Thr2609 and Thr2647

localizes to centrosomes in metaphase, and DNA-PKcs phos-
phorylated on Thr2609 localizes to the midbody in cytokinesis
[23,27]. To further explore the mechanism by which DNA-PKcs
functions in mitosis, the subcellular localization of DNA-PKcs
phosphorylated on Thr3950 was determined by immunofluores-
cence using a phosphospecific antibody to DNA-PKcs phospho-
Thr3950. Preliminary experiments were carried out on HeLa cells;
however, U2OS osteosarcoma cells were used for subsequent
experiments as the percentage of mitotic cells that remained at-
tached to the coverslips was found to be higher in U2OS cells than
in HeLa cells. Thr3950-phosphorylated DNA-PKcs was absent in
interphase U2OS cells but was detected at centrosomes during
prophase and metaphase (Figure 2A). Like phosphosphorylation
at Thr2609, DNA-PKcs phosphorylation at Thr3950 was detected
at the midbody at cytokinesis (Figure 2 and Supplementary S3A
at http://www.bioscirep.org/bsr/034/bsr034e113add.htm), as was
Thr210 phosphorylated PLK1 (Supplementary Figure S3B).

PLK1 phosphorylates DNA-PKcs at Ser3205 in
mitosis
We previously identified Ser3205 as an in vitro DNA-PKcs
autophosphorylation site [9] and showed that Ser3205 is phos-
phorylated in an ATM-dependent manner after IR [15]. Several
high-throughput mass spectrometry screens have reported that
Ser3205 is highly phosphorylated in mitosis [25,26,36,37]. Not-
ably, Olsen et al. showed that the stoichiometry of phosphoryla-
tion of DNA-PKcs at Ser3205 was 14 % in asynchronously growing
HeLa cells, over 82 % at mitosis and less than 10 % in G1 and
S, suggesting that Ser3205 phosphorylation is dynamically reg-
ulated during mitosis [36]. To confirm mitotic phosphorylation
of DNA-PKcs Ser3205 and to identify the protein kinase respons-
ible for its phosphorylation, DNA-PKcs was immunoprecipitated
from cells that were treated with 40 ng/ml nocodazole for 15 h,
then either untreated, or preincubated with the DNA-PKcs inhib-
itor (NU7441) or the ATM inhibitor (KU55933) for a further 1 h
and isolated by mitotic shake off. Although, NU7441 blocked
mitotic phosphorylation of DNA-PKcs at Ser2056 (Figure 3A),
confirming autophosphorylation of this site in mitosis, neither
NU7441 nor KU55933 affected phosphorylation at Ser3205
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Figure 1 DNA-PKcs binds to and is phosphorylated at enriched mitotic spindles
(A) Schematic representation of DNA-PKcs showing major domains and positions of Ser2056, Thr2609, Ser3205 and Thr3950

phosphorylation sites. (B) Mitotic spindles and associated proteins were isolated according to [33] either in the absence
(left) or presence (right) of protein phosphatase inhibitors (see the Materials and Methods section for details). Lanes 1 and
4 contained soluble proteins. Lanes 2 and 5 contained the low ionic strength wash, and lanes 3 and 6 the mitotic spindle
fraction (see the Materials and Methods section for details). In the blots shown in the left-hand panel, an additional low
salt wash (lanes 2b and 5b) was included on the gels. Samples were boiled in SDS–PAGE sample buffer, run on SDS–PAGE
gels, transferred to nitrocellulose and probed with the described antibodies. (C) Mitotic spindles were prepared as in
Figure 1(B) with or without the addition of the DNA-PK inhibitor (NU7441) 1 h prior to mitotic shake off. Samples were run
on SDS–PAGE, transferred to nitrocellulose and probed for phosphorylation as indicated.

indicating that neither DNA-PK nor ATM is required for Ser3205

phosphorylation in mitosis (Figure 3A).
We observed that Ser3205 partially conforms to a putative con-

sensus sequence for PLK1 [38,39]. To determine whether PLK1
phosphorylates DNA-PKcs at Ser3205, mitotic cells were incub-
ated with the PLK1 inhibitor BI2536 and DNA-PKcs was im-
munoprecipitated from mitotic extracts. Significantly, inhibition
of PLK1 blocked phosphorylation of DNA-PKcs at Ser3205 in
mitotic extracts, while inhibition of Aurora kinase A had no
effect on DNA-PKcs Ser3205 phosphorylation, indicating that

phosphorylation of DNA-PKcs on Ser3205 is PLK1 dependent
in mitosis (Figure 3A). Inhibition of PLK1 blocked PLK1-Thr210

phosphorylation as expected, and also blocked Aurora A-Thr288

phosphorylation, consistent with PLK1 lying upstream of Aurora
A late in mitosis [40].

To determine whether PLK1 phosphorylated DNA-PKcs on
Ser3205 in vitro, purified PLK1 (a kind gift from Dr James Hastie
and Dr Dario Alessi, University of Dundee, Scotland, U.K.) was
incubated with purified DNA-PK, dsDNA and either inhibit-
ors to DNA-PKcs (NU7441) or PLK1 (BI2356) as indicated
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Figure 2 Phosphorylation of DNA-PKcs at Thr3950 in mitotic cells
U2OS cells were stained with FITC-conjugated α-tubulin (green) at 1:1000 dilution, and phosphospecific antibody to
DNA-PKcs phospho-Thr3950 (red) at 1:200 dilution at different phases of the cell cycle. DNA stained with DAPI is shown in
blue. An expanded image of a cell in cytokinesis stained with the DNA-PKcs phosphoThr3950 antibody (panel B) is shown
in Supplementary Figure S3(A).

(Figure 3B). As expected, purified DNA-PKcs underwent auto-
phosphorylation on Ser3205; however, PLK1 was also able to phos-
phorylate DNA-PKcs on Ser3205 in vitro (Figure 3B), suggesting
that PLK1 directly targets DNA-PKcs on Ser3205 in mitosis.

DNA-PKcs phosphorylated at Ser3205 localizes to
the midbody at cytokinesis
Phosphorylation of DNA-PKcs at Ser3205 in mitosis was further
confirmed by immunofluorescence in U2OS cells. Ser3205 phos-
phorylation was not detected in interphase cells but was clearly
present in mitotic cells (Figure 4A) and at the midbody in cy-
tokinesis (Figure 4B). DNA-PKcs Ser3205 phosphorylation was
resistant to inhibition of DNA-PK, ATM or Aurora A but was ab-
lated by inhibition of PLK1 (Figure 4B). Together, these studies

identify DNA-PKcs Ser3205 as a new target for PLK1 in mitosis
and show that, like PLK1, DNA-PKcs phosphosphorylated on
Ser3205 localizes to the midbody.

The DNA-PKcs–PLK1 interaction is not mediated by
phosphorylation
It was recently reported that PLK1, which contains an N-terminal
FHA (forkhead associated) domain, interacts with DNA-PKcs
in mitosis [41]. Given that FHA domains frequently mediate
phospho-protein interactions [42], we asked whether the inter-
action between PLK1 and DNA-PKcs was mediated by phos-
phorylation. Mitotic cells were harvested after nocodazole treat-
ment and shake off then incubated for 1 h with either NU7441
to inhibit DNA-PKcs or BI2536 to inhibit PLK1. DNA-PKcs
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Figure 3 PLK1 phosphorylates DNA-PKcs on Ser3205 in mitosis
(A) HeLa cells were treated with 40 ng/ml nocodazole for 15 h, then 1 h prior to shake off either mock-treated (un) or
treated with 8 μM of the DNA-PK inhibitor (NU7441), 5 μM of the ATM inhibitor (KU55933), 100 nM of the PLK1 inhibitor
(BI2536) or 100 nM Aurora-A-Inhibitor-I for 1 h. After shake off, cells were allowed to recover in fresh media, in the absence
of nocodazole but in the continued presence of kinase inhibitors, for a further 35 min before harvesting by centrifugation.
NETN lysis was carried out and DNA-PKcs was immunoprecipitated from 1 mg of lysate as described in the Materials and
Methods section. Immunoprecipitates were blotted with the described antibodies. The lower panel shows 50 μg of the
whole cell extract probed for Aurora A Thr288 and PLK Thr210 phosphorylation as well as total PLK1 to show efficacy of
PLK1 and Aurora A inhibitors. (B) Purified DNA-PKcs was incubated with His-tagged purified PLK1 alone (lanes 1–3) or in
the presence of purified Ku heterodimer (lanes 4–6). Where indicated, reactions contained the DNA-PK inhibitor NU7441
(lanes 2 and 6) or the PLK1 inhibitor BI2536 (lane 3) as indicated. All lanes contained DNA. ATP was present in lanes
1–3 and 5 and 6 as indicated. Reactions were stopped by boiling the samples in SDS sample buffer, and samples were
run on an SDS 8%PAGE gel and probed with the described antibodies.

was then immunoprecipitated and probed for the presence of
DNA-PKcs and PLK1. The PLK–DNA-PKcs interaction was
not disrupted by the addition of DNA-PK or PLK1 inhib-
itors, suggesting that it is not mediated by phosphorylation-
dependent interactions (Figure 5 and Supplementary Figure
S4A at http://www.bioscirep.org/bsr/034/bsr034e113add.htm).
The DNA-PKcs–PLK1 interaction was also not disrupted by
treatment with the broad-spectrum nuclease, benzonase (Sup-
plementary Figure S4B), indicating that it is not DNA or RNA
mediated. DNA-PKcs immunoprecipitates were also probed for
PP6 and known mitotic proteins. Our results also show that

DNA-PKcs interacts with PP6 and actin in mitotic extracts
but not with Aurora A, Aurora B, CEP55 or nuclear lamins
(Figure 5A).

PP6 dephosphorylates DNA-PKcs Ser3205 in mitosis
and after DNA damage
DNA-PKcs interacts with PP6 [19,20] and PP6 dephosphorylates
mitotic protein kinase Aurora A at Thr288, and has a major
role in mitosis [21]. We therefore asked whether PP6 dephos-
phorylates Ser3205 of DNA-PKcs in mitosis. HeLa cells were
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Figure 4 DNA-PKcs phosphorylated on Ser3205 localizes to the midbody in mitosis
(A) U2OS cells were stained with FITC-conjugated α-tubulin (green) (1:1000 dilution), and a phosphospecific antibody to
DNA-PKcs phospho-Ser3205 (red) (1:200 dilution). DNA was stained with DAPI (blue). (B) U2OS cells were treated with
100 nM of the PLK1 inhibitor (BI2536), 100 nM of Aurora-A-Inhibitor-I, 8 μM of the DNA-PK inhibitor (NU7441), or 5 μM of
the ATM inhibitor (KU55933) for one hour prior to fixation and stained as above. Also shown as a control experiment (panel
2) in which U2OS cells were stained with FITC-conjugated α-tubulin (green) and the phosphospecific antibody to DNA-PKcs
phosphoserine-3205 (red) in the presence of the 10 μg/ml phospho-blocking peptide. DNA stained with DAPI is shown in
blue. Additional controls for the specificity of the phospho-Ser3205 phosphospecific antibody are shown in Supplementary
Figure S3(C).
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Figure 5 PLK1 interacts with DNA-PKcs in mitotic cells
(A) DNA-PK immunoprecipitations were carried out from extracts of mitotic cells as in Figure 3. Samples were boiled in
SDS–PAGE sample buffer, run on SDS-PAGE gels and probed using the antibodies indicated. (B) PLK1 immunoprecipitations
were carried out from asynchronously growing or nocodazole treated cells as described in the Materials and Methods
section. Where indicated, cells were treated with the DNA-PK inhibitor (8 μM) or the PLK1 inhibitor (100 nM) for 1 h prior
to harvest. The asterisk represents a breakdown product of DNA-PKcs.

transfected with either scrambled control siRNA or siRNA to
PP6c, then incubated with nocodazole (40 ng/ml, 16 h) and either
harvested immediately (time 0), or placed in fresh media (minus
nocodazole) and allowed to recover for up to 4 h as indic-
ated. Arrest and subsequent release from mitosis in nocodazole
treated cells was confirmed by probing immunoblots for cyc-
lin B1, which is expressed in early mitosis but degraded for
cells to exit mitosis [43]. As reported previously, siRNA de-
pletion of PP6 resulted in enhanced phosphorylation of Aurora
A on Thr288 [21] (Figure 6A and Supplementary Figure S5 at
http://www.bioscirep.org/bsr/034/bsr034e113add.htm). Signific-
antly, siRNA depletion of PP6c enhanced the phosphorylation of
DNA-PKcs at Ser3205 in mitosis (Figure 6A) and after IR (Fig-
ure 6B), revealing Ser3205 of DNA-PKcs as a new substrate of
PP6 in mitosis and after DNA damage.

PLK1 is not required for DNA-PK-dependent
phosphorylation of Chk2 Thr68 in mitosis
After DNA damage, the cell-cycle checkpoint protein kinase
Chk2 is phosphorylated on Thr68 in an ATM-dependent man-
ner [44]. ATM-dependent activation of Chk2 leads to activation
of cell-cycle checkpoint arrest at G1/S and G2/M [42,45]. How-
ever, recent studies also suggest a role for Chk2 in mitosis. Chk2
phosphorylates BRCA1 in mitosis in the absence of DNA dam-
age [30,46] and co-localizes with PLK1 at the midbody [47]. In
addition, lagging chromosomes, as observed here in DNA-PKcs
depleted cells (Supplementary Figure S2C), are also a feature of

Chk2-deficient cells [30]. Moreover, Chk2 phosphorylation on
Thr68 and BRCA1 phosphorylation on Ser988 in mitosis requires
the activity of DNA-PK [28,29], suggesting that DNA-PKcs reg-
ulates both Chk2 and BRCA1 in mitosis to regulate genome
stability. Given that PLK1 phosphorylates DNA-PKcs on Ser3205

in mitosis, we asked whether inhibition of PLK1 affected DNA-
PKcs mediated phosphorylation of Chk2 in mitosis. HeLa cells
were incubated with nocodazole for 15 h, followed by incub-
ation with the DNA-PK inhibitor NU7441, the ATM inhibitor
KU55933 or the PLK1 inhibitor BI2536 for 1 h. After mitotic
shake off, cells were examined for Chk2 Thr68 phosphorylation.
Mitotic phosphorylation of Chk2 at Thr68 was abrogated by in-
cubation with the DNA-PK inhibitor NU7441 confirming recent
studies indicating that DNA-PK phosphorylates Chk2 on Thr68

in mitosis [28,29], however, phosphorylation was unaffected by
incubation with the ATM inhibitor KU55933 or the PLK1 inhib-
itor BI2536 (Figure 7A). Thus, as demonstrated in Figure 3(A),
PLK1-dependent phosphorylation of DNA-PKcs is not required
for DNA-PK-dependent activation of Chk2 in mitosis.

Autophosphorylation of DNA-PKcs and
DNA-PKcs-dependent phosphorylation of Chk2 at
Thr68 in mitosis is independent of Ku and DNA
damage
Phosphorylation of Chk2 on Thr68 after DNA damage re-
quires ATM [48], whereas Thr68 phosphorylation of Chk2
in nocodazole-treated cells requires DNA-PK ([28,29] and
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Figure 6 PP6 dephosphorylates DNA-PKcs phospho-Ser3205 in mitosis and after IR
(A) HeLa cells were treated with siRNA to PP6c or scrambled control for 80 h and either left untreated (Asy) or treated
with 40 ng/ml nocodazole for a further 16 h. Cells were harvested by mitotic shake off and left to recover in fresh media
(minus nocodazole) for the times indicated. NETN lysates were prepared and DNA-PKcs immunoprecipitations were carried
out for 2 h as described in the Materials and Methods section. Samples were boiled in SDS–PAGE sample buffer, run
on an SDS/8%PAGE gel and probed for DNA-PKcs, DNA-PKcs-phospho-Ser3205, Ku80 and Aurora A as indicated. A graph
showing the quantitation of Ser3205 phosphorylation normalized to total DNA-PKcs is shown on the right. These results
are representative of three separate experiments. Immunoblots were also probed for cyclin B1 to confirm arrest in, and
subsequent release from, mitosis. (B) HeLa cells were treated with siRNA to PP6c or scrambled control. Ninety-six hours
after transfection, cells were either left untreated or treated with 8 Gy IR then left to recover for the times indicated.
DNA-PK immunoprecipitations were carried out as described in the Materials and Methods section. Samples were boiled
in SDS–PAGE sample buffer, run on an SDS/8%PAGE gel and probed using the antibodies described. All lanes are from
the same exposure of the same gel but the image was cut to make the figure comparable to panel A. A graph showing
the quantitation of Ser3205 phosphorylation normalized to total DNA-PKcs protein is shown on the right. The results are
representative of three separate experiments. Blots were also probed for cyclin B1 expression under identical conditions
to those in panel A. The absence of cyclin B1 staining indicates that PP6c depletion did not induce mitotic arrest.

Figure 7A). It is well established that in response to DNA
damage, the Ku protein binds DSBs, which in turn recruits
DNA-PKcs, stimulating its protein kinase activity [49,50]. We
therefore asked whether the nocodazole conditions used in our
experiments induced DNA damage, which would be predicted to
induce Ku-dependent activation of DNA-PKcs. HeLa cells were
treated with nocodazole at 40 ng/ml for 16 h and assayed for γ -
H2AX phosphorylation, a well-established marker of DSBs [51].
No γ -H2AX foci were detected in nocodazole treated cells (Fig-
ure 8A), indicating that the nocodazole conditions used in our
experiments do not induced DSBs.

We next examined whether activation of DNA-PKcs in mi-
tosis required Ku. Ku70 and Ku80 were depleted by siRNA then
cells were either untreated, irradiated (10 Gy IR) and harvested
after 1 h, or treated with nocodazole as above. Immunoblots were
then probed for DNA-PKcs phosphorylation on Ser2056, an estab-
lished DNA damage induced autophosphorylation site [52,53].

Although Ku was depleted by over 95 %, nocodazole induced
phosphorylation of DNA-PKcs on Ser2056 was only slightly re-
duced, whereas IR-induced phosphorylation of DNA-PKcs on
Ser2056 was virtually eliminated (Figure 8B). To further invest-
igate this apparent lack of requirement for Ku, Ku-deficient ro-
dent xrs6 cells stably expressing human DNA-PKcs were either
treated with nocodazole or IR. Again, loss of Ku abrogated the IR-
induced phosphorylation of DNA-PKcs at Ser2056, compared with
Ku-proficient, DNA-PKcs-deficient V3 rodent cells expressing
human DNA-PKcs, while nocodazole-induced phosphorylation
of DNA-PKcs at Ser2056 was relatively unaffected (Figure 8C).
These results suggest that the nocodazole conditions used here do
not induce DNA damage and that Ku is not required for activation
of DNA-PKcs in mitosis.

To determine whether Chk2 Thr68 phosphorylation was also
Ku independent, DNA-PKcs or Ku were depleted from HeLa
cells using siRNA, then cells were treated with nocodazole,
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Figure 7 Inhibition of PLK1 does not affect DNA-PK dependent, mitotic phosphorylation of Chk2 on Thr68

(A) HeLa cells were left untreated or were treated with 40 ng/ml nocodazole for 16 h. One hour prior to mitotic shake
off and harvesting, cells were left untreated or were treated with the DNA-PK inhibitor NU7441 (8 μM), the ATM inhibitor
KU55933 (5 μM) or the PLK1 inhibitor BI2536 (100 nM). After mitotic shake-off the cells were left to recover for 35 min
in the presence of the kinase inhibitors but in the absence of nocodazole. NETN lysates were prepared as described in
the Materials and Methods section and 50 μg of extract was resolved on SDS–PAGE gels and probed with the antibodies
as described. As in Figure 3(A), inhibition of PLK1 with BI2536 resulted in loss of phosphorylation of both PLK1 and
Aurora A. (B) HeLa cells were transfected with siRNA to DNA-PKcs as described in the Materials and Methods section. At
80 h post-transfection, 40 ng/ml nocodazole was added for a further 16 h as indicated or cells were left untreated. Cells
were harvested by mitotic shake-off and left to recover in nocodazole-free media for the times indicated. NETN lysates
were prepared as described in the Materials and Methods section and 50 μg of extract was resolved on SDS–PAGE gels
and probed with the antibodies as described. Quantitation of Figure 7(B) is shown in Supplementary Figure S6. Results
are representative of three separate experiments. (C) HeLa cells were transfected with siRNA to siRNA to Ku70/80
and analyzed as described in Panel B. Quantitation of Figure 7(C) is shown in Supplementary Figure S6. Results are
representative of three separate experiments.

harvested by shake off and either analysed immediately or after
incubation in nocodazole-free media for 0.5, 1, 2 or 4 h. Deple-
tion of DNA-PKcs reduced Chk2 Thr68 phosphorylation, whereas
depletion of Ku70/80 had relatively little effect on Chk2 Thr68

phosphorylation (Figures 7B and 7C and Supplementary Fig-
ure S6 at http://www.bioscirep.org/bsr/034/bsr034e113add.htm).

Together, these results suggest that neither autophosphoryla-
tion of DNA-PKcs nor DNA-PKcs-dependent phosphorylation
of Chk2 in mitosis requires Ku and that both occur in the ab-
sence of DNA damage. Thus, activation of DNA-PKcs in mitosis
appears to be mechanistically different from Ku-dependent ac-
tivation of DNA-PKcs after DNA damage.
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Figure 8 DNA-PKcs is activated in mitosis in the absence of Ku and DNA damage
(A) HeLa cells were grown on poly-L-lysine coated coverslips and either left untreated, treated with 40 ng/ml nocodazole
for 16 h or treated with 2 Gy IR and allowed to recover for 1 h. Cells were fixed and stained for γ -H2AX as described
previously [19]. (B) HeLa cells were transfected with scrambled siRNA control or siRNA to Ku (100 nM Ku70 siRNA,
100 nM Ku80 siRNA) as described in Figure 7(B). Eighty hours post transfection, cells were untreated, or treated with
40 ng/ml nocodazole for 16 h. One hour prior to harvesting, where indicated, cells were treated with 10 Gy IR and left to
recover. Nocodazole-treated cells were harvested by mitotic shake-off as described, and untreated and IR treated cells were
harvested by trypsinization. NETN lysates were prepared as described in the Materials and Methods section and 50 μg
of extracts were resolved on an 8 % SDS–PAGE gel and probed for the antibodies indicated. (C) DNA-PK null V3 rodent
cell (lanes 1–3), V3 cells stably expressing GFP-tagged human DNA-PKcs (lanes 4–6), Ku null xrs-6 rodent cells (lanes
7–9) or Ku null xrs-6 rodent cells stably expressing GFP-tagged human DNA-PKcs (lanes 10–12) were either untreated,
treated with 40 ng/ml nocodazole for 16 h or irradiated 10 Gy, 1 h recovery as above. NETN lysates were prepared and
immunoprecipitated with antibodies to GFP as described in Material and Methods. Samples were run on 8 % SDS–PAGE
gels and probed for the antibodies indicated. (D) Model for role of DNA-PKcs in mitosis. DNA-PKcs interacts with PP6 and
PLK1 in mitosis. DNA-PKcs undergoes autophosphorylation at Thr2609, Thr3950 and Ser2056 in mitosis (indicated by green
arrows and green circles). Ser3205 is phosphorylated by PLK1 (indicated by the red circle) and dephosphorylated by PP6 in
mitosis. DNA-PKcs phosphorylated at Thr2609, Ser3205 and Thr3950 localizes to the midbody in cytokinesis. Also shown is
DNA-PKcs dependent phosphorylation of Chk2 on Thr68.

DISCUSSION

Previous studies have shown that DNA-PKcs and PP6 are re-
quired for faithful mitosis and that DNA-PKcs is phosphorylated
on Ser2056, Thr2609 and Thr2647 in mitosis [21,23,27]. Mitotic
phosphorylation at these sites was DNA-PK-dependent and
DNA-PKcs phosphorylated at Thr2609 and Thr2647 localized to
the midbody in cytokinesis [23,27]. Here, we show that Thr3950,
which is located in the putative activation loop, in the catalytic
domain of DNA-PKcs [18], is also autophosphorylated in mi-
tosis. Like DNA-PKcs phosphorylated on Thr2609 and Thr2647,

DNA-PKcs phosphorylated at Thr3950 localizes to centrosomes
in metaphase and the midbody in cytokinesis.

We also show that Ser3205, which is located in the conserved
FAT domain of DNA-PKcs (Figure 1A), is phosphorylated in
mitosis in a PLK1-dependent manner in vivo. Moreover, PLK1
phosphorylates DNA-PKcs directly on Ser3205 in vitro, suggest-
ing that DNA-PKcs Ser3205 is a direct target of PLK1 in mitosis.
We also confirm that PLK1 physically interacts with DNA-PKcs
in mitosis and show that this interaction is resistant to inhibi-
tion of either DNA-PKcs or PLK1 therefore is not mediated by
phosphorylation of either protein. Our results confirm that DNA-
PKcs phosphorylates Chk2 on Thr68 in mitosis [29] and reveal
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that, despite being required for Ser3205 phosphorylation in mi-
tosis, PLK1 is not required for Chk2 Thr68 phosphorylation, and,
by implication, activation, of Chk2 in mitosis.

Thr3950-phosphorylated DNA-PKcs was absent in interphase
cells in the absence of DNA damage but was detected at
the centrosomes during prophase and metaphase (Figure 2).
Like phosphorylation at Thr2609, DNA-PKcs phosphorylation at
Thr3950 was detected at the midbody. (Figure 2 and Supplement-
ary Figure S3A), as was Thr210 phosphorylated PLK1 (Supple-
mentary Figure S3B). Ser3205 phosphorylation was also not de-
tected in interphase cells in the absence of DNA damage but,
unlike phospho-Thr3950, phospho-Ser3205 had a diffuse staining
pattern in metaphase cells and was present at the midbody in cy-
tokinesis, suggesting different modes of regulation of DNA-PKcs
at phospho-Thr3950 and phospho-Ser3205 during mitosis.

Importantly, our studies raise several important questions re-
garding how DNA-PKcs is activated in mitosis. The nocodazole
treatment used here did not induce γ -H2AX phosphorylation, and
phosphorylation of Chk2 in nocodazole-treated cells was DNA-
PK-dependent, rather than ATM-dependent as it is after DNA
damage [48]. Moreover, our results from siRNA experiments in
human cells and in Ku defective xrs-6 rodent cells are all consist-
ent with both mitotic autophosphorylation of DNA-PKcs and mi-
totic phosphorylation of Chk2 being Ku-independent. Thus, our
results indicate that activation of DNA-PKcs in mitosis occurs
in the absence of DNA damage and is mechanistically distinct
from the manner in which it is activated following DNA damage.
We have previously shown that DNA-PKcs can be activated by
tethering of its amino terminus [32], thus it is possible that con-
formational changes induced by post-translational modification
or interaction with other mitotic proteins could lead to activation
of DNA-PKcs in the absence of Ku and DNA damage.

Our studies also provide biochemical evidence for association
of PP6 catalytic and regulatory subunits with mitotic spindles.
Interestingly, the presence of protein phosphatase inhibitors re-
duced the association of PP6 subunits with spindles while enhan-
cing Aurora A Thr288 phosphorylation. This is in agreement with
the results of Barr and colleagues, who demonstrated that Au-
rora A protein kinase activity is regulated by PP6 during mitosis
[21]. Our results suggest that Aurora A phosphorylation may be
directly/indirectly regulated by the tightly controlled interaction
of PP6 with mitotic spindles. Previous studies have identified
γ -H2AX [19] and Aurora A [21] as targets of PP6 but, despite
the fact that PP6 interacts with DNA-PKcs, previous experiments
failed to show that PP6 was able to dephosphorylate DNA-PKcs
at autophosphorylation sites Ser2056 or Thr2609 [19,20]. Here, we
show that PP6 is required for dephosphorylation of DNA-PKcs
at the PLK1 phosphorylation site, Ser3205, in mitosis and after
DNA damage.

Collectively our data provide mechanistic insight into the role
of DNA-PKcs and PP6 in mitosis and suggest that PLK1 me-
diated phosphorylation of DNA-PKcs on Ser3205 is functionally
distinct from DNA-PKcs-dependent phosphorylation of Chk2 on
Thr68 in mitosis. Since inactivation of DNA-PKcs, PLK1, PP6
or Chk2 leads to mitotic defects including misaligned chromo-
somes, lagging chromosomes and abnormal nuclear morpholo-

gies and cytokinesis ([23,27,30,47] and Supplementary Figure
S2), these findings have relevance to understanding the mechan-
ism of aneuploidy in cancer cells.
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Figure S1 Nocodazole induces mitosis as indicated by histone
H3 Ser10 phosphorylation
HeLa cells were either untreated or incubated with nocodazole
(40 ng/ml) for 16 h then harvested by mitotic shake off. Aliquots of un-
treated cells, total nocodazole-treated cells (total), nocodazole-treated
cells after shake off (shake off) and cells remaining after shake off
(residual) were stained with FITC-conjugated histone H3-phospho-Ser10

antibody and analysed by flow cytometry as described previously [1].
Shown is the average of three separate experiments with standard
deviation.
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Figure S2 Depletion or inhibition of DNA-PK induces mitotic defects
(A) HeLa cells were grown on coverslips as described in the Materials and Methods section and treated with either DMSO,
the DNA-PK inhibitor NU7441 (8 μM) or the ATM inhibitor KU55933 (5 μM) for 1 h prior to fixation with formaldehyde. Cells
were processed for immunofluorescence as described in the Materials and Methods section. FITC-conjugated α-tubulin
was used at 1:1000 dilution. The left panel shows representative images of normal and misaligned chromosomes. The
graph on the right represents three experiments in which 500 mitotic cells were counted per experiment. The average
with STD is shown. (B) siRNA to PP6c or DNA-PKcs was carried out in HeLa cells as described in the Materials and
Methods section. Cells were processed for immunofluorescence as described above. The left panel shows representative
images of normal and misaligned chromosomes. The graph on the right represents three experiments in which 500
mitotic cells were counted in each experiment. The average with STD is shown. (C) HeLa cells were treated with siRNA
to DNA-PKcs as described, or were treated with the DNA-PK inhibitor NU7441 (8 μM) for 16 h. Cells were processed for
immunofluorescence as described above. The left panel shows representative images of normal or lagging chromosomes
(indicated by white arrows). The graph on the right represents three experiments in which 200 mitotic cells were counted
per experiment. The average with STD is shown.
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Figure S3 DNA-PKcs immunoprecipitates with PLK1
(A) U2OS cells processed for immunofluorescence as described in the
Materials and Methods section. The DNA-PKcs phospho-Thr3950 anti-
body was used at 1:200 dilution. (B) U2OS cells were processed for
immunofluorescence as described in the Materials and Methods sec-
tion. The PLK1 phospho-Thr210 antibody was used at 1:500 dilution.
(C) Control for DNA-PKcs phospho-Ser3205 antibody: DNA-PKcs was im-
munoprecipitated from V3 cells stably expressing wild-type DNA-PKcs
or DNA-PKcs S3205A (described in [2]) as indicated. Where indicated,
cells were irradiated (10 Gy 1 h). Immunoprecipitates were probed for
DNA-PKcs and a phosphospecific antibody to Ser3205 as indicated. The
* indicates a breakdown product of DNA-PKcs.

Figure S4 Thr3950-phosphorylated DNA-PKcs localizes to the
midbody
(A) DNA-PKcs was immunoprecipitated from nocodazole-treated cells as
described in Figure 3. Where indicated, cells were pretreated for 1 h with
the PLK1 inhibitor BI2356 (100 nM) or the DNA-PK inhibitor NU7441
(8 μM). Immunoprecipitates were boiled in SDS–PAGE sample buffer
and run on a SDS/PAGE gel and probed for the antibodies indicated.
(B) DNA-PK immunoprecipitations were carried out using 1 mg of NETN
extract from either asynchronized [A] cells or mitotic shake-off cells
[M] in the presence or absence of benzonase treatment as indicated.
Immunoprecipitates were boiled in SDS–PAGE sample buffer and run
on a SDS–PAGE gel and probed for the antibodies indicated.

Figure S5 Effect of siRNA to PP6c and scrambled control on
phosphorylation of Aurora A, Thr288

Quantification of data shown in Figure 6(A) of the main text.
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Figure S6 Effects of siRNA depletion of DNA-PKcs and Ku on
Chk2 Thr68 phosphorylation in mitosis
Quantification of data shown in Figures 7(B) and 7(C) of the main text.
The results are representative of at least three separate experiments.
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