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Abstract. We describe recent I/O testing frameworks that we have developed and applied
within the UK GridPP Collaboration, the ATLAS experiment and the DPM team, for a
variety of distinct purposes. These include benchmarking vendor supplied storage products,
discovering scaling limits of SRM solutions, tuning of storage systems for experiment data
analysis, evaluating file access protocols, and exploring I/O read patterns of experiment software
and their underlying event data models. With multiple grid sites now dealing with petabytes
of data, such studies are becoming essential. We describe how the tests build, and improve, on
previous work and contrast how the use-cases differ. We also detail the results obtained and
the implications for storage hardware, middleware and experiment software.

1. Introduction

The Large Hadron Collider experiments are now storing and accessing petabytes of data at
multiple sites with a variety of storage systems. In addition, despite a series of improvements
[1] [2], there remains substantial activity on some LHC experiments that is I/O limited. There
are also differences between experiments’ workflows and I/O patterns and little projection or
communication by experiments on expected file access patterns or 1/O operations per second
(IOPS). This motivates greater understanding of the workloads presented by the experiments
and the response of hardware and storage systems to those workloads. Recognising this,
in their recent report, the WLCG Storage Technical Evolution Group (TEG) recommended
that I/O benchmarks be developed; that experiments understand and communicate their
I/O requirements and that both applications and storage systems provide mechanisms for
understanding I/0 [3].

In this context we explore I/O testing. Listed below are some of the reasons for such testing
from the perspective of sites, experiments or storage developers. In the rest of this paper we
identify certain examples of these using studies in which the authors have been involved. As well
as outlining some of the results obtained, we raise some of the features of the method employed
and use that to compare what approaches need to be taken more generally for these kind of
tests.
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e Sites:

— Evaluating vendor supplied storage and informing purchasing decisions.
— Tuning of hardware or middleware.

e Storage Middleware Developers:

— Tuning their system for use in WLCG environment.
— Basic functionality testing for new releases.

— Scale testing of low-level functions.

— Choice of protocols to use.

¢ Experiments:
— Application testing.
— Evaluating data models or changes in file structure.
— Checking service-level offered by sites.

In section 2 we describe the testing of vendor supplied storage for use at a UK Tier 2 site. In
section 3 we detail an analysis of the low-level performance of the internal functions of the DPM
middleware. In section 4 we describe a testing framework used for evaluating I/O of the ROOT
application [4] and in section 5 we describe a framework for the regular testing of releases of
the DPM middleware. Finally in section 6 we contrast these use cases noting where common
approaches can be taken.

2. Testing vendor supplied storage

Sites are often presented with a variety of options for storage hardware purchases. Some vendors
are keen to engage but, unlike for compute resources where the HEPSPEC benchmark exists that
can be run without understanding of the experiment software, there is no portable benchmark
for HEP I/0. Here we describe stress testing of the DELL “HPC scalable storage building block
reference architecture”[5]. The full report is provided in [5], including details for reuse of the
tests by other sites.

In this case the importance was to find a simple, portable test, that could provide a realistic
level of stress on the supplied servers but that did not require experiment software to be installed
or particular expertise. The mandate was specifically to determine the servers suitability as DPM
storage pools (DPM is the most popular storage element at UK Tier 2 sites) and therefore the
tests made use of the DPM LAN protocol RFIO and the WAN protocol GridF'TP [5].

The hardware tested consisted of a pair of Dell PowerEdge R710 servers connected to
PowerVault MD3200 storage enclosure extended by three PowerVault MD1200 storage arrays,
each of which contained 12 x 2 TB nearline Serial-Attached-SCSI (SAS) disks. At 120 TB
per server this presents similar, slightly denser, storage servers than in use by many UK Tier
2 sites. The servers were partitioned into file-systems of between 9 and 41TB employing a
range of RAID configurations and both zfs and ext{ file-systems. This was connected into
the production environment at the Lancaster Tier 2, with three bonded single-gigabit Ethernet
links, and accessed by their production cluster which provided 512 cores for use in testing.

Both wide-area and local tests were performed. For the local area tests, scripts were developed
that simulated realistic (worst case) production loads and these were submitted to the site batch
system, accessing the machine which was setup as a test DPM disk server. The first performed a
copy-over-RFIO (RFCP) with up to 250 jobs per server, while the second accessed data directly
over RFIO at up to 100 jobs per filesystem using the ROOT application [4] with a ~2GB data
file taken from the ATLAS experiment. In both cases the machines became overloaded unless
tunings were applied to default filesystem or DPM read aheads. Figure 1 demonstrates for the
RFCP test that load on the server increased until the block device read-ahead was increased
to 8MB at which point the available network could be utilised. Figure 2 demonstrates the case
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Figure 1. System load and network utilisation for 250 RFCP jobs showing that once the block
device read-ahead value is increased the load is reduced and available network is fully utilized.
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Figure 2. CPU usage for a default RFIO buffer-size of 128k or an increased value of 512k
during the direct-RFIO ROOT test.

where 100 direct RFIO jobs resulted in excessive server CPU usage, including WAIT CPU, until
the RFIO read-ahead value is increased. Many of the tunings applied in the whitepaper are
being applied in production environments by UK sites, and so it was possible with simulated
tests to cause similar load as seen in production, which is valuable for testing new hardware.

3. Stress testing of the DPM storage element

The aim of this work was to find limits of the DPM storage element’s internal ways of dealing
with requests when stressed in a realistic fashion. For full details see [6]. Three tests were
developed and added to the DPM package perfsuite [7]. These included a file copy and direct
file access in ROOT over RFIO, which are similar to those discussed in the last section. However,
in addition, a pretend-RFCP test was implemented where a file is requested on DPM either with
the dpm_get or dpm_put command, polled with dpm_getstatus, opened with rfio_open, but closed
immediately and a successful file transfer signalled with dpm_putdone. This allows testing of the
intrinsic limits of the DPM calls rather than hitting limits on server load or network bandwidth.
In addition, infrastructure was developed to parse the log files in DPM so that detailed timing
info could be obtained.

As shown in figure 3, times were recorded of all the DPM functions involved in the process.
This includes the put request, which polls for the physical file on a disk server; the proc request,
which checks if the file exists and returns the transfer URL; and the putdone request. It also
includes the number and time for stat requests, where the client checks if the put operation
has completed. As there is a delay between consecutive stat calls, multiple such calls reflect a
long processing time on the server. The put function on DPM contacts the namespace (DPNS)
daemon for file access rights and runs with multiple fast threads while the proc function on DPM
runs with multiple slow threads. There is a delay between the functions in switching between
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the threads. Figure 3 shows that an improvement was found by running with 70 instead of 20
slow threads in which case the client only required one stat call instead of two and there was a
decreased total time for the process in repeated tests.
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Figure 3. For 20 (left-bar, red) or 70 (right bar, green) slow threads: the average time taken
(seconds) for DPM operations (left) and the total time (seconds) for repeated tests (right).

This testing also revealed benefits from increasing the socket queue, which defines how many
requests can start to be processed by DPM at a time. Furthermore, it uncovered limitations in
file opens within a single directory. This later limitation is due to the fact that when a file entry
is created, the link number of the parent directory must be increased. To change the parent
directory the database will be locked. Therefore file creation in one directory cannot be truly
parallel, because all threads have to wait on this database entry for the parent directory. Further
specific details on the testing and results are available in [6] and such testing will continue to be
used to reveal bottlenecks or limitations within the storage system.

4. ROOT I/0 Testing Framework

A testing framework was developed to test the impact on I/O performance of changes within the
ROQT application on all different storage system types. This is illustrated in figure 6. It uses
the HammerCloud [8] testing system to send continuous jobs to large Tier 2 sites. HammerCloud
was modified to take tests directly from an SVN repository allowing a quick development-test
cycle for changes. The tests all run on identical data files for comparison. New files (written
with new versions of ROOT, for example) can be distributed to all sites within a day. The
tests run are highly instrumented and collect a variety of performance information, including
ROOT internals and the worker node environment, which are stored in an Oracle database
for later analysis. This system enables fast turnaround so that for a new test designed in the
morning results can be obtained on production instances of a whole variety of storage systems
by the end of the day. It therefore complements stress testing or tests performed in controlled
environments. A web interface is provided for display of results [9] allowing for easy monitoring
by experiments, developers and sites; together with the ability to store the results as a ROOT
TTree for more detailed analysis.

The tests employed include the reading of simple ROOT TTree structures by the ROOT
application itself, which is common to many HEP experiments. It also includes tests specific to
the ATLAS experiment. Tests are done where the whole file is read as well as some with sparse
reading of the files (both events or branches). These are carried out with different versions of
ROOQT, as well as patches or development versions. An example is shown in figure 5 of the CPU
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Figure 4. Outline of the ROOT I/O testing framework.
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Figure 5. CPU efficiencies for jobs reading 100% of events using ROOT TTreeCache (TTC)
and either reading all branches with a TTC of 30MB (blue triangles) or reading around 2% of
branches with a TTC of 30MB (black circles) or 300MB (red squares). Errors from RMS spread
of results.

efficiency (CPU time / wall-time) found at a range of sites. The input file used is 750MB in size
and contains a main event T7Tree with around 3000 branches and 12000 events written in ROOT
5.32. The sites employ a variety of storage systems as labeled on the x-axis. In this example, the
effect of reading a limited set (around 2%) of branches is shown. It can be observed that sparse
reading of branches leads to lower CPU efficiencies on certain sites. Those sites that maintain
high efficiencies use protocols capable of vector reads (dcap or zrootd). It can also be observed
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that using a larger than default value of ROOT’s memory buffer “TTreeCache” makes little
difference to this drop in efficiency though its effect varies on different sites or systems. These
tests are now running continuously and this will be used within the cross-experiment ROOT I/0
working group towards further developing ROOT features such as “Basket Optimisation” and
“Asynchronous Prefetching” [10]. In addition, the test will be further broadened with a view to
both including more examples from other HEP experiments as well as working towards a generic
benchmark. Finally the framework is being used for site tuning where it will be important to
compare to server side monitoring, available for xrootd [11] and http [12] for example.

5. Middleware Testing Framework

While there is an extensive testing process before storage middleware is released to the
community, there are often issues that do not appear until it is tested in a real production
environment. In addition, there may be new features, such as the implementation of new
protocols, that require performance testing that can be most effectively done in production.
There are also site benefits from testing middleware versions before they are released. For these
reasons a framework for testing pre-production versions of the DPM storage element has been
developed. It builds on the ROOT I/0 framework described in the last section, but, in addition,
the sites install a test DPM headnode and disk server which auto-update (using yum) from the
testing “epel” repository used by the DPM developers. The framework is illustrated in figure
6. Currently two sites are deployed: Glasgow with an SL5 release and Edinburgh with an SL6
instance. As above, the same tests are run regularly on the sites’ production clusters, but reading
files now from the test DPM and testing both current functionality and new features such as
new protocols. The results of the tests are uploaded to a custom database to allow the storage
of middleware specific quantities and the results are displayed on a custom webpage [13]. A
Nagios instance is also run to monitor the test machines.

DPM
Developer

Hammercloud

dataset

SVN

Define

Code; ROOT source epel-testing
Release (via curl)

Dataset YUM
auto-
update

Oracle Sites interested
—— In testi
B Uploads T testing
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Root scripts

Figure 6. Outline of the middleware testing framework.

Figure 7 shows a snapshot of the web page, illustrating the regular monitoring of reading
from the Glasgow test server using RFIO. Such monitoring gives confidence that releases will
work in the environment in which they would be used. It would also potentially show if any
performance improvements were made in the RFIO protocol. However the development of DPM
is not currently focused on RFIO, but on new protocols. Therefore figure 8 illustrates the reading
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of files via the new WebDav /https interface. This is under heavy development and the test jobs
need to patch a version of the ROOT source and recompile in order to be able to read the file.
Figure 8 shows the wall-time for reading only 100 out of the total 12000 events in the file and
the wall-times are significantly longer than for RFIO. This is most likely because of the SSL
encryption used when reading in this way (because of the need for X509 authentication). In
order for this to be a better performing option the possibility of redirection to plain http is being
investigated with the DPM developers and this framework is now in place to be able to test the
resulting implementations.
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Figure 7. Snapshot of the web visualisation tool for the middleware testing framework showing
the tracking of CPU time for reading a file via RFIO on the test DPM server.
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Figure 8. Wall time for reading 100 events within ROOT from DPM’s WebDav / https interface.
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6. Comparison of different use cases

In table 9 we match the use cases discussed above against possible features of the testing
framework. Commonalities have been seen and similar tests used in the examples described
here but there are also important differences. For example, experiments have the expertise to
run their code and have the need to test it, while sites and vendors may not and only require that
a test be realistic. Also different purposes for the tests motivate instrumentation at different
levels such as hardware, storage-system internals or the application. Testing which provides a
monitoring purpose such as middleware-release testing, application monitoring or site service
testing, requires an automated system. These monitoring systems can also, in practise, only run
single tests at a time, while, to find points of contention, middleware or site tuning testing needs
to occur at large scale. It can also be noted that for running on different storage types, it is
useful to use an experiment delivery system (such as via HammerCloud) which already makes all
the required customisations. This however, is not possible outside the production environment
where instead customisations to the tests are required.

Vendor Low-level Middleware |ROOTI/O
Storage Middleware | framework Framework

Vendor Middleware M/ware M/ware Site VO soft

Kit/ Site Scale tests Function Features quality /data
Tuning Protocols level
Automation X R v R v v
Scale Stress Stress Single Both Both Both
Environment Test Test Production
Instrumentation Hardware Middleware Application
Realism X % v v v vv

Figure 9. A comparison of the example testing frameworks discussed in this paper.

7. Conclusions

The need for I/0O testing and analysis is growing and new focus will need to be put on this in
the coming years to deal with increasing volumes of data and potentially decreasing hardware
performance. The requirements for such testing come from all parties involved but the purposes
and goals differ. Here we have given an overview of several testing projects that have been
used to test vendor solutions, tune sites, and develop middleware and applications in the LHC
community. We have found that valuable improvements can be made from site tuning of read-
aheads, from middleware internals such as process threads and from application buffers such as
ROOTs TTreeCache. We have also built regular testing to ensure the continuing functionality
and performance of experiment and middleware software. In constructing these tests, we have
exploited commonalities and provide much that can be built on for future evaluations, however
we have also seen that there is a need for customisation in each use case. In the future, this
work will be developed on further towards the WLCG TEG goals of generic benchmarking tools
and increased I/O information for sites, developers, and experiments.
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