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Abstract. AthenaMP is the multi-core implementation of the ATLAS software framework and
allows the efficient sharing of memory pages between multiple threads of execution. This has
now been validated for production and delivers a significant reduction on the overall application
memory footprint with negligible CPU overhead. Before AthenaMP can be routinely run on the
LHC Computing Grid it must be determined how the computing resources available to ATLAS
can best exploit the notable improvements delivered by switching to this multi-process model.
A study into the effectiveness and scalability of AthenaMP in a production environment will be
presented. Best practices for configuring the main LRMS implementations currently used by
grid sites will be identified in the context of multi-core scheduling optimisation.

1. Introduction
ATLAS Monte Carlo simulation, data reprocessing and user analysis jobs run successfully on
computing resources at over 100 computing sites worldwide. As the number of CPU cores
resident on computing servers (or “worker nodes”) at these sites has increased it has been
preferable to allocate one job slot per core in order to maximise resources. Although the number
of cores per worker node has increased, the ratio of device memory to the number of cores has
remained approximately constant. A value of 2 to 3 GB per CPU core is typical at present and
is lower for sites taking advantage of hyperthreading technology to double their effective core
count.

The memory footprint of ATLAS event reconstruction jobs is expected to exceed 2 GB
per core due to the higher amount of pileup events expected in future data taking conditions.
Running one ATLAS job per core will be difficult to sustain without memory limits on the
worker node being reached and so less jobs will have to be allocated per worker node unless
memory pressure can be mitigated. To address this issue, AthenaMP provides a method of
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enabling maximum memory sharing between multiple Athena worker processes. Almost 80%
memory sharing can be achieved with negligible CPU overhead [1].

Although the advantages of using AthenaMP are clear, effort is now required to define the
best approach to configure local resource management systems (LRMS) and batch scheduler
software to run ATLAS multi-core jobs in a timely manner. In particular, some care is needed
to avoid scheduling contention for jobs requiring different CPU and memory resources to run.

This note will look at how AthenaMP can be incorporated into the ATLAS production
system. The implementation and the main features of AthenaMP will be outlined in Section 2.
In Section 3 some of the issues faced for sites accepting multi-core jobs from ATLAS will be
discussed. Section 4 will cover some of the possible multi-core job scheduling scenarios in further
detail by modelling scheduling behaviour in a controlled environment. The current status of
multi-core readiness in the production system will be described in Section 5. Recommendations
for wider deployment across grid infrastructures and future prospects in this area will be outlined
in Section 6.

2. AthenaMP
AthenaMP [2] is an extension of the Athena software framework which provides a method of
maximum memory sharing between multiple Athena worker processes whilst retaining event
based parallelism. By incorporating all multi-process semantics into the existing Athena/Gaudi
framework [3] changes to client code using AthenaMP can be avoided.

2.1. Implementation and workflow
A schematic of the job workflow for AthenaMP is shown in Figure 1. After an initialisation
phase an allocated number of worker processes is created prior to the main event loop. A
call to the OS fork() routine clones the address space of the parent process for each worker
process. The Linux kernel Copy On Write mechanism (CoW) is then used for efficient memory
allocation with only the differences in memory use between a worker and master process taking
up additional overhead. The underlying process creation and communication management to
worker processes is provided by a custom multiprocessing C++ library. A bootstrap function
handles I/O reinitialisation to allow each process to run in a separate working directory with no
communication required between processes. Input events are then allocated via a shared queue
and the master process remains idle until all events are processed. Output files generated by
worker processes are then merged before the finalisation step is run. More details on the design
of AthenaMP are provided in [2].

Figure 1. Job flow for serial and multi-process implementations of the ATLAS Athena
framework
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Figure 2. Job event throughput for an increasing number of worker processes. The number of
input files is equal to the number of processes.

2.2. Running considerations
The event throughput for AthenaMP does not scale linearly with N processes and it is evident
from Amdahl’s law [4] that any serialisation steps during execution will significantly affect scaling
ability. The main areas of serialisation are in the job initialisation and file merging steps. Any
undue latency in these areas needs to be minimised whilst retaining significant memory sharing
ability.

In order to increase the proportion of the job in parallel mode it is desirable to increase the
length of the event loop. A common approach is to match the number of input files with the
number of worker processes. Figure 2 shows the event throughput (i.e. the number of events
processed per second per node) of a typical ATLAS event reconstruction job for a increasing
number of worker processes. As the number of files (and processes) increases the overall event
throughput is comparable to running N jobs in serial mode.

Although a longer event loop (and a higher number of input files) is preferable this will
result in an increase in processing time during the finalisation stage due to file merging and
output validation. The time taken for merging has been reduced by switching to a faster merge
algorithm to concatenate event data and metadata files.

Note that the timing of the worker process fork() is crucial in order to enable the maximum
amount of memory to be shared. If the fork() call is made before data common to worker
processes (such as detector conditions data) is allocated into memory then an unnecessary
duplication of memory pages will result. Conversely, a late fork() call will result in a larger
proportion of the overall execution time to be run in serial mode. The optimal approach is
found by processing the first input event before the fork() is called. A large amount of memory
sharing is then enabled with only a small serialisation penalty incurred.

In addition to the running modes described above there are a number of AthenaMP job
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options that can affect execution time. Instead of an event queue it is possible to define a fixed
allocation of events for each worker process. However, due to large deviations in event processing
times this is now generally discarded in favour of the event queue model.

3. ATLAS Production and Analysis Framework
A series of simulation exercises at the ATLAS Tier-0 computing centre validated AthenaMP for
production use. The next step in deployment is to ensure that AthenaMP can run successfully
and in a timely manner on grid sites providing computing resources to ATLAS.

3.1. ATLAS PanDA System
A key component of the ATLAS distributed computing operations is the ATLAS Production and
Distributed Analysis system (PanDA) which provides robust workload management for Monte
Carlo simulation, data reprocessing and user analysis. The PanDA server is the main component
which provides a task queue managing all job information centrally. Jobs are submitted to the
PanDA server, on which a brokerage module prioritises and assigns work to site queues based on
a number of factors such as CPU availability and input data locality. One or more pilot factories
installed in each regional cloud preschedule pilots directly to grid computing sites using Condor-
G [5]. The amount of pilots sent to a site queue is determined by the number of current queued
and running pilots on the site queue. Pilots retrieve jobs from the PanDA server to run jobs
on worker nodes once CPU slots become available [6]. Each pilot executes a job payload on a
worker node, detects zombie processes, reports job status to the PanDA server, and recovers
failed jobs. More information on the PanDA system can be found in [7].

3.2. Multicore site configuration
For grid sites wishing to pledge multi-core resources in the ATLAS PanDA system there are two
main issues to address:

(i) Should multi-core jobs reserve all the cores available on a worker node (i.e. “wholenode”
execution)?

(ii) Should a dedicated set of resources be provided to new multi-core queues?

For (i), wholenode execution allows runtime inspection of the worker node hardware to define
the number of cores rather than relying on information from PanDA configuration or external
grid information systems. The reservation of a entire worker node also guarantees that memory
and CPU resources will be dedicated to AthenaMP execution. Furthermore, a wholenode job
can still retain the option to use less than the maximum cores available if further memory
limitations were observed.

Although this appears to be the simplest approach there are still some issues to address. As
seen in Section 2.2, the number of cores is an important factor in determining optimum job
length and so this may need to be included as part of any AthenaMP-based task definition. In
addition, an increasing amount of cores per worker node (with 64 core worker nodes already in
use) will reduce job scheduling flexibility.

For (ii), grid sites could partition a small but dedicated amount of resources for exclusive
multi-core use. This modification also requires minimal configuration changes to the existing
PanDA model and jobs sent to multi-core queues can be scheduled and run in exactly the same
manner as single core jobs.

An important issue arises when determining how many resources will need to be reserved.
It is clear that too low an estimate will result in a large waiting time but an arguably larger
problem occurs when allocated resources are too generous. In low usage periods, worker nodes
attributed to a dedicated queue will be left unoccupied and cannot be reassigned for single core
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jobs, or for any other use without continual intervention by site administrators. This will impact
overall site throughput and has led candidate sites to be initially conservative with multi-core
resource allocation.

3.3. Resource Allocation
An alternative option to dedicated multi-core resource allocation is to allow the in-built batch
system scheduler algorithms to dynamically assign resources. This can provide an efficient
automated mechanism to enable the regulation of multi-core use without loss of job throughput.
Although this is a more flexible approach there is the potential for scheduling contention which
may cause undue latency not evident in the current ATLAS production system.

The scheduling of jobs with different CPU and memory resource requirements is a well defined
problem which most scheduler implementations already address successfully. In particular, this
scenario is well covered for the simultaneous execution of MPI jobs across multiple woker nodes.
However, in the ATLAS production system:

• The job submission rate is dependent on batch system load.

• The job lifetime depends upon external brokerage (which in turn is decided in part by batch
system load).

• Grid job queues are not (in general) exclusive for ATLAS use.

These additional factors would need to be taken into consideration when configuring a batch
system scheduler to accept both single core and multi-core ATLAS jobs competing for the same
computing resources.

4. Multicore Scheduling Simulation
The submission of single core and multi-core jobs of a site accepting workload from the ATLAS
PanDA system was modelled in a controlled environment. The components of the testbed and
simulation workflow are shown in Figure 3.

4.1. Testbed Configuration
The Torque resource manager and Maui scheduler [8] provided a working batch system solution
for the testbed and is a common choice for grid sites available to ATLAS. A feature useful in
Torque was the ability for a single worker node to host multiple batch client instances [9]. This
enabled the scaling of computing resources to any appropriate test setting. Furthermore, the
number of slots per worker node could be set to any value. For the tests described below, a
testbed of 100 8-core “virtual” nodes was chosen to capture scheduling conditions expected at
a small Tier-2 grid site.

Although tools exist to evaluate scheduler response without the need for job submission [10] it
was necessary to include an approximation of job brokerage and pilot factory submission rates to
model realistic ATLAS PanDA submission patterns. Job submission and timing, pilot activation,
job brokerage and queue performance monitoring were controlled by a suite of steering scripts
created for this study.

Jobs submitted to the testbed batch queue were stored on a list populated from input
configuration files at the start of the test and from simulated pilot factories throughout the
test run. The pilot factories used the same submission algorithm currently used in production.
To emulate job brokerage it was not necessary to model the entire PanDA brokerage system.
Instead, a simple tally of the number of jobs available for processing was stored. If the tally was
non-zero then any pilots queued in the list were switched from an “idle” state to an “active”
state by adjusting the job length to a running time representative of an Athena job running in
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Figure 3. Scheduler simulation steering script components and workflow.

an production environment. The job tally could then be refreshed at regular time intervals or
boosted at discrete points during the test run.

Scheduling patterns only become apparent after a number of hours so a configuration option
was added to speed up the simulation by a global scaling factor. A 10x speedup was used for
all the simulations described below.

4.2. Observations
A number of simulations were run to identify common scheduling scenarios that could be
observed at grid sites that accept multi-core jobs running on the same resources as single
core jobs. In each test, a number of job and queue-based metrics were collected to evaluate
relative performance. Job and queue utilisation, average job wait, average pilot wait and a
derived brokerage value were able to show how the testbed scheduler responded to different job
submission patterns.

The average job wait measured the time a pilot job spent on the batch queue before being
executed on a worker node. In isolation this is not enough to fully describe the queue performance
primarily due to the variation in the number of pilot jobs submitted by a pilot factory at any
given time. To complement this metric the average pilot wait was used to measure the time
interval for any new pilot job to start running. Both these metrics were averaged over a rolling
12 hour period. Wait times for smaller time periods were also collected to show short term
scheduler response patterns.

The brokerage value was a reflection of the CPU availability algorithm used to determine
brokerage decisions by the PanDA Server. A higher value denotes an increase in brokerage
weight which will consequently attract more jobs to be sent to a queue. This was evaluated by
considering the number of running and idle pilots and is averaged over a 3 hour period.
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Figure 4. Job utilisation and queue performance for single core pilots.

4.2.1. Scenario 1: Single core pilot jobs The first simulation used one single core pilot factory
and is shown in Figure 4. In the initial phase of the test the batch queue was populated with
non-pilot jobs (or “background jobs”) in order to avoid edge effects with the scheduler due
to synchronised job start and completion. Pilot jobs were then introduced to the test which
gradually occupied slots on the worker node testbed as the background jobs complete execution.
Once the pilot jobs have fully occupied the available slots it is observed that the number of
queued jobs is regulated by the pilot factory. This submission pattern continues through the
remainder of the test lifetime.

4.2.2. Scenario 2: Single core and multi-core pilot jobs Figure 5 shows a simulation of a single
core and multi-core pilot factory submitting jobs to the same batch queue. In this test, the multi-
core pilot factory is introduced once single core jobs have fully utilised the testbed. It is observed
that the submitted multi-core pilots reside on the queue for a substantial time before a worker
node can be allocated. During this period the overall utilisation of the queue drops considerably
due to multi-core jobs blocking resources for lower priority single core jobs. In addition, it is
seen that the multi-core job utilisation became greater than for single core jobs despite equal
pilot job submission rates and scheduler weighting. If this scheduling scenario were to occur the
multi-core pilot submission rate would have to be throttled to balance resource allocation.

4.2.3. Scenario 3: Multi-core idle pilot jobs In this simulation (Figure 6) idle pilot jobs are
submitted to the batch queue to reflect the scenario where no multi-core jobs have been brokered
to the site. An overall queue utilisation drop is observed in the same manner as scenario 2 despite
the lack of multi-core workload available.

4.2.4. Scenario 4: Scheduler backfilling Figure 7 shows the effect of scheduling configuration
tuning beyond the simple FIFO scheduling model used in previous simulations. In this case, a
backfilling algorithm was enabled to allow single core jobs to run before higher priority multi-
core jobs when slots were available. This is in contrast to scenarios 2 and 3 where single core jobs
are forced to wait for higher priority jobs to be cleared from the queue. Indeed, this approach
allows for a higher utilisation of single core jobs as a result. This approach provides overall
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Figure 5. Queue utilisation and queue performance for single core and multi core pilots.

Figure 6. Queue utilisation and queue performance for single core and idle multi core pilots.

higher queue utilisation and further tuning using more detailed backfilling calculation could
yield improved results. In particular, the a priori knowledge of job lifetime can be used directly
by the scheduler to determine whether a single core job can run within the timeframe of a node
reserved for multi-core use. At present, job lifetime is not accurately provided through the pilot
mechanism or from grid middleware.

5. Current Production Status
Several grid sites have already pledged multi-core resources to allow the testing of AthenaMP
jobs in the ATLAS PanDA system. A core count parameter in each new queue definition is used
to determine the number of worker processes that can be created by an AthenaMP job running
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Figure 7. Queue utilisation and queue performance for single core and multi core pilots with
scheduler backfilling enabled.

at the site. At this time it is assumed that the core count value refers to the maximum number
of cores available on a worker node accessible by the queue. The multi-core queues reside on
grid sites with a variety of hardware and different LRMS and scheduler implementations and
sites have been free to define queue partitions to match their current workload. The attributes
of the multi-core queues available to ATLAS are shown in Table 1.

Site Name Cores/Node LRMS Grid Excl. Mcore Queue Pledge
BNL (US) 8/24 Condor No Dedicated 50
ECDF (UK) 8/12 SGE No Shared N/A
Glasgow (UK) 8/12/64 Torque/Maui Yes Shared N/A
INFN-T1 (IT) 4 LSF Yes Dedicated 8
Lancaster (UK) 8 Torque/Maui Yes Dedicated 8
OSCER (US) 8 LSF No Shared N/A
RAL (UK) 8 Torque/Maui No Dedicated 15

Table 1. List of Grid sites used for AthenaMP testing. Sites that allow access to resources
through Grid submission only is shown in the Grid Excl. column. The Mcore Queue column
denotes which sites have partitioned resources for exclusive multi-core use. Pledge is the amount
of worker nodes pledged by the site for exclusive multi-core use.

In most cases only a small amount of worker nodes have been partitioned for exclusive use
with the anticipation of a future increase given demand. Conversely, queues at Glasgow and
ECDF use the same resources as advertised for single core queues. At ECDF, no additional
batch queue has been created. Instead, multi-core jobs submitted to the queue are prepended
with appropriate batch system flags to inform the scheduler that a whole worker node is required
for execution.
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5.1. Functional Testing of Multi-core Queues
A series of functional tests were sent to participating sites to test the availability of multi-
core resources on the grid. In each instance, 50 short-lived AthenaMP jobs known to complete
successfully were submitted to each multi-core production queue. The difference in time between
job submission and the start of execution (the queue response time) is shown in Figure 8.

Figure 8. Queue response times for a selection of ATLAS multi-core queues.

For sites that allocated worker nodes for exclusive multi-core use (e.g. BNL) the response
profile is directly related to the pledged resources available at the time of testing. For sites
using the shared resource approach (e.g. ECDF) the response profile exhibited is dependent on
the relative prioritisation of ATLAS grid jobs at the site during the time of the functional test.
Further sets of functional tests at shared multi-core sites consequently showed large variations
in queue response time.

6. Discussion
The motivation for successfully scheduling and running multi-core jobs alongside single-core
jobs is not unique to ATLAS and is relevant for other LHC experiments and for other Virtual
Organisations (VOs) using grid resources. Common approaches to multi-core job specification
and resource advertising could be captured by modifying the middleware frameworks currently
used by grid sites.

The LCG Technical Evolution Group has recommended that additional parameters are
available in Job Description Languages (JDLs) in each middleware stack [11]. The number of
requested cores, the total memory for the job (or memory per core), wholenode availability, and
the minimum and maximum number of cores should be included. Some of these specifications
are already available as part of MPI support and could immediately be used for multi-core job
specification.

An additional recommendation is the option for sites to advertise multi-core queue status
through central grid information systems. This could include whether a site can accept
wholenode jobs and the maximum number of cores per job supported. Resource information
publishing could also be extended to include dynamic information indicating multi-core readiness
based on current site workload. For example, an availability metric could indicate if load
conditions were favourable for multi-core job submission and advanced queue status and
performance metrics (as shown in Figures 4 to 7) could potentially be useful for central job
brokerage.
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As discussed in Section 4.2.4, an approximation of job lifetime is a useful parameter to provide
more efficient job scheduling. At present a realistic evaluation of job lifetime is not delivered as
part of grid job submission but may have to be considered as grid sites begin to run both single
core and multi-core jobs for the ATLAS production system.
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