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Abstract

We use factor augmented vector autoregressive models with time-varying
coefficients and stochastic volatility to construct a financial conditions index
that can accurately track expectations about growth in key US macroeconomic
variables. Time-variation in the model’s parameters allows for the weights at-
tached to each financial variable in the index to evolve over time. Furthermore,
we develop methods for dynamic model averaging or selection which allow the
financial variables entering into the financial conditions index to change over
time. We discuss why such extensions of the existing literature are important
and show them to be so in an empirical application involving a wide range of
financial variables.
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1 Introduction

The recent financial crisis has sparked an interest in the accurate measurement
of financial shocks to the real economy. An important lesson of recent events
is that financial developments, not necessarily driven by monetary policy actions
or fundamentals, may have a strong impact on the economy. The need for
policy-makers to closely monitor financial conditions is clear. In response to this
need, a recent literature has developed several empirical econometric methods
for constructing financial conditions indices (FCIs). FCIs are used for several
purposes. For instance, they can be used to identify periods when financial
conditions suddenly deteriorate (e.g., Lo Duca and Peltonen, 2013), assess credit
constraints or forecast economic developments. An FCI summarizes in one single
number information from many financial variables. Many financial institutions
(e.g. Goldman Sachs, Deutsche Bank and Bloomberg) and policy-makers (e.g. the
Federal Reserve Bank of Kansas City) produce closely-watched FCIs. Estimation of
such FCIs ranges from using simple weighted averages of financial variables through
more sophisticated econometric techniques. An important recent contribution is
Hatzius, Hooper, Mishkin, Schoenholtz and Watson (2010) which surveys and
compares a variety of different approaches. The FCI these authors propose is
based on simple principal components analysis of a very large number of quarterly
financial variables. Other recent notable studies in this literature include English,
Tsatsaronis and Zoli (2005), Balakrishnan, Danninger, Elekdag and Tytell (2008),
Beaton, Lalonde and Luu (2009), Brave and Butters (2011), Gomez, Murcia and
Zamudio (2011) and Matheson (2011).

In this paper our goal is to accurately monitor financial conditions through
a single latent FCI. The construction and use of an FCI involves three issues: i)
selection of financial variables to enter into the FCI, ii) the weights used to average
these financial variables into an index and iii) the relationship between the FCI and
the macroeconomy. There is good reason for thinking all of these may be changing
over time. Indeed, Hatzius et al (2010) discuss at length why such change might
be occurring and document statistical instability in their results. For instance, the
role of the sub-prime housing market in the financial crisis provides a clear reason
for the increasing importance of variables reflecting the housing market in an FCI.
A myriad of other changes may also impact on the way an FCI is constructed,
including the change in structure of the financial industry (e.g. the growth of the
shadow banking system), changes in the response of financial variables to changes
in monetary policy (e.g. monetary policy works differently with interest rates near
the zero bound) and the changing impact of financial variables on real activity (e.g.
the role of financial variables in the recent recession is commonly considered to
have been larger than in other recessions).

Despite such concerns about time-variation, the existing literature does little to
statistically model it. Constant coefficient models are used with, at most, rolling
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methods to account for time-variation. Furthermore, many FCI’s are estimated ex
post, using the entire data set. So, for instance, at the time of the financial crisis,
some FCIs will be based on financial variables which are selected after observing
the financial crisis and the econometric model will be estimated using financial
crisis data. The major empirical contribution of the present paper is to develop
an econometric approach which allows for different financial variables to affect
estimation of the FCI, with varying (or zero, when not selected) weight each. In
this manner, we develop an econometric tool that explicitly takes into account the
fact that each financial crisis has different causes, and is transmitted to the real
economy with varying intensity.

Following a common practice in constructing indices, we use factor methods. To
be precise, we use extensions of Factor-augmented VARs (FAVARs) which jointly
model a large number of financial variables (used to construct the latent FCI)
with key macroeconomic variables. Following the recent trend in macroeconomic
modelling using VARs and FAVARs (Primiceri, 2005; Korobilis, 2013) we work
with time-varying parameter FAVARs (TVP-FAVARs) which allow coefficients and
loadings to change in each period. TVP-FAVARs have enjoyed increasing popularity
for forecasting macroeconomic variables (see, among others, Eickmeier, Lemke and
Marcellino, 2011a and D’Agostino, Gambetti and Giannone, 2013).

Additionally, we work with a large set of (TVP-) FAVARs that differ in which
financial variables are included in the estimation of the FCI. Faced with a large
model space and the desire to allow for model change, we follow Koop and Korobilis
(2012) and use efficient methods for Dynamic Model Selection (DMS) and Dynamic
Model Averaging (DMA). These methods forecast at each point in time with a single
optimal model (DMS), or reduce the expected risk of the final forecast by averaging
over all possible model specifications (DMA). We implement model selection or
model averaging in a dynamic manner. That is, DMS chooses different financial
variables to make up the FCI at different points in time. DMA constructs an FCI by
averaging over many individual FCIs constructed using different financial variables.
The weights in this average vary over time.

From an econometrician’s point of view, there is also growing theoretical
evidence in favor of our modelling strategy. Boivin and Ng (2006) show that using
all available data to extract factors (the FCI in our case) is not always optimal in
factor analysis, thus providing support for implementing DMA/DMS to construct
our FCI. Additionally, there is much econometric evidence in favor of structural
instabilities in the coefficients or loadings of macroeconomic and financial factor
models; see, among others, Banerjee, Marcellino and Masten (2006) and Bates,
Plagborg-Møller, Stock and Watson (2013).

Econometric methods for estimating FAVARs and TVP-FAVARs are well-established;
see, e.g., Bernanke, Boivin and Eliasz (2005), and Korobilis (2013). However,
the likelihood-based estimation techniques used in the literature (e.g. Bayesian
methods using Markov chain Monte Carlo algorithms) rely on simulation algorithms
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or complex numerical methods, all of which are computationally demanding in high
dimensions. With our large model space, and our wish to implement recursive
forecasting, it is computationally infeasible to use such methods. Therefore,
our major econometric contribution in this paper lies in the development of fast
estimation methods which are based on the Kalman filter and smoother and are
simulation-free. When dealing with the FAVAR with constant parameters, our
algorithm collapses to the two-step estimator for dynamic factor models of Doz,
Giannone and Reichlin (2011). In the case of estimating models with time-
varying parameters and stochastic volatility (TVP-FAVARs), our algorithm provides
an extension of Doz, Giannone and Reichlin (2011).

Our results indicate that financial variables do have predictive power for macro-
economic variables (GDP growth, inflation and unemployment). Additionally, time
variation in the parameters is important for providing accurate short-run forecasts.
Finally, model averaging and/or selection also result in the improvement of forecast
accuracy over using a single model with all the available financial variables. In
the remainder of the paper we examine all these issues in depth, and we provide
evidence by using different forecast metrics and by conducting several robustness
checks.

In particular, in the next section we introduce our modeling framework and
sketch the features of our novel estimation algorithm (complete details are provided
in the Technical Appendix), plus we describe how we implement DMA or DMS
methods in the face of the large number of models we work with. In Section 3 we
present our data, estimates of different FCIs, and results of a recursive forecasting
exercise which is the main tool for evaluating the performance of our FCI. Section
4 concludes the paper. An empirical appendix provides an extensive sensitivity
analysis to various aspects of our specification.

2 Factor Augmented VARs with Structural Instabili-
ties

2.1 The TVP-FAVAR Model and its Variants

Let xt (for t = 1; :::; T ) be an n � 1 vector of financial variables to be used in
constructing the FCI. Let yt be an s�1 vector of macroeconomic variables of interest.
In our empirical work yt = (�t; ut; gt)

0 where �t is the GDP deflator inflation rate, ut
is the unemployment rate, gt is the growth rate of real GDP. The p-lag TVP-FAVAR
takes the form

xt = �
y
t yt + �

f
t ft + vt�

yt
ft

�
= ct +Bt;1

�
yt�1
ft�1

�
+ :::+Bt;p

�
yt�p
ft�p

�
+ "t

; (1)
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where �yt are regression coefficients, �ft are factor loadings, ft is the latent factor
which we interpret as the FCI, ct is a vector of intercepts, (Bt;1; :::; Bt;p) are VAR
coefficients and ut and "t are zero-mean Gaussian disturbances with time-varying
covariances Vt and Qt, respectively. We adopt the common identifying assumption
in the likelihood-based factor literature1 that Vt is diagonal, thus ensuring that vt is
a vector of idiosyncratic shocks and ft contains information common to the financial
variables. This model is very flexible since it allows all parameters to take a different
value at each time t. Such an assumption is important since there is good reason to
believe that there is time variation in the loadings and covariances of factor models
which use both financial and macroeconomic data (see Banerjee, Marcellino and
Masten, 2006). For recent discussions about the implication of the presence of
structural breaks in factor loadings, the reader is referred to Breitung and Eickmeier
(2011) and Bates, Plagborg-Møller, Stock and Watson (2013).

Following the influential work of Bernanke, Boivin and Eliasz (2005) our
factor model in (1) consists of two equations: one equation which allows us to
extract the latent financial conditions index (FCI) from financial variables xt; and
one equation which allows to model the dynamic interactions of the FCI with
macroeconomic variables yt. This econometric specification is important for two
reasons. First, unlike Stock and Watson (2002) who extract a factor and then use
it in a separate univariate forecasting regression, we use a multivariate system to
forecast macroeconomic variables using the FCI. Thus, we jointly model all the
variables in the system which should allow us to better characterize their co-
movements and interdependence. Second, we are able to purge from the FCI
the effect of macroeconomic conditions. Thus, the final estimated FCI reflects
information solely associated with the financial sector.

It is worth digressing to expand on the manner in which we include macro-
economic variables in our model. Including yt on the right-hand side of the first
equation of (1) is intended solely to ensure the FCI reflects only financial conditions.
This is also done in Hatzius et al. (2010) for the same reason. However, it is
worth stressing that, by doing this, we are only purging the FCI of the effect of
current macroeconomic conditions. Financial variables can also reflect expectations
of future macroeconomic variables and we are not purging the FCI of these future
expectations. This is an issue common to all FCIs. As a robustness check, our
empirical results (see Appendix C) also include a case where yt in the first equation
of (1) is replaced by professional forecasts of macroeconomic variables (which
reflect expectations of future macroeconomic conditions).

Including yt on the left-hand side of the second equation of (1) is done so as to
provide a metric for evaluating our FCI. That is, in answer to the question: “what
makes a good FCI?”, the approach in this paper provides the answer: “it is one
which forecasts yt as well as possible”. There are, of course, other possible answers

1Some approaches to dynamic factor models which do not use likelihood-based methods allow
for weak correlations between the elements of vt.
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to this question which would lead to other FCIs. We are not attempting to build
a structural model of the economy (e.g. a structural VAR or a DSGE) through the
manner we are including yt in (1). Hence, issues which arise with structural models
(e.g. structural VARs often involve an ordering of variables reflecting an assumed
causal structure) do not need to be addressed here.

In order to complete our model, we need to define how the time varying
parameters evolve. While the specification of all time-varying covariances is
discussed in the following subsection, we define here the vectors of loadings

�t =

�
(�yt )

0 ;
�
�ft

�0�0
and VAR coefficients �t =

�
c0t; vec (Bt;p)

0 ; :::; vec (Bt;p)
0�0 to

evolve as multivariate random walks of the form

�t = �t�1 + vt;
�t = �t�1 + �t;

(2)

where vt � N (0;Wt) and �t � N (0; Rt). Finally, all disturbance terms presented in
the equations above are uncorrelated over time and with each other.

We call the full model described in equations (1) and (2) the TVP-FAVAR. We
also consider several restrictions on the TVP-FAVAR which result in other popular
multivariate models:

1. Factor-augmented VAR (FAVAR): This model is obtained from the TVP-FAVAR
under the restriction that both �t and �t are time-invariant (Wt = Rt = 0).

2. Time-varying parameter VAR (TVP-VAR): This model can be obtained from
the TVP-FAVAR under the restriction that the number of factors is zero (i.e.
ft = 0).

3. VAR: This model is obtained when the number of factors is zero and both �t
and �t are time-invariant.

In addition, we consider heteroskedastic (when Vt and Qt are allowed to be
time-varying) and homoskedastic (Vt = V and Qt = Q) variants of all models.

2.2 Estimation of a Single TVP-FAVAR

Bayesian estimation of FAVARs (as well as VARs) with time-varying parameters is
typically implemented using Markov Chain Monte Carlo (MCMC) methods, which
sample from the very complex multivariate joint posterior density of the factor ft
and the remaining model parameters; see, e.g., Primiceri (2005), or Del Negro and
Otrok (2008). Such Bayesian simulation methods are computationally expensive
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even in the case of estimating a single TVP-FAVAR. When faced with multiple TVP-
FAVARs and when doing recursive forecasting (which requires repeatedly doing
MCMC on an expanding window of data), the use of MCMC methods is prohibitive.2

In this paper, we use a fast two-step estimation algorithm which vastly reduces
the computational burden, and greatly simplifies the estimation of the FCI.
Following Koop and Korobilis (2013) we combine the ideas of variance discounting
methods with the Kalman filter in order to obtain analytical results for the posteriors
of the state variable (ft) as well as the time-varying parameters �t = (�t; �t). To
motivate our methods, note first that, as long as both the factor, ft, and the loadings,
�t, in the measurement equation are unobserved, application of the typical Kalman
filter recursions for state-space models is not possible. Therefore, we adapt ideas
from Doz, Giannone and Reichlin (2011) and the state-space literature (Nelson and
Stear, 1976) and develop a dual, conditionally linear filtering/smoothing algorithm
which allows us to estimate the unobserved state ft and the parameters �t = (�t; �t)
in a fraction of a second.

The idea of using a dual linear Kalman filter is very simple: first update the
parameters �t given an estimate of ft, and subsequently update the factor ft given
the estimate of �t. Such conditioning allows us to use two distinct linear Kalman
filters or smoothers,3 one for �t and one for ft. The main approximation involved
is that eft, the principal components estimate of ft based on x1:t, is used in the
estimation of �t. Such an approach will work best if the principal component(s)
provide a good approximation of the factor(s) coming from a FAVAR with structural
instabilities. A theoretical proof that this is the case is not available for our flexible
and highly nonlinear specification. However, given the recent findings of Stock
and Watson (2009) and Bates, Plagborg-Møller, Stock and Watson (2013), there is
strong theoretical and empirical evidence to believe that this is the case. Empirically,
Bates, Plagborg-Møller, Stock and Watson (2013) conduct extensive Monte Carlo
experiments and show that principal components can support large amount of time
variation in the loading coefficients �t. Theoretically, they prove that principal
component estimates of factors are consistent even if there is a substantial amount
of time variation or structural change in the factor loadings. For instance, they
find that: “deviations in the factor loadings on the order of op (1) [as would occur
with random walk variation in the factor loadings] do not break the consistency
of the principal components estimator” (page 290). This is the econometric theory

2To provide the reader with an idea of approximate computer time, consider the three variable
TVP-VAR of Primiceri (2005). Taking 10,000 MCMC draws (which may not be enough to ensure
convergence of the algorithm) takes approximately 1 hour on a good personal computer. Thus,
forecasting at 100 points in time takes roughly 100 hours. These numbers hold for a single small
TVP-VAR, and would be much infeasible for the hundreds of thousands of larger TVP-FAVARs we
estimate in this paper.

3The other alternative being to use a joint nonlinear filter, e.g. the Unscented Kalman Filter
(UKF) and the Extended Kalman Filter (EKF). We have found such filters to be very unstable given
the dimension of our model, and the relatively few time-series observations.
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we draw upon to justify use of principal components estimates at this stage in our
algorithm.

Error covariance matrices in the multivariate time series models used with
macroeconomic data are usually modeled using multivariate stochastic volatility
models (see, e.g., Primiceri, 2005), estimation of which also requires compu-
tationally intensive methods. In order to avoid this computational burden, we
estimate (Vt; Qt;Wt; Rt) recursively using simulation-free variance matrix discount-
ing methods (e.g. Quintana and West, 1988). The Technical Appendix provides
complete details. For Vt and Qt we use exponentially weighted moving average
(EWMA) estimators. These depend on decay factors �1 and �2, respectively. Such
recursive estimators are trivial computationally. Additionally, the EWMA is an
accurate approximation to an integrated GARCH model. Such a feature is in
line with authors such as Primiceri (2005) and Cogley and Sargent (2005) who,
in the context of macroeconomic VARs, work with integrated stochastic volatility
models. The covariance matrices Wt; Rt are estimated using the forgetting factor
methods described in Koop and Korobilis (2012, 2013)4 which depend on forgetting
factors �3 and �4, respectively. Decay and forgetting factors have very similar
interpretations. Lower values of the decay/forgetting factors imply that the more
recent observation t�1, and its squared residual, take higher weight in estimating Vt
and Qt compared to older observations. The choice of the decay/forgetting factors
can be made based on the expected amount of time-variation in the parameters.5

Note that the choice �1 = �2 = 1 make Vt and Qt constant, while �3 = �4 = 1 imply
that Wt = Rt = 0 in which case �t and �t are constant.

A sketch of the structure of our estimation algorithm is given in the following:

Algorithm for estimation of the TVP-FAVAR
1. a) Initialize all parameters, �0; �0; f0; V0; Q0

b) Obtain the principal components estimates of the factors, eft
2. Estimate the time varying parameters �t given eft

a) Estimate Vt, Qt, Rt, and Wt using VD
b) Estimate �t and �t, given (Vt; Qt; Rt;Wt), using the KFS

3. Estimate the factors ft given �t using the KFS

In the summary above, VD stands for “Variance Discounting” and KFS stands for
“Kalman filter and smoother”. The steps above can also be considered to be a

4An EWMA estimation scheme can also be applied to these matrices, but due to their large
dimension we found better numerical stability and precision when using forgetting factors.

5Choice of forgetting factors is similar in spirit to choice of prior. Empirical macroeconomists
frequently impose subjective priors on the degree of time variation in their parameters; see for
instance the very informative priors used in the TVP-VARs of Primiceri (2005) and Cogley and
Sargent (2005).

8



generalization of the estimation steps introduced by Doz et al. (2011) for the
estimation of constant parameter dynamic factor models. In fact, if we fix all time-
varying coefficients and covariances to be time-invariant, our algorithm collapses
to the FAVAR equivalent of the two-step estimation algorithm for dynamic factor
models of Doz et. al (2011).

Identification in the FAVAR is achieved in a standard fashion by restricting
Vt to be a diagonal matrix. This restriction ensures that the factors, ft, capture
movements that are common to the financial variables, xt, after removing the effect
of current macroeconomic conditions through inclusion of the �yt yt term. Further
restrictions usually imposed in likelihood-based estimation of factor models, e.g.
normalizing the first element of the loadings matrix to be 1 (Bernanke, Boivin and
Eliasz, 2005) are not needed here since the loadings �t are identified (up to a sign
rotation) from the principal components estimate of the factor.

2.3 Dynamic Model Averaging and Selection with many TVP-
FAVARs

In this paper, we work with Mj, j = 1; ::; J , models which differ in the financial
variables which enter the FCI. In other words, a specific model is obtained using
the restriction that a specific combination of financial variables have zero loading
on the factor at time t or, equivalently, that different combinations of columns of xt
are set to zero. Thus, Mj can be written as

x
(j)
t = �

y(j)
t yt + �

f(j)
t f

(j)
t + u

(j)
t�

yt
f
(j)
t

�
= c

(j)
t +B

(j)
t;1

�
yt�1
f
(j)
t�1

�
+ :::+B

(j)
t;p

�
yt�p
f
(j)
t�p

�
+ "

(j)
t

; (3)

where x(j)t is a subset of xt, and f (j)t is the FCI implied by model Mj. Since xt is of
length n, there is a maximum of 2n�1 combinations6 of financial variables that can
be used to extract the FCI.

When faced with multiple models, it is common to use model selection or model
averaging techniques. However, in the present context we wish such techniques
to be dynamic. That is, in a model selection exercise, we want to allow for the
selected model to change over time, thus doing DMS. In a model averaging exercise,
we want to allow for the weights used in the averaging process to change over
time, thus leading to DMA. In this paper, we do DMA and DMS using an approach
developed in Raftery et al (2010) in an application involving many TVP regression
models. The reader is referred to Raftery et al (2010) for a complete derivation and
motivation of DMA. Here we provide a general description of what it does.

The goal is to calculate �tjt�1;j which is the probability that model j applies
at time t, given information through time t � 1. Once �tjt�1;j for j = 1; ::; J are

6We remove from the model set the model with zero financial variables, i.e. with no FCI extracted.
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obtained they can either be used to do model averaging or model selection. DMS
arises if, at each point in time, the model with the highest value for �tjt�1;j is used.
Note that �tjt�1;j will vary over time and, hence, the selected model can switch over
time. DMA arises if model averaging is done in period t using �tjt�1;j for j = 1; ::; J
as weights. The contribution of Raftery et al (2010) is to develop a fast recursive
algorithm for calculating �tjt�1;j.

Given an initial condition, �0j0;j for j = 1:; ; :J , Raftery et al (2010) derive a
model prediction equation using a forgetting factor �:

�tjt�1;j =
��t�1jt�1;jPJ
l=1 �

�
t�1jt�1;l

; (4)

and a model updating equation of:

�tjt;j =
�tjt�1;jfj (DatatjData1:t�1)PJ
l=1 �tjt�1;lfl (DatatjData1:t�1)

; (5)

where fj (DatatjData1:t�1) is a measure of fit for model j.7 Many possible measures
of fit can be used. Inspired by is a large literature (e.g., among many others,
Forni, Hallin, Lippi and Reichlin, 2003) which investigate the ability of financial
variables to forecast macroeconomic ones, we focus on the ability of the FCI to
forecast yt. Accordingly, we set as a measure of fit the predictive likelihood for the
macroeconomic variables, pj (ytjData1:t�1). � is a forgetting factor with 0 < � � 1
which, similar to the decay/forgetting factors (�1; �2; �3; �4) used for estimating
the error covariance matrices, tunes how rapidly switches between models should
occur. Lower values of � allow for an increasing amount of switching between
the number of variables that enter the FCI each time period. If � = 0:99, forecast
performance five years ago receives 80% as much weight as forecast performance
last period. The case � = 1 leads to conventional Bayesian model averaging
implemented on an expanding window of data.

3 Empirical Results

3.1 Data and Model Settings

We use 18 financial variables8 which cover a wide variety of financial considerations
(e.g. asset prices, volatilities, credit, liquidity, etc.). These are gathered from several

7Throughout this paper past data up to time t will be denoted by 1 : t subscripts, e.g., Data1:t =
(Data1; ::; Datat).

8We have gathered a range of widely-used financial variables, following the recommendations
of Hatzius et al. (2010). The final number of variables, though, was restricted by computational
constraints. As we explain in the Technical Appendix, availability of computer clusters (such as
the ones maintained by central banks, e.g. the ECB) could allow for the implementation of model
averaging with many more variables.
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sources. All of the variables (i.e. both macroeconomic and financial variables)
are transformed to stationarity following Hatzius et al (2010) and many others.
The Data Appendix provides precise definitions, acronyms, data sources, sample
spans and details about the transformations. Our data sample runs from 1970Q1
to 2013Q3. Notice that all of our models use four lags and, hence, the effective
estimation sample begins in 1971Q1. The three macroeconomic variables that
complete our model are the GDP deflator, the unemployment rate, and the real
GDP. We use real time data such that forecasts are at time t are always made using
the vintage of data available at time t. All of these series are observed in real-time
from 1970Q1, are seasonally adjusted, and can be found in the Real-Time Data Set
for Macroeconomists provided by the Philadelphia Fed website. Macroeconomic
variables which are not already in rates, that is the GDP deflator and real GDP, are
converted to growth rates by taking first log-differences, which we will refer to as
inflation and output growth, respectively.

Some of the financial variables have missing values in that they do not begin
until much after 1970Q1. In terms of estimation with a single TVP-FAVAR model,
such missing values cause no problem since they can easily be handled by the
Kalman filter (see the Technical Appendix for more details). However, when we are
using multiple models, there is a danger that in a specific model the value of the
FCI in a period (say 1970Q1-1982Q1) has to be extracted using financial variables
which all have missing values for that period. In such a case, the value of extracted
FCI will be nil for the specified period, and the FCI will be estimated only after at
least one variable becomes observed. We introduce a simple restriction to prevent
such estimation issues. In each model, we always include the S&P500 in the list of
financial variables, a variable which is observed since 1970Q1. This means that, at a
minimum, the FCI will be extracted based on this financial variable. This restriction
implies that the S&P500 is not subject to model averaging/selection and we instead
perform DMA/DMS using the remaining 17 financial variables. Therefore, we have
a model space of 217=131,072 TVP-FAVARs. We remind the reader that a list of
the different specifications estimated (and their acronyms) is given at the end of
Section 2.1.

To summarize, our models which produce an FCI are the TVP-FAVARs and the
FAVARs. In our forecasting exercise, for the purpose of comparison, we also include
some forecasting models which do not produce an FCI. These are the VARs and TVP-
VARs. With these model spaces, we investigate the use of DMS, DMA and a strategy
of simply using the single model which includes all 18 of the financial variables.

Some authors (e.g. Eickmeier, Lemke and Marcellino, 2011b) use existing FCIs
(i.e. estimated by others) in the context of a VAR model. In this spirit, we also
present results for VARs and TVP-VARs where the factors are not estimated from the
factor model equation in (1), rather they are replaced with an existing estimate. To

be precise, we use
�
y0t;
bft�0 as dependent variables for different choices of bft. Table

1 lists these choices from a set of financial conditions and financial stress indices
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maintained by Federal Reserve Banks. Financial Stress indices (FSIs) are similar to
FCIs, but have opposing signs: a decrease in financial conditions means increased
financial stress, and vice-versa. However, FSIs tend to focus on different issues than
FCIs. The latter tend to focus on broad measures of financial conditions, whereas
FSIs narrowly focus on measuring instability in the financial system (i.e. the current
level of frictions, stresses and strains). For this reason, we would argue that the
Chicago Fed National FCI is the most comparable to the FCI we are producing in our
empirical results. Again, these models are a restricted special case of our TVP-FAVAR
and estimation proceeds accordingly. The error covariance matrix is modelled in the
same manner as the TVP-FAVAR. We use an acronym for these TVP-VARs such that,
e.g., TVP-VAR + FCI 4, is the VAR involving the three macroeconomic variables and
the Chicago Fed National FCI.

Table 1. Financial Conditions and Stress indices
Name Acronym Source Sample
St. Louis Financial Stress Index FCI 1 St Louis Fed 1993Q4 - 2012Q1
Kansas City Fed Financial Stress Index FCI 2 Kansas Fed 1990Q1 - 2012Q1
Cleveland Fed Financial Stress Index FCI 3 Cleveland Fed 1991Q3 - 2012Q1
Chicago Fed National FCI FCI 4 Chicago Fed 1973Q1 - 2012Q1

3.2 Choice of hyperparameters and initial conditions

In this section we outline the setting of various hyperparameters and initial
conditions. All our benchmark choices that apply in the next two subsections are
fairly non-informative. In Appendix C we implement a sensitivity analysis using
priors based on a training data sample, thus extending the recommendations of
Primiceri (2005) to our TVP-FAVARs.

The first step is to set the initial conditions for the factor ft (FCI), the time-
varying parameters �t; �t, the time-varying covariances Vt; Qt, and, for doing DMA
and DMS, we must specify �0j0;j, j = 1; :::; J . These initial conditions are set to the
following (relatively non-informative) values

f0 � N (0; 4) ;

�0 � N
�
0; 4� In(s+1)

�
;

�0 � N (0; VMIN)

V0 � 1� In;
Q0 � 1� Is+1;

�0j0;j =
1

J

12



where VMIN is a diagonal covariance matrix which, following the Minnesota prior
tradition, penalizes more distant lags and is of the form

VMIN =

�
4; for intercepts
0:1=r2; for coefficient on lag r ; (6)

where r = 1; ::; p denotes the lag number. Note that estimates of Wt and Rt are
proportional to the respective state covariance matrices obtained from the Kalman
filter, therefore there is no need to initialize these matrices; see the Technical
Appendix for more details.

Regarding the decay and forgetting factors we have introduced in our model it
is worth noting that we can estimate these from the data. However, computation
increases substantially (we need to evaluate or maximize the predictive likelihood
for each combination of the various factors) and, as shown in Koop and Korobilis
(2013), the existence of value added in forecasting performance from such a
procedure is questionable. Given these considerations, we choose to fix the
values of the decay/forgetting factors, but investigate sensitivity to their choice in
Appendix C.

For the decay factors �1; �2 which control the variation in the covariance
matrices, we fix these to the value 0:96. Such values provide volatility estimates
which are quite close to the ones expected by integrated stochastic volatility
models that have been used extensively in the Bayesian VAR and FAVAR literature
(Primiceri, 2005; Korobilis, 2013). For the forgetting factors �3; �4, we follow
the “business as usual prior” approach of Cogley and Sargent (2005) and assume
that changes each period are relatively slow and stable under the random walk
specification in equation (2). In order to achieve this slow time variation in the
coefficients, we set �3 = �4 = 0:99, a setting we use in all TVP-FAVAR and TVP-VAR
specifications. As described in the Technical Appendix, restricted versions of our
general model can be obtained by setting the forgetting factors to one. For instance
when �3 = �4 = 1, we obtain the VAR model.

Finally, we need to choose our prior beliefs about model change. The value
of the forgetting factor � determines how fast model switches occur, and thus we
use two values: � = 1 which implies that we are implementing Bayesian model
averaging (BMA) given data up to time t; and � = 0:99 which implies that we
implement dynamic model averaging (DMA) with relatively slowly varying model
probabilities.

3.3 Estimates of the Financial Conditions Index

Before we proceed to the forecasting exercise, it is important to understand
how both our estimation algorithm and model averaging work in the context of
estimating an FCI. The results in this section are recursive. That is the estimate of
the FCI at time t is made using data up to time t.

13



Figure 1 shows the FCI estimated in various ways using all 18 financial variables
without any model selection or model averaging being done. The shaded regions in
this figure (and subsequent figures) are the NBER recession dates. The estimated
FCIs are all similar to each other. In particular, the TVP-FAVAR and principle
components are producing very similar FCIs. The FCI produced by the FAVAR does
differ from the others at some points, particularly in the first half of the sample. This
indicates the potential importance of allowing for time variation in parameters. It
is interesting to note that the FCIs start declining before the beginning of the recent
recession with all of them bottoming out in early 2009. However, after 2009 some
discrepancies appear between the FCIs.

Figure 2 shows the impact of model averaging and selection on the estimate
of the FCI, focussing on the TVP-FAVARs. Although the broad patterns in the FCIs
plotted in Figure 2 are similar, there are some differences. In general, the FCIs in
Figure 2 are less smooth than in Figure 1 indicating that model switching/averaging
is reacting more quickly than methods without such a feature. And there are some
interesting small divergences between the two figures. For instance, in Figure 2
there is a slight improvement in the FCIs early on in the recent recession which is
missing from Figure 1. DMA and DMS are producing factor estimates which are
very similar to one another.

In Figure 3 we perform a comparison of the FCI constructed using DMA on the
TVP-FAVAR models with the four FCIs or FSIs maintained by four Federal Reserve
Banks (see Table 1). As discussed previously, FCIs and FSIs are somewhat different
since FSIs are measuring financial stress (and, hence, it is the comparison of our
approach with the Chicago Fed’s National Financial Conditions Index which is the
most relevant). We have multiplied the FSIs by minus one to maintain comparability
with the FCIs. Additionally, we standardize all the indices to have mean zero and
variance one. Our FCI does indeed match up most closely with the Chicago Fed’s
FCI. Our FCI started dropping earlier than the Chicago Fed’s in 2008 and dropped
to a lower value at the depth of the current recession. In contrast, after the 2001
recession ended, our FCI grew faster and peaked at a higher level than the Chicago
Fed’s. However, there are substantive differences with the FSIs. It is interesting to
note that, after this 2001 recession ended, the FSIs continued to signal deteriorating
financial conditions for much longer than our FCI. In general, the FSIs (in particular,
the Cleveland Fed’s FCI) exhibit substantively different behavior from our FCI.

Figures 1 through 3 compare a range of different FCI estimates. At this stage,
we express no view on whether any FCI is better or worse than any other. The key
finding we stress is that, although they are similar to one another in many respects,
differences can occur. These differences are most notable when we compare our
TVP-FAVAR based estimates to conventional estimates produced by Federal Reserve
Banks.

14



Figure 1. FCIs constructed from several versions of the heteroskedastic
factor-augmented VAR model with all 18 financial variables used (no model

averaging/selection). For comparison, the principal component of the 18 financial
variables is also plotted.

Figure 2. FCIs implied by BMA, DMA and DMS on the TVP-FAVARs (with DMA
results for FAVARs provided for comparison)
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Figure 3. The FCI from the TVP-FAVAR with DMA compared to existing financial
indexes maintained by four regional US central banks.

To provide some additional insight on what DMA is doing, we present Figures
4 and 5 which shed light on the number of variables selected when we do DMA
or DMS on the TVP-FAVARs. In particular, Figure 4 calculates the expected number
of variables used to extract the FCI at each point in time. If we denote by nj the
number of variables which load on the FCI under modelMj, then we calculate each
time period the following expectation9

E
�
nDMA
t

�
=

 
JX
j=1

�tjt;j � nj

!
� 1:

Figure 4 shows DMA or DMS is achieving a strong degree of parsimony. Given 17
variables to choose between, it is tending to choose between 5 and 8. There is a
slow decrease in the number of variables chosen until the late 90s, then there was
an abrupt increase until the current recession. Interestingly, in the middle of the
recent recession, the number of variables selected started dropping again before
stabilizing at the end of the recession.

9We subtract one since the S&P500 variable is always included in all models.
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Figure 4. Average number of variables used to extract the FCI at each point in time
as implied by DMA applied in the full TVP-FAVAR specification.

Figure 5 provides evidence on which variables receive most weight in the DMA
procedure (or are selected by DMS). The numbers in each panel of this figure are
the total probability DMA attaches to models which contain the variable named in
the title on the panel. It is worth noting that there is substantial variable switching.
That is, there are a few variables which enter then leave (or vice versa) the FCI.
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Figure 5. Time-varying probabilities of inclusion to the final FCI for each of the 18
financial variables (S&P500 is always included; see Section 3.1). Zero probabilities
at the beginning of the sample for some of the variables correspond to periods of

missing observations.

3.4 Forecasting

In this section, we investigate the performance of a wide range of models and
methods for forecasting inflation, output growth and the unemployment rate. Our
forecast evaluation period is 1990Q1 through 2013Q3-h for h = 0; 1; 2; 3; 4 quarters
ahead. Note that, since we are using real-time data, it is also informative to present
nowcasts and these are labelled h = 0 in the tables.10 Evaluation of forecast
accuracy is based on the mean squared forecast error (MSFE) and average of
predictive likelihoods (APL). The former evaluates the quality of point forecasts
whereas the latter evaluates the quality of the entire predictive distribution. Results
are normalized by dividing an MSFE or APL by the corresponding value produced
by a benchmark model. We use a homoskedastic VAR (with no FCI) as our

10To be precise, at time t (given delays in release of macroeconomic variables) we have
macroeconomic data available through period t � 1. This is used to provide nowcasts (h = 0)
and forecasts (h = 1; ::; 4) using iterative methods.

18



benchmark.11 For this benchmark model, the table presents the actual value of
MSFE or APL. Details of our choices of forgetting and decay factors are given in
Section 2 and we investigate the sensitivity of results to their choice in Appendix
C. The notation in the table (and the tables in Appendix C) extends our previous
notation. Thus, TVP-FAVAR indicates the TVP-FAVAR with all 18 financial variables
whereas TVP-FAVAR-DMA uses DMA (with � = 0:99) over the 217 TVP-FAVARs.
Notation such as TVP-FAVAR (c1, c2) means that we set �1 = �2 = c1 and
�3 = �4 = c2. We also present results for a VAR containing the macroeconomic
variables plus a factor estimated using principle components (labelled VAR+PC). As
another simple comparator, we also produce OLS (diffuse prior Bayesian) forecasts
from AR models augmented with a factor (estimated by principal components).
At each point in time, we choose the lag length which has produced the lowest
MSFE over the last 40 quarters. From this model, we present recursive (labelled
AR+PC(rec)) and rolling (labelled AR+PC(rol)) forecasts. For the rolling forecasts,
we try windows of 25, 30, 35 and 40 periods and present results for the one which
produces the lowest MSFE over the last 40 quarters.

For the MSFEs we also present the Bayesian variant of a test of forecast accuracy
developed in Diebold and Mariano (1995). This test is described in Appendix B of
Garratt et al (2009). If an MSFE in the table has a *, it means the approach forecasts
significantly differently from the benchmark VAR.

Table 2 is organized so that each panel begins with a standard benchmark (e.g.
the homoskedastic VAR), then adds heteroskedasticity (e.g. the TVP-VAR(0:96, 1)
which selects the forgetting factor so as to make the VAR coefficients constant over
time but allows for heteroskedasticity), then adds time variation in coefficients (e.g.
the TVP-VAR(0:96, 0:99)). Then the next panel in the table repeats the process
with models which include FCIs beginning with the FAVAR. The subsequent panel
investigates the usefulness of DMA or DMS.

In general, Table 2 shows a pattern where forecasts improve as we add in
extensions. Adding heteroskedasticity tends to improve forecasts substantially,
then adding time-variation in parameters tends to improve them a bit more.
Moving from TVP-VARs to TVP-FAVARs leads to further improvements in forecast
performance. Using DMA or DMS with the 217 TVP-FAVARs leads to yet further
improvements. Of course, there are some exceptions to this pattern. Table 2
investigates forecasting performance for three variables at five different horizons
using two different forecast evaluation metrics. With so many possible forecast
evaluations it is not surprising there are some cases where simpler approaches beat
our more complicated TVP-FAVAR-DMS or TVP-FAVAR-DMA approaches. But overall
the latter are tending to produce the best forecasts.

Another important pattern in Table 2 is that our approach (again with some

11This VAR is obtained as the restricted special case of the TVP-FAVAR (i.e. dropping the equation
for the factors and turning off the variation in coefficients). Thus, its prior is equivalent to the prior
for the initial conditions of the TVP-VAR described in Section 3.2.
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exceptions) tends to forecast much better than standard approaches, including the
VAR, the FAVAR and simple univariate methods. The simple univariate methods
occasionally forecast well (e.g. when forecasting unemployment a year ahead
the recursive AR model forecasts well when MSFE is used as a forecasting metric
and AR+PC(rol) often forecasts inflation well), but often forecast very badly. In
contrast, the approaches involving TVP-FAVARs and DMA or DMS typically forecast
best and never forecast badly. They also virtually always beat FAVARs, indicating
the importance of allowing for time-variation in parameters.
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Table 2: Performance of our FCI compared to other forecasting models, 1990Q1 - 2013Q3
Forecast Metric APL MSFE

INFLATION

h = 0 h = 1 h = 2 h = 3 h = 4 h = 0 h = 1 h = 2 h = 3 h = 4
VAR (no FCI) 0.8587 0.7470 0.6959 0.6319 0.5848 0.0440 0.0540 0.0570 0.0610 0.0730
TVP-VAR (0.96,1) 1.36 1.31 1.32 1.32 1.29 1.05* 0.92* 0.92* 0.95* 0.97*
TVP-VAR (0.96,0.99) 1.35 1.32 1.33 1.32 1.28 0.93* 0.84* 0.87* 0.93* 0.96*

FAVAR 1.00 1.00 0.99 1.02 1.01 0.96 0.90 0.86* 0.89* 0.86
TVP-FAVAR (0.96,1) 1.36 1.32 1.33 1.32 1.32 1.08* 0.94* 0.92* 0.92* 0.93*
TVP-FAVAR (0.96,0.99) 1.34 1.34 1.35 1.34 1.31 0.91* 0.78* 0.78* 0.87* 0.92*

TVP-FAVAR-DMA (0.96,0.99) 1.47 1.46 1.48 1.50 1.47 0.94* 0.78* 0.82* 0.90* 0.91*
TVP-FAVAR-DMS (0.96,0.99) 1.50 1.48 1.50 1.53 1.49 1.02* 0.86* 0.94* 1.07* 1.08*
TVP-FAVAR-BMA (0.96,0.99) 1.35 1.36 1.38 1.38 1.32 0.94* 0.79* 0.83* 0.91* 0.92*
TVP-FAVAR-BMS (0.96,0.99) 1.42 1.42 1.44 1.45 1.42 1.01* 0.84* 0.93* 1.06* 1.06*

VAR+PC 0.99 1.00 1.00 1.02 1.03 0.96 0.91 0.92 0.94* 0.90*
AR + PC (rec) 1.02 1.09 1.06 1.05 1.04 1.41* 1.39* 1.61* 2.09* 2.28*
AR + PC (rol) 1.36 1.58 1.62 1.58 1.59 1.17* 0.90* 0.93* 1.12* 1.21*

UNEMPLOYMENT

h = 0 h = 1 h = 2 h = 3 h = 4 h = 0 h = 1 h = 2 h = 3 h = 4
VAR (no FCI) 0.6508 0.4119 0.3067 0.2468 0.2073 0.1210 0.3890 0.8230 1.4020 2.1100
TVP-VAR (0.96,1) 1.47 1.52 1.50 1.48 1.46 0.77* 0.72* 0.73* 0.72* 0.71*
TVP-VAR (0.96,0.99) 1.48 1.49 1.44 1.41 1.37 0.68* 0.62* 0.66* 0.66* 0.70*

FAVAR 0.91 0.87 0.83 0.82 0.81 0.99 1.14 1.25 1.29 1.34
TVP-FAVAR (0.96,1) 1.50 1.53 1.52 1.53 1.52 0.68* 0.62* 0.63* 0.65* 0.66*
TVP-FAVAR (0.96,0.99) 1.46 1.50 1.46 1.43 1.42 0.69* 0.65* 0.67* 0.67* 0.69*

TVP-FAVAR-DMA (0.96,0.99) 1.61 1.65 1.60 1.57 1.51 0.63* 0.55* 0.55* 0.56* 0.58*
TVP-FAVAR-DMS (0.96,0.99) 1.57 1.63 1.59 1.59 1.56 0.68* 0.56* 0.53* 0.54* 0.56*
TVP-FAVAR-BMA (0.96,0.99) 1.47 1.52 1.42 1.37 1.27 0.63* 0.55* 0.55* 0.56* 0.58*
TVP-FAVAR-BMS (0.96,0.99) 1.56 1.58 1.52 1.48 1.42 0.67* 0.57* 0.55* 0.56* 0.58*

VAR+PC 0.94 0.92 0.91 0.90 0.88 0.93 0.99 1.08 1.13 1.17
AR + PC (rec) 0.97 1.14 1.22 1.28 1.38 1.27 0.79* 0.64* 0.54* 0.47*
AR + PC (rol) 1.12 1.30 1.34 1.34 1.41 1.11 0.76* 0.74* 0.70* 0.55*

OUTPUT

h = 0 h = 1 h = 2 h = 3 h = 4 h = 0 h = 1 h = 2 h = 3 h = 4
VAR (no FCI) 0.3380 0.3170 0.3118 0.3104 0.3099 0.4310 0.5280 0.5470 0.5250 0.5050
TVP-VAR (0.96,1) 1.38 1.41 1.38 1.38 1.38 0.90* 0.83* 0.83* 0.83* 0.85*
TVP-VAR (0.96,0.99) 1.35 1.38 1.36 1.36 1.35 0.89* 0.81* 0.80* 0.80* 0.82*

FAVAR 0.97 0.97 0.97 0.97 0.98 0.92 1.00 0.95 0.87 0.83
TVP-FAVAR (0.96,1) 1.49 1.51 1.47 1.48 1.48 0.76* 0.76* 0.77* 0.79* 0.82*
TVP-FAVAR (0.96,0.99) 1.46 1.46 1.44 1.44 1.43 0.77* 0.72* 0.72* 0.71* 0.72*

TVP-FAVAR-DMA (0.96,0.99) 1.51 1.52 1.49 1.48 1.48 0.74* 0.68* 0.67* 0.69* 0.71*
TVP-FAVAR-DMS (0.96,0.99) 1.54 1.56 1.54 1.55 1.56 0.76* 0.68* 0.68* 0.71* 0.72*
TVP-FAVAR-BMA (0.96,0.99) 1.39 1.38 1.34 1.31 1.30 0.74* 0.68* 0.67* 0.69* 0.71*
TVP-FAVAR-BMS (0.96,0.99) 1.47 1.46 1.43 1.42 1.42 0.78* 0.71* 0.70* 0.72* 0.72*

VAR+PC 1.03 1.01 1.00 0.99 0.99 0.80* 0.93* 0.96* 0.94* 0.94*
AR + PC (rec) 1.10 1.14 1.16 1.17 1.17 0.97* 0.78* 0.83* 0.79* 0.85*
AR + PC (rol) 1.29 1.27 1.26 1.29 1.35 1.04* 0.90* 0.98* 1.00* 0.93*
Notes: APL is the average predictive likelihood (not in logarithms), and MSFE is the mean squared forecast error. Model’s fore-
cast performance is better when APL (MSFE) is higher (lower). For each variable (inflation, unemployment, output) the first li-
ne shows the APL and MSFE of the benchmark model for each forecast horizon h. All other models’ APL and MSFE are relative
to that of the benchmark model. Values of APL (MSFE) higher (lower) than 1 signify better performance than the benchmark.
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Also of interest is the performance of our approach relative to VAR forecasts
augmented with an existing FCI. Before doing so, we note that such comparisons are
extremely difficult since different indices are based on different assumptions, data
transformations, frequencies and sample sizes. The earliest common starting date
for the FCIs is 1994Q1 and, accordingly, we re-estimate our models using data from
this point and use 2000Q1 - 2013Q3-h as our forecast evaluation period. Table 1
describes the existing FCIs and FSIs and defines the acronyms we use in Table 3. We
use the same naming convention as in Table 2 so that, for instance, TVP-VAR+FCI4
is the TVP-VAR which includes the macroeconomic variables and the Chicago Fed
National FCI. All modelling choices (e.g. priors and discount factors) are the same
benchmark choices as those used previously (see Section 3.2).

In relation to the approach developed in this paper, the story is similar to that
told by Table 2. TVP-FAVARs with DMA or DMS still are either the best or among
the best forecasting models for all the macroeconomic variables at all forecasting
horizons. The table also shows that substantial benefits can be achieved by allowing
for time-variation in parameters and doing DMA or DMS. Among the existing
FCIs, use of the Chicago Fed’s National FCI tends to lead to the best forecasting
performance. Given the fact that it is this FCI which is most similar to our own (see
Figure 3), it is not surprising that the TVP-VAR which includes FCI4 is providing
forecasting results similar to our TVP-FAVAR which includes all of the financial
variables. Nevertheless, it is worth noting that DMA or DMS do add additional
improvements in forecast performance so that TVP-FAVAR-DMA and TVP-FAVAR-
DMS almost always forecast better than the TVP-VAR-FCI4.

Including any of the FSIs (i.e. FCI1, FCI2 or FCI3) in a TVP-VAR usually leads to
fairly good forecast performance, but rarely as good as FCI4. And there are some
cases where these other existing indices forecast poorly. For instance, the Kansas
City Fed’s FSI forecasts of unemployment are appreciably worse than those of other
indices.
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4 Conclusions

In this paper, we have argued for the desirability of constructing a dynamic financial
conditions index which takes into account changes in the financial sector, its
interaction with the macroeconomy and data availability. In particular, we want
a methodology which can choose different financial variables at different points in
time and weight them differently. We develop DMS and DMA methods, adapted
from Raftery et al (2010) and others, to achieve this aim. Using a large data set
of US macroeconomic and financial variables, we find our estimated FCI to have
reasonable properties. It is broadly similar to existing FCIs, but does exhibit some
interesting differences.

We also demonstrate the usefulness of our FCI as a forecasting tool. Working
with a large model space involving many TVP-FAVARs which make different
choices of financial variables, we find DMA and DMS methods lead to improved
forecasts of macroeconomic variables, relative to methods which use a single model.
We also show the importance of allowing for time variation in parameters and
heteroskedasticity in achieving good forecast performance.
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B. Technical Appendix

In this appendix, we describe the econometric methods we use to estimate a TVP-
FAVAR and restricted versions of it.

We write the TVP-FAVAR compactly as

xt = zt�t + ut; ut � N (0; Vt) (B.1)
zt = zt�1�t + "t; "t � N (0; Qt) (B.2)
�t = �t�1 + vt; vt � N (0;Wt) (B.3)
�t = �t�1 + �t; �t � N (0; Rt) (B.4)

where �t =
�
(�yt )

0 ;
�
�ft

�0�0
and zt =

�
yt
ft

�
. We also use notation where eft is the

standard principal components estimate of ft based on xt (using data up to time

t) and ezt = �
yteft
�
. Additionally, if at is a vector then ai;t is the ith element of

that vector; and if At is a matrix Aii;t is its (i; i)th element. Estimates of time varying
parameters or latent states can be made using data available at time t�1 (filtering),
or time t (updating) or time T (smoothing). We use subscript notation for this such
that atj� is an estimate (or posterior moment) of time-varying parameter at using
data available through period � .

Our estimation algorithm requires initialization of all state variables. In partic-
ular we define the following initial conditions for all system unknown parameters

f0 � N
�
0;�f0j0

�
; (B.5)

�0 � N
�
0;��0j0

�
; (B.6)

�0 � N
�
0;��0j0

�
; (B.7)

V0 � 1� In; (B.8)
Q0 � 1� Is+1: (B.9)

The algorithm follows the following steps:

1. Given the initial conditions and zt = ezt obtain filtered estimates of �t; �t; Vt; Qt
using the following recursion for t = 1; ::; T

(a) The Kalman filter tells us:

�tjData1:t�1 � N
�
�tjt�1;�

�
tjt�1

�
;

�tjData1:t�1 � N
�
�tjt�1;�

�
tjt�1

�
;
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where �tjt�1 = �t�1jt�1, ��tjt�1 = ��t�1jt�1 +
cWt, �tjt�1 = �t�1jt�1 and

��tjt�1 = ��t�1jt�1 +
bRt. The error covariances are estimated using

forgetting factors as:cWt =
�
1� ��13

�
��t�1jt�1 and bRt = �1� ��14 ���t�1jt�1.

(b) Calculate estimates of Vt and Qt for use in the updating step using the
following EWMA specifications:

bVi;t = �1Vi;t�1jt�1 + (1� �1) bui;tbu0i;t (B.10)bQt = �2Qt�1jt�1 + (1� �2)b"tb"0t (B.11)

where bui;t = xi;t � ezt�i;tjt�1, for i = 1; :::; n, and b"t = ezt � ezt�1�tjt�1.
(c) Update �t and �t given information at time t using the Kalman filter

update step

� Update �i;t for each i = 1; :::; n using

�itjData1:t � N
�
�i;tjt;�

�
ii;tjt
�
;

where �i;tjt = �i;tjt�1 + ��ii;tjt�1ez0t �bVii;t + ezt��ii;tjt�1ez0t��1 �xt � ezt�tjt�1�
and ��ii;tjt = �

�
ii;tjt�1 � ��ii;tjt�1ez0t �bVii;t + ezt��ii;tjt�1ez0t��1 ezt��ii;tjt�1:

� Update �t from
�tjData1:t � N

�
�tjt;�

�
tjt

�
;

where �tjt = �tjt�1+�
�
tjt�1ez0t�1 � bQt + ezt�1��tjt�1ez0t�1��1 �ezt � ezt�1b�tjt�1�

and ��tjt = �
�
tjt�1 � �

�
tjt�1ez0t�1 � bQt + ezt�1��tjt�1ez0t�1��1 ezt�1��tjt�1:

(d) Update Vt and Qt given information at time t using the EWMA specifica-
tions as follows:

Vi;tjt = �1Vi;t�1jt�1 + (1� �1) bui;tjtbu0i;tjt (B.12)

Qtjt = �2Qt�1jt�1 + (1� �2)b"tjtb"0tjt (B.13)

where bui;tjt = xi;t � ezt�i;tjt, for i = 1; :::; n, and b"tjt = ezt � ezt�1�tjt.
2. Obtain smoothed estimates of �t; �t; Vt; Qt using the following recursions for
t = T � 1; ::; 1

(a) Update �t and �t given information at time t+ 1 using the fixed interval
smoother
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� Update �i;t for each i = 1; :::; n from

�itjData1:T � N
�
�i;tjT ;�

�
ii;tjT

�
;

where �i;tjT = �i;tjt+C�t
�
�i;t+1jT � �i;t+1jt

�
, ��ii;tjT = �

�
ii;tjt+C

�
t

�
��ii;t+1jT � ��ii;t+1jt

�
C�0t

and C�t = �
�
ii;tjt

�
��ii;t+1jt

��1
:

� Update �t from
�tjData1:T � N

�
�tjT ;�

�
tjT

�
;

where �tjT = �tjt+C
�
t

�
�t+1jT � �t+1jt

�
, ��tjT = �

�
tjt+C

�
t

�
��t+1jT � �

�
t+1jt

�
C�0t

and C�t = �
�
tjt

�
��t+1jt

��1
:

(b) Update Vt and Qt given information at time t + 1 using the following
equations

V �1tjt+1 = �1V
�1
tjt + (1� �1)V

�1
t+1jt+1; (B.14)

Q�1tjt+1 = �2Q
�1
tjt + (1� �2)Q

�1
t+1jt+1: (B.15)

3. Means and variances of ft given appropriate estimates of �t; �t; Vt; Qt de-
scribed in the preceding steps can be obtained using the standard Kalman
filter and smoother.

Treatment of missing values
In our application our sample is unbalanced, since it contains many financial

variables which have been collected only after the 1970s or the 1980s. Similar
issues are faced by organizations which monitor FCIs. For instance, the Chicago
Fed National FCI comprises 100 series where most of them have different starting
dates. Although specific computational methods for dealing with such issues exist
(e.g. the EM algorithm or Gibbs sampler with data augmentation), our focus is
on averaging over many models which means such methods are computationally
infeasible. Accordingly, similar to our purpose of developing a simulation-free and
fast algorithm for parameter estimation, we want to avoid simulation methods for
estimating the missing data in xt. Additionally, methods such as interpolation can
work poorly when missing values are at the beginning of the sample.

Since the missing data in xt are in the beginning, we make the assumption
that the factor (FCI) is estimated using only the observed series. The estimation
algorithm above allows for such an approach in a straightforward manner by just
replacing missing values with zeros. The loadings � (whether time-varying, or
constant) will become equal to 0, thus removing from the estimate of ft the effect
of the variables in xt which have missing values at time t. This feature holds both
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for the initial principal components estimate eft, as well as the final Kalman filter
estimate.

Estimation of a single TVP-FAVAR
Given the algorithm above, we can estimate the TVP-FAVAR by choosing values

of �1; �2; �3; �4 < 1. For the main results in the paper we set �1 = �2 = 0:96 and
�1 = �2 = 0:99. The restricted special cases of the TVP-FAVAR listed in Section 2.1
can be obtained by setting forgetting and/or decay factors to particular values. If
we set �3 = 1 and �4 < 1 then we can obtain a TVP-VAR augmented with factors
estimated with constant loadings12. Setting �3 = 1 and �4 = 1 leads to the constant
parameter FAVAR with heteroskedastic covariances (assuming that �1; �2 < 1). If we
additionally set �1 = �2 = 1 we can estimate homoskedastic versions of the various
models, since in that case Vt = Vt�1 = ::: = V1 = V0 and Qt = Qt�1 = ::: = Q1 = Q0.
Nevertheless, as discussed in the main body of the paper, this is a case which is
always dominated (in terms of forecast performance) by the heteroskedastic case.
We provide more evidence for this in Appendix C.

Estimation of multiple models (DMA/DMS)
In order to implement the DMA/DMS exercises we run the algorithm described

above for each of the 217 = 131; 072 models. Note that for a specific DMA exercise
all models are nested, and the only thing that changes is the number of variables
in the vector xt that we use in order to extract the FCI. Given our discussion about
how missing values are treated by the Kalman filter, in order to estimate a specific
model which uses, say, the 1st, 3rd and 15th series in xt, we simply multiply all but
the 1st, 3rd and 15th columns of xt with zeros. In that case, we remove at all times
t the effects of all 15 variables we do not use for estimation of the specific model,
and at the same time we still have as a dependent variable a 18 � 1 dimensional
vector (and programming is greatly simplified).

The most important feature of DMA is that, unlike many Bayesian model
selection and averaging procedures which use MCMC methods, there is no depen-
dence in estimating each model and iterations using “for” loops are independent.
That means that it is trivial to adapt our code to use features such as parallel
computing, thus taking advantage of the widespread availability of modern multi-
core processors (or large clusters of PCs). In MATLAB this is as easy as replacing the
typical “for” loop which would run for models 1 to 131; 072, with a “parfor” loop.

The reader is encouraged to look at our code which is available on https://sites.google
.com/site/dimitriskorobilis/matlab, which also has the option to call the Parallel
Processing Toolbox in a MATLAB environment.

12In a previous version of this paper we have named this model the factor augmented TVP-VAR or
FA-TVP-VAR.
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C. Sensitivity analysis

In this section we present further results for several different choices of prior
hyperparameters, which can reflect different beliefs about time variation in the
model parameters as well as beliefs about variation over time in the choice of the
optimal model.

C.1. Comparison of relatively noninformative with training
sample priors

In the main body of the paper results are presented for a subjectively-elicited but
relatively noninformative prior. An interesting alternative is to choose all prior
hyperparameters using a training sample of data. In the context of TVP-VARs,
Primiceri (2005) suggests such a prior which is based on splitting the data into a
training sample, and a testing sample where estimation occurs. OLS estimation of a
constant coefficient model using the training sample provides parameter estimates
which are used as prior hyperparameters for the testing sample. Such training
sample priors are commonly-used in Bayesian analysis, and in the context of TVP
models help provide regularized posterior estimators which can also help numerical
stability. This latter feature is important in the case of TVP-VARs and TVP-FAVARs
estimated with MCMC - see the discussion in Section 4.1 of Primiceri (2005).

In this section, we introduce such a training sample prior for our FAVAR and TVP-
FAVAR models. We use the first 10 years of data (1970Q1-1979Q4) in our original
sample as the training sample. We estimate a FAVAR with constant parameters
using OLS methods (replacing the factor with its principal component estimate) on
this training sample. These OLS estimates are used to in the initial conditions for
the estimation sample, 1980Q1-2013Q3, as follows

f0 � N
� bfTST ; 0:1

�
;

�0 � N
�
0; 4� var

�b�TS�� ;
�0 � N

�
0; 4� var

�b�TS�� ;
V0 � 1� bV TS;
Q0 � 1� bQTS;

�0j0;j =
1

J
;

where parameters with a hat and a superscript TS denote OLS estimates of the
respective parameters in the time-invariant FAVAR fitted using the training sample.

Other settings used in the main body of the paper remain the same, e.g. we use
four lags everywhere and the decay and forgetting factors that define each of the
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models (DMA vs BMA, or FAVAR vs TVP-FAVAR) are exactly the ones specified in
Section 3.2. The forecast evaluation sample is 1990Q1-2013Q3. Table C.1 presents
the results of this exercise. It is divided in three blocks, each one corresponding to
one of the three variables of interest (inflation, unemployment, output growth). For
each block the first line shows the APL and MSFE of the benchmark TVP-FAVAR used
in the main body of the paper. The APLs and MSFEs of all other models are relative
to the APL and MSFE of the benchmark TVP-FAVAR, which implies that relative APL
higher than one (similarly, relative MSFE lower than one) is an indication of better
performance relative to the benchmark.

Table C1: Comparison of benchmark with training sample (TS) priors, 1990Q1-2013Q3
Forecast Metric APL MSFE

INFLATION

h = 0 h = 1 h = 2 h = 3 h = 4 h = 0 h = 1 h = 2 h = 3 h = 4
TVP-FAVAR 1.1233 0.9741 0.9066 0.8194 0.7380 0.0416 0.0454 0.0466 0.0562 0.0696

FAVAR 0.76 0.77 0.76 0.78 0.80 1.06 1.14 1.10 1.02 0.94
TVP-FAVAR-TS 1.01 1.04 1.06 1.10 1.09 0.93 0.94 0.87 0.87 0.97
FAVAR-TS 0.87 0.89 0.91 0.96 1.00 0.93 1.08 1.10 0.98 0.94
TVP-FAVAR-DMA-TS 1.13 1.13 1.15 1.16 1.17 0.94 0.84 0.89 0.90 0.86
TVP-FAVAR-BMA-TS 1.13 1.14 1.16 1.17 1.18 0.87 0.82 0.87 0.86 0.85

UNEMPLOYMENT

h = 0 h = 1 h = 2 h = 3 h = 4 h = 0 h = 1 h = 2 h = 3 h = 4
TVP-FAVAR 0.9170 0.5868 0.4191 0.3229 0.2639 0.0906 0.2741 0.5950 1.0105 1.5359

FAVAR 0.64 0.61 0.61 0.63 0.64 1.68 2.01 2.09 2.14 2.17
TVP-FAVAR-TS 0.81 0.74 0.74 0.77 0.80 1.58 1.84 1.77 1.62 1.45
FAVAR-TS 0.50 0.51 0.56 0.62 0.66 2.44 2.85 2.82 2.47 2.21
TVP-FAVAR-DMA-TS 1.14 1.15 1.15 1.19 1.19 1.01 0.87 0.77 0.75 0.75
TVP-FAVAR-BMA-TS 1.15 1.16 1.16 1.19 1.22 1.00 0.86 0.77 0.75 0.75

OUTPUT

h = 0 h = 1 h = 2 h = 3 h = 4 h = 0 h = 1 h = 2 h = 3 h = 4
TVP-FAVAR 0.4643 0.4344 0.4206 0.4156 0.4131 0.3548 0.4085 0.4204 0.3972 0.3854

FAVAR 0.71 0.71 0.72 0.73 0.74 1.43 1.64 1.57 1.48 1.40
TVP-FAVAR-TS 0.80 0.82 0.81 0.79 0.78 1.64 1.64 1.68 1.09 1.03
FAVAR-TS 0.72 0.76 0.74 0.66 0.65 2.04 1.84 2.01 1.21 1.37
TVP-FAVAR-DMA-TS 1.05 1.01 1.04 1.02 0.93 1.45 1.40 1.26 1.50 1.18
TVP-FAVAR-BMA-TS 0.97 0.95 1.06 0.93 0.89 1.44 1.40 1.26 1.50 1.18
Notes: APL is the average predictive likelihood (not in logarithms), and MSFE is the mean squared forecast error. Model’s fore-
cast performance is better when APL (MSFE) is higher (lower). For each variable (inflation, unemployment, output) the first li-
ne shows the APL and MSFE of the benchmark model for each forecast horizon h. All other models’ APL and MSFE are relative
to that of the benchmark model. Values of APL (MSFE) higher (lower) than 1 signify better performance than the benchmark.

In Table C1 we see that the training sample prior is not particularly helpful
for forecasting unemployment and output, while there is marginal improvement
of APLs and MSFEs for inflation. This result suggests that globally (for all three
variables of interest) our relatively noninformative prior is a sensible choice and
avoids problems with training samples such as that noted by Schorfheide and
Wolpin (2012):
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“[...] from a Bayesian perspective the use of holdout samples is
suboptimal because the computation of posterior probabilities should be
based on the entire sample and not just on a subsample.” Schorfheide
and Wolpin (2012)

From our own experience with Bayesian VARs (and FAVARs), we can argue that
training sample priors are very important in cases where numerical stability is an
issue. For example, the decision of Primiceri (2005) and others to use training
sample priors when estimating TVP-VAR with MCMC works well because serious
numerical issues can occur when relatively noninformative priors and diffuse initial
conditions are used in the full sample. In the present paper, where we examine
high dimensional TVP-FAVARs, we do not have such numerical issues due to the
computational simplicity of our algorithm (which does not involve the use of Monte
Carlo or other iterative methods). This exact advantage of our estimation methods
justifies our decision to use relatively noninformative priors in the full available
sample as the benchmark case. In other datasets, e.g. macroeconomic data for
the Euro-Area, training samples might not be available at all. In this case one can
either use a subjectively elicited prior or a prior which is informed by economic
theory. For example, economic theory restrictions can enter our prior distributions
for the (FA)VAR part of our model, in the spirit of Filippeli and Theodoridis (2013)
and Ingram and Whiteman (1994). Examining such restrictions is beyond the scope
of our main aim in this paper, which is to show the general role of time-variation in
models and parameters when extracting an FCI.

C.2. A Different Way to Purge Macroeconomic Conditions from
the FCI

We have stressed in the main body of the paper that a good FCI should be purged of
macroeconomic conditions. However, it might be argued that these macroeconomic
conditions should not reflect the current situation, but rather current expectations
of future macroeconomic conditions. In the body of the paper, we always use
the current values of the three macroeconomic variables of interest (yt). It is
possible that yt is a poor proxy of future macroeconomic expectations. In order
to investigate this possibility, in this appendix we replace yt by an explicit measure
of macroeconomic expectations by using forecasts of the macroeconomic variables.
In particular, we replace first equation of our TVP-VAR by

xt = �
y
t eyt + �ft ft + ut; (C.1)

where eyt contains one-year ahead forecasts of inflation and output growth provided
by the Survey of Professional Forecasters (SPF).13 For the second model equation,

13This data is available at http://www.phil.frb.org/research-and-data/real-time-center/survey-of-
professional-forecasters/historical-data/mean-forecasts.cfm

37



we maintain the assumption that the FCI ft and the three macroeconomic variables
of interest yt follow a VAR of the form�

yt
ft

�
= ct +Bt;1

�
yt�1
ft�1

�
+ :::+Bt;p

�
yt�p
ft�p

�
+ "t: (C.2)

In Table C2, we present the forecasting results for this model, which we name
the TVP-FAVAR-SPF to denote the fact that we use the SPF in the measurement
equation, and for the TVP-FAVAR and FAVAR as implemented in Section 3.4. Both
TVP-FAVAR models have �1 = �2 = 0:96 and �3 = �4 = 0:99, but we additionally
show results for the FAVAR-SPF which is the special case with �1 = �2 = �3 = �4 = 1
(a constant parameter FAVAR with the SPF variables used to purge the FCI). We
can see that using the SPF variable in order to purge the FCI, results in a slight
deterioration of forecast performance. It is only when using DMA with the TVP-
FAVAR-SPFs, that we see improvement over our benchmark TVP-FAVAR, but DMA
led to similar improvements in the body of the paper (i.e. it is the use of DMA which
is causing these improvements, not the inclusion of the SPF variables).

Table C2: Comparison with the FAVAR with macroeconomic expectations (SPF), 1990Q1-2013Q3
Forecast Metric APL MSFE

INFLATION

h = 0 h = 1 h = 2 h = 3 h = 4 h = 0 h = 1 h = 2 h = 3 h = 4
TVP-FAVAR 1.1233 0.9741 0.9066 0.8194 0.7380 0.0416 0.0454 0.0466 0.0562 0.0696

FAVAR 0.76 0.77 0.76 0.78 0.80 1.06 1.14 1.10 1.02 0.94
TVP-FAVAR-SPF 1.01 0.99 1.00 1.00 0.99 1.01 0.99 1.01 0.98 1.03
FAVAR-SPF 1.00 0.98 0.99 1.01 1.02 1.16 1.22 1.23 1.20 1.15
TVP-FAVAR-DMA-SPF 1.12 1.12 1.13 1.15 1.16 1.05 1.04 1.10 1.09 1.05
TVP-FAVAR-BMA-SPF 1.14 1.08 1.15 1.15 1.12 1.16 1.05 1.11 1.20 1.18

UNEMPLOYMENT

h = 0 h = 1 h = 2 h = 3 h = 4 h = 0 h = 1 h = 2 h = 3 h = 4
TVP-FAVAR 0.9170 0.5868 0.4191 0.3229 0.2639 0.0906 0.2741 0.5950 1.0105 1.5359

FAVAR 0.64 0.61 0.61 0.63 0.64 1.68 2.01 2.09 2.14 2.17
TVP-FAVAR-SPF 0.99 0.99 0.99 1.00 0.98 1.02 1.05 1.04 1.04 1.04
FAVAR-SPF 0.96 0.89 0.91 0.93 0.93 1.27 1.43 1.45 1.45 1.43
TVP-FAVAR-DMA-SPF 1.14 1.14 1.15 1.18 1.16 0.90 0.84 0.80 0.81 0.82
TVP-FAVAR-BMA-SPF 1.09 1.09 1.10 1.09 1.18 0.91 0.83 0.76 0.74 0.75

OUTPUT

h=0 h=1 h=2 h=3 h=4 h=0 h=1 h=2 h=3 h=4
TVP-FAVAR 0.4643 0.4344 0.4206 0.4156 0.4131 0.3548 0.4085 0.4204 0.3972 0.3854

FAVAR 0.71 0.71 0.72 0.73 0.74 1.43 1.64 1.57 1.48 1.40
TVP-FAVAR-SPF 0.99 0.99 1.00 1.00 1.00 1.04 1.02 1.01 1.02 1.01
FAVAR-SPF 0.89 0.90 0.92 0.95 0.96 1.18 1.32 1.25 1.19 1.17
TVP-FAVAR-DMA-SPF 1.08 1.09 1.09 1.09 1.08 1.02 1.01 1.01 1.04 1.05
TVP-FAVAR-BMA-SPF 1.02 1.11 1.12 1.04 1.11 1.04 0.98 0.96 1.00 1.02
Notes: APL is the average predictive likelihood (not in logarithms), and MSFE is the mean squared forecast error. Model’s fore-
cast performance is better when APL (MSFE) is higher (lower). For each variable (inflation, unemployment, output) the first li-
ne shows the APL and MSFE of the benchmark model for each forecast horizon h. All other models’ APL and MSFE are relative
to that of the benchmark model. Values of APL (MSFE) higher (lower) than 1 signify better performance than the benchmark.
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In general, from all the models we have attempted (also for different values
of forgetting/decay factors or priors), we found that the benchmark specification
consistently performs better than the specification in equations (C.1)-(C.2) which
utilizes survey information.

C.3. Comparison of different rates model switching

Calculation of the DMA/DMS time-varying probabilities depends on selection of a
hyperparameter �, which is a forgetting factor that determines how fast we “forget”
past observations. Thus, this hyperparameter � controls how much data we use for
the calculation of time-varying probabilities at time t and, thus, determines the rate
of model switching. That is, as � gets lower only the most recent data are used and
older data are discounted towards zero at a faster rate, resulting in model switching
occurring at a faster rate.

We remind the reader that � = 1 leads to standard BMA. The benchmark results
reported in the body of the paper, using � = 0:99, allow for slightly more rapid
model switching. In this appendix we provide results for choices of � which reflect
beliefs about even faster model switches, namely � = 0:96, as well as the extreme
case of � = 0:001. Note that this latter case is close to the case of model averaging
using equal weights, since it is trivial to prove that as �! 0 then the model weights
degenerate to �tjt�1;j ! 1=J for all j = 1; :::; J . Naive model averaging schemes
using equal weights have been shown in many cases to perform better than more
elaborate econometric techniques that perform estimation of the model averaging
weights; see Aiolfi, Capistrán and Timmermann (2010).

Table C3 shows the predictive likelihoods and mean squared forecast errors
for the TVP-FAVAR model with DMA implemented for various values of forgetting
factor �. As in the previous tables in this appendix, the first line shows the results
for the benchmark TVP-FAVAR where all 18 variables are used to extract the FCI. All
models have the benchmark prior described in the main text, plus the benchmark
choices for decay factors of �1 = �1 = 0:96 and �3 = �4 = 0:99. We can immediately
observe that the case � = 0:001 results, in general, in much higher relative MSFEs
for most horizons, for all three variables. The case � = 0:96 sometimes does better
than � = 0:99 implying that there are periods in our sample that allowing for faster
model switching would be beneficial. Therefore, there could potentially be further
improvements in forecast accuracy by estimating � using grid-search methods, or
even allowing a different value of � for each forecasting equation. We remind the
reader that we do not perform such a search due to the already high computational
demands of our empirical exercise, and we refer to Koop and Korobilis (2013) for
an example of using such a procedure.
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Table C3: Comparison of faster/slower model switching, 1990Q1-2013Q3
Forecast Metric APL MSFE

INFLATION

h = 0 h = 1 h = 2 h = 3 h = 4 h = 0 h = 1 h = 2 h = 3 h = 4
TVP-FAVAR 1.1233 0.9741 0.9066 0.8194 0.7380 0.0416 0.0454 0.0466 0.0562 0.0696

TVP-FAVAR-BMA (� = 1) 1.01 1.02 1.03 1.02 1.00 1.03 1.00 1.06 1.04 1.00
TVP-FAVAR-BMS (� = 1) 1.06 1.06 1.07 1.08 1.08 1.11 1.07 1.19 1.21 1.16
TVP-FAVAR-DMA (� = 0:99) 1.09 1.09 1.10 1.12 1.12 1.03 1.00 1.05 1.03 0.99
TVP-FAVAR-DMS (� = 0:99) 1.12 1.10 1.12 1.14 1.14 1.12 1.09 1.20 1.23 1.17
TVP-FAVAR-DMA (� = 0:96) 1.05 1.07 1.09 1.06 1.07 1.04 1.00 1.05 1.02 0.98
TVP-FAVAR-DMS (� = 0:96) 1.10 1.12 1.12 1.14 1.16 1.18 1.11 1.21 1.22 1.19
TVP-FAVAR-DMA (� = 0:001) 1.02 1.01 1.05 1.03 1.04 1.47 1.42 1.41 1.21 1.15
TVP-FAVAR-DMS (� = 0:001) 1.06 1.08 1.10 1.09 1.13 1.47 1.25 1.42 1.45 1.40

UNEMPLOYMENT

h = 0 h = 1 h = 2 h = 3 h = 4 h = 0 h = 1 h = 2 h = 3 h = 4
TVP-FAVAR 0.9170 0.5868 0.4191 0.3229 0.2639 0.0906 0.2741 0.5950 1.0105 1.5359

TVP-FAVAR-BMA (� = 1) 1.01 1.01 0.97 0.96 0.90 0.91 0.85 0.82 0.83 0.84
TVP-FAVAR-BMS (� = 1) 1.07 1.05 1.04 1.03 1.00 0.97 0.88 0.83 0.83 0.84
TVP-FAVAR-DMA (� = 0:99) 1.11 1.10 1.09 1.10 1.07 0.92 0.86 0.83 0.84 0.85
TVP-FAVAR-DMS (� = 0:99) 1.08 1.09 1.09 1.11 1.10 0.99 0.86 0.79 0.80 0.81
TVP-FAVAR-DMA (� = 0:96) 1.05 1.09 1.06 1.08 1.10 0.89 0.82 0.80 0.80 0.82
TVP-FAVAR-DMS (� = 0:96) 1.13 1.12 1.13 1.19 1.14 0.95 0.84 0.76 0.74 0.75
TVP-FAVAR-DMA (� = 0:001) 0.99 1.00 1.01 0.95 1.02 1.08 0.89 0.82 0.81 0.83
TVP-FAVAR-DMS (� = 0:001) 1.08 1.04 1.07 1.12 1.03 1.03 0.88 0.77 0.76 0.76

OUTPUT

h = 0 h = 1 h = 2 h = 3 h = 4 h = 0 h = 1 h = 2 h = 3 h = 4
TVP-FAVAR 0.4643 0.4344 0.4206 0.4156 0.4131 0.3548 0.4085 0.4204 0.3972 0.3854

TVP-FAVAR-BMA (� = 1) 0.95 0.94 0.93 0.91 0.91 0.97 0.95 0.94 0.97 0.98
TVP-FAVAR-BMS (� = 1) 1.00 1.00 0.99 0.99 0.99 1.01 0.99 0.98 1.01 1.00
TVP-FAVAR-DMA (� = 0:99) 1.03 1.04 1.03 1.03 1.04 0.96 0.94 0.94 0.97 0.98
TVP-FAVAR-DMS (� = 0:99) 1.05 1.06 1.06 1.08 1.09 0.99 0.95 0.95 1.00 1.00
TVP-FAVAR-DMA (� = 0:96) 1.03 1.04 1.04 1.02 1.01 1.01 1.00 1.00 1.03 1.04
TVP-FAVAR-DMS (� = 0:96) 1.10 1.07 1.08 1.12 1.11 1.04 0.99 0.97 1.01 1.03
TVP-FAVAR-DMA (� = 0:001) 0.96 0.98 0.96 0.96 0.94 1.06 1.03 1.04 1.05 1.10
TVP-FAVAR-DMS (� = 0:001) 1.08 0.97 0.99 1.06 1.04 1.08 1.03 1.00 1.03 1.05
Notes: APL is the average predictive likelihood (not in logarithms), and MSFE is the mean squared forecast error. Model’s forecast per-
formance is better when APL (MSFE) is higher (lower). For each variable (inflation, unemployment, output) the first line shows the
APL and MSFE of the benchmark model for each forecast horizon h. All other models’ APL and MSFE are relative to that benchmark
model. Values of APL (MSFE) higher (lower) than 1 signify better performance than the benchmark.

C.4. Comparison of different rates of parameter change

Similar to the hyperparameters that control model switching, �1; �2; �3; �4 control
the amount of time-variation in the error covariances (Vt; Qt), as well as the time-
varying loadings �t and the VAR coefficients �t. Table C4 presents results for
different choices of these decay and forgetting factors. We only present results for
the TVP-FAVAR models with all 18 variables used to extract the FCI, and not for the
more computationally intensive DMA/DMS variants of the TVP-FAVAR (which allow
selection of the optimal number of variables to include in the FCI). The first line
again shows the benchmark TVP-FAVAR with �1 = �2 = 0:96 and �3 = �4 = 0:99. As
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for the other tables in this appendix, we present relative APLs and relative MSFEs,
for the evaluation period 1990Q1-2013Q3.

Table C4: Comparison of faster/slower parameter switching, 1990Q1-2013Q3
Forecast Metric APL MSFE

INFLATION

h = 0 h = 1 h = 2 h = 3 h = 4 h = 0 h = 1 h = 2 h = 3 h = 4
FAVAR (1,1) 0.8584 0.7474 0.6924 0.6427 0.5934 0.0438 0.0524 0.0542 0.0604 0.0686

TVP-FAVAR (0.96,1) 1.36 1.32 1.34 1.30 1.30 1.12 1.05 1.01 0.99 1.00
TVP-FAVAR (0.94,1) 1.49 1.45 1.49 1.47 1.46 1.12 1.02 0.98 0.94 0.98
TVP-FAVAR (0.92,1) 1.53 1.51 1.52 1.52 1.50 1.11 1.02 0.99 0.97 1.00
TVP-FAVAR (1,0.99) 1.01 1.01 1.02 1.00 1.00 0.97 0.96 0.97 0.98 1.02
TVP-FAVAR (0.96,0.99) 1.34 1.34 1.35 1.32 1.29 0.95 0.86 0.86 0.93 1.01
TVP-FAVAR (0.94,0.99) 1.46 1.44 1.48 1.45 1.43 1.05 0.95 0.92 0.88 0.95
TVP-FAVAR (0.92,0.99) 1.50 1.47 1.49 1.49 1.45 1.08 0.99 0.96 0.94 0.99

UNEMPLOYMENT

h = 0 h = 1 h = 2 h = 3 h = 4 h = 0 h = 1 h = 2 h = 3 h = 4
FAVAR (1,1) 0.5914 0.3567 0.2557 0.2024 0.1676 0.1200 0.4102 0.9406 1.6578 2.5544

TVP-FAVAR (0.96,1) 1.65 1.77 1.83 1.87 1.88 0.70 0.59 0.56 0.56 0.56
TVP-FAVAR (0.94,1) 1.74 1.90 1.95 2.00 1.99 0.71 0.60 0.56 0.55 0.55
TVP-FAVAR (0.92,1) 1.74 1.89 1.96 2.01 2.03 0.73 0.62 0.58 0.56 0.56
TVP-FAVAR (1,0.99) 1.09 1.13 1.18 1.21 1.23 1.03 1.01 0.99 0.97 0.97
TVP-FAVAR (0.96,0.99) 1.60 1.73 1.76 1.74 1.75 0.69 0.59 0.55 0.54 0.54
TVP-FAVAR (0.94,0.99) 1.73 1.85 1.88 1.90 1.87 0.65 0.53 0.51 0.51 0.52
TVP-FAVAR (0.92,0.99) 1.77 1.94 1.95 1.98 1.95 0.65 0.53 0.50 0.50 0.51

OUTPUT

h = 0 h = 1 h = 2 h = 3 h = 4 h = 0 h = 1 h = 2 h = 3 h = 4
FAVAR (1,1) 0.3276 0.3071 0.3031 0.3016 0.3041 0.3694 0.5209 0.5542 0.5181 0.4967

TVP-FAVAR (0.96,1) 1.54 1.56 1.51 1.53 1.50 0.91 0.78 0.77 0.81 0.84
TVP-FAVAR (0.94,1) 1.63 1.63 1.62 1.62 1.62 0.90 0.78 0.76 0.80 0.84
TVP-FAVAR (0.92,1) 1.66 1.68 1.66 1.68 1.68 0.92 0.77 0.76 0.80 0.83
TVP-FAVAR (1,0.99) 1.14 1.14 1.13 1.12 1.11 1.13 1.01 0.95 0.92 0.91
TVP-FAVAR (0.96,0.99) 1.51 1.51 1.49 1.48 1.46 0.91 0.75 0.72 0.75 0.77
TVP-FAVAR (0.94,0.99) 1.59 1.58 1.57 1.55 1.55 0.91 0.76 0.74 0.79 0.83
TVP-FAVAR (0.92,0.99) 1.62 1.64 1.62 1.60 1.61 0.91 0.75 0.74 0.78 0.82
Notes: APL is the average predictive likelihood, and MSFE is the mean squared forecast error. Model’s fore-
cast performance is better when APL (MSFE) is higher (lower). For each variable (inflation, unemployment, output) the first li-
ne shows the APL and MSFE of the benchmark model for each forecast horizon h. All other models’ APL and MSFE are relative
to that of the benchmark model. Values of APL (MSFE) higher (lower) than 1 signify better performance than the benchmark.

It is interesting to note that our conservative benchmark prior on time-variation
in the volatilities (�1 = �2 = 0:96) is globally dominated by a prior which allows
faster switching in volatilities (�1 = �2 = 0:92). This result is not surprising,
as there is ample evidence for a high degree of volatility in macroeconomic and
financial data (usually modeled in the literature as a geometric random walk, or a
persistent AR(1) process). It would be surprising to find support for large time-
variation in the time-varying parameters �t,�t. However, we do not find such
support. In terms of predictive likelihoods results are similar for �3 = �4 = 1
(constant parameters) and �3 = �4 = 0:99, while MSFEs seem to favor a small
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degree of time-variation. However, values of �3 and �4 of 0:98 or lower, forecasting
results deteriorate dramatically, showing the consequences of allowing too large a
degree of time variation in the VAR coefficients and factor loadings.
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