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the receptor binding and catalytic domains are not sepa-
rated by linker regions and do not form obviously struc-
turally distinct elements (Zeth et al., 2008; Barreteau
et al., 2012b; Grinter et al., 2012b), the catalytic and
receptor binding domains of pectocin M2 do not form
extensive interactions. The relative orientation of the
ferredoxin domain, linker region and cytotoxic domain
gives rise to a non-linear dog-leg structure. Interestingly,
and again in contrast to colicin M, pyocin M and syringacin
M, the N-terminal region of pectocin M2 lacks a disor-
dered or flexible IUTD that is otherwise characteristic of
the colicin-like bacteriocins, with the entire N-terminus
being integral to the globular ferredoxin domain. These
data suggest a mechanism of uptake distinct from closely
related colicin-like bacteriocins.

Pectocin M2 is flexible

Given that pectocin M2 lacks an IUTD required to contact
the Tol or Ton complexes in the periplasm and mediate

translocation of this protein across the outer membrane,
alternative mechanisms of uptake must be considered.
One possibility is that the entire bacteriocin passes through
the lumen of its OM receptor. Since proteins involved in iron
uptake are invariably TonB-dependent receptors that
possess large 22-stranded β-barrels this may be plausible.
However, such a mechanism would only be feasible if
pectocin M2 were flexible and significant rearrangement of
the dog-leg configuration observed in the crystal structure
could be achieved. The observation that there is a relatively
large difference in orientation between the cytotoxic and
ferredoxin domains in the monomers of the ASU (Fig. S1)
is suggestive of such flexibility and indicates that the crystal
structure may not be wholly representative of pectocin M2
in solution.

To assess the conformational flexibility of pectocin M2
we performed small angle X-ray scattering (SAXS). SAXS
data were obtained for a range of pectocin M2 concentra-
tions. Comparison of these data with a theoretical scat-
tering curve generated, using CRYSOL (Svergun et al.,

Fig. 2. Colicin M-class bacteriocins possess
a highly flexible active site.
A. A stereo view of a stick model of the key
active site residues of pectocin M2, showing a
water molecule occupying the key metal
binding site of the enzyme.
B. A stereo view of the overlay of the catalytic
site from all structurally characterized
colicin-M class bacteriocins, showing
conformational variability of the key catalytic
arginine. Key arginine shown as sticks and
colour coded according to structure;
green = syringacin M (PDB ID = 4FZL),
blue = pyocin M (PDB ID = 4G75),
red = colicin M (PDB ID = 2XMX) and
yellow = pectocin M2 (PDB ID = 4N58), All
other catalytically important residues shown
as lines in yellow. This figure is available in
colour online at wileyonlinelibrary.com.
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1995), from the pectocin M2 crystal structure shows there
are obvious differences between the theoretical curve and
experimental scattering data (Fig. 3A). In addition, the
radius of gyration (Rg = 27 Å) obtained from Guinier analy-
sis of the experimental scattering data is somewhat larger
than that calculated from the pectocin M2 crystal structure
(Rg = 24 Å) using SOMO (Rai et al., 2005) (Fig. 3B). Con-
sistent with this, the p(r) function, which describes the
paired set of vectors between all the electrons within the
protein, indicates a maximum particle size (Dmax = 96 Å,
Fig. 3C) that is much greater than the maximum dimen-
sion of the pectocin M2 crystal structure (77 Å, Fig. 1B).
These data suggest that the pectocin M2 crystal structure
is not wholly representative of the conformational ensem-
ble present in solution and that this protein adopts an
elongated conformation, implying inter-domain flexibility.

To test this idea further, we examined the Porod-Debye
plot for pectocin M2, where scattering decay is examined
as I(q)q4 as a function of q4. This analysis reports directly on
particle flexibility and typically for compact globular parti-
cles an asymptotic plateau is reached for the low q part of
the data. However, for pectocin M2 no discernible plateau
was observed (Fig. 3D). For comparison, we also obtained

scattering data for pyocin M which, as with colicin M and
syringacin M, forms a compact structure and similarly
analysed these data (Barreteau et al., 2012b). In contrast
to the curve obtained for pectocin M2, the Porod-Debye
plot for pyocin M reached a plateau confirming its rigidity
and compactness (Fig. 3D). In addition, the Kratky plot
[I(q)q2 versus q] for pectocin M2 normalized to the scatter-
ing intensity I(0) and Rg, has two maxima with increasing
scattering at higher angles. The Kratky plot reports directly
on inter-domain flexibility and for pectocin M2 is consistent
with a two-domain protein connected by a flexible linker
(Fig. 3E). In comparison, there is a single maximum in the
pyocin M Kratky plot, consistent with its single domain-like
globular structure. Taken together these analyses indicate
that pectocin M2 is flexible and adopts conformations
distinct from that observed in the crystal structure.

Pectocin M2 can adopt a highly extended conformation
and exists as two distinct subpopulations in solution

To determine if the SAXS data for pectocin M2 could be
better described by an ensemble of conformations we first
used discrete molecular dynamics (DMD) simulations

Fig. 3. SAXS shows pectocin M2 is flexible.
A. Overlay of the experimentally determined pectocin M2 SAXS curve (black points) with the scattering curve computed with CRYSOL from
the P21 crystal structure (red line) produces a fit (χ = 1.362) with visible deviations between the data, especially evident at low angles,
suggesting that the crystal structure is more compact than that of pectocin M2 in solution.
B. Derivation of Rg from a Guinier analysis (red) of the scattering curve; residuals of the fit are in green.
C. Pair-distance distribution plot from experimental scattering data for pectocin M2 exhibiting two maxima which highlights the bimodal
character of the molecule in solution. The Dmax of the particle is 96 Å.
D. Porod-Debye and (E) normalized Kratky plots for pectocin M2 imply increased flexibility of the protein in solution (red). Pyocin M (black), a
protein of similar molecular weight with a relatively rigid structure and strong inter-domain contacts is used as a control. This figure is available
in colour online at wileyonlinelibrary.com.
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