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Abstract. Reasonable fracture criteria are crucial for the
modeling of dynamic failure in computational lattice models.
Successful criteria exist for experiments on the micro- and
on the mesoscale, which are based on the stress that a bond
experiences. In this paper, we test the applicability of these
failure criteria to large-scale models, where gravity plays an
important role in addition to the externally applied deforma-
tion. Brittle structures, resulting from these criteria, do not
resemble the outcome predicted by fracture mechanics and
by geological observations. For this reason we derive an el-
liptical fracture criterion, which is based on the strain energy
stored in a bond. Simulations using the new criterion result
in realistic structures. It is another great advantage of this
fracture model that it can be combined with classic geologi-
cal material parameters: the tensile strengthσ0 and the shear
cohesionτ0. The proposed fracture criterion is much more
robust with regard to numerical strain increments than frac-
ture criteria based on stress (e.g., Drucker–Prager). While we
tested the fracture model only for large-scale structures, there
is strong reason to believe that the model is equally applica-
ble to lattice simulations on the micro- and on the mesoscale.

1 Introduction

Fracturing caused by mechanical loading is the main reason
for failure of brittle geological materials. The study of frac-
ture formation and fracture propagation is therefore of enor-
mous interest in order to understand the resulting structures.
Lattice models allow a straightforward implementation of the
material, including the material heterogeneity. Traditionally,
these models have been applied to mechanical problems on
the micro- or mesoscale.

Lattice models consist of a mesh of elastic bonds, which
can be either regular or randomly irregular (e.g.,Sachau
and Koehn, 2012). Dynamic fracture processes can be re-
produced by the sequential removal of these bonds from the
lattice structure (Lilliu and van Mier, 2003). In the most ba-
sic setup only the normal force, acting on a bond, is taken
into account (Ostoja-Starzewski, 2002). More sophisticated
models consider also shear forces (Ostoja-Starzewski, 2002)
and the rolling and torsional torques (Wang and Alonso-
Marroquin, 2009). The choice of a specific model depends
mainly on the experimental setup and on the computational
resources.

It is crucial that these models apply a realistic failure cri-
terion. In case of small-scale models, the fracture criterion
is usually based on the tensile strength of the material (e.g.,
Flekkoy and Malthe-Sorenssen, 2002; Abe et al., 2006; Lilliu
and van Mier, 2003; Schlangen and Garboczi, 1996), which
assumes that local tensile failure is sufficient to model more
complicated structures on the scale of the mesh size (Lilliu
and van Mier, 2003).

Shear or mixed mode failure cannot be ignored in case of
large-scale models (e.g., on the scale of the lithosphere or
even on the scale of a geological outcrop (Schlangen and
Garboczi, 1997)). Some existing small-scale models add a
shear failure criterion to the tensile criterion in such a way
that a bond is broken if either the shear strength or the ten-
sile strength is exceeded (Zhao et al., 2012, 2010). Another
potentially useful fracture criterion, which will be discussed
in this paper, is the more sophisticated Drucker–Prager crite-
rion.

However, in our large-scale numerical experiments none
of these criteria produce realistic structures if applied to brit-
tle large-scale setups, e.g., on the crustal scale (see Sect.2
below).
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Fig. 1. Setup of the model.(a) The general structure of the model,
which uses a regular hexagonal close-packed (HCP) geometry.
Here, nodes are visualized as particles.(b) The next-nearest neigh-
bor geometry of unit cells. A central node/particle is connected to its
nearest neighbors (red) and its next-nearest neighbors (turquoise).
As a result of the unit cell geometry, mesh bias is largely inhibited.

The failure criteria described above will be termed stress-
based criteria in the following, in difference to criteria based
on the strain energy.

The discussion in this paper concentrates on uniaxial ex-
tension experiments. The reason behind this decision is the
very limited predictability of fault structures that form un-
der compression. Even controlled analogue sandbox models
have major difficulties in replicating experimental results (for
instanceBuiter et al., 2006), which suggests that the signif-
icance of a comparison between numerical and analogue re-
sults is limited.

2 Background and test of stress-based fracture criteria

We developed an isotropic lattice-particle model with regu-
lar hexagonal close-packed (HCP) geometry (Fig.1a). Every
node in the lattice structure is connected to its next neighbor
node and to the second next neighbor node (Fig.1b). This
particular geometry is known to inhibit mesh effects almost
completely (Sachau and Koehn, 2012), thus avoiding one of
the largest problems in the application of lattice models to
fracture problems.

The connecting elements between nodes are one-
dimensional linear elastic bonds. These bonds are similar to
elastic normal springs, but exert shear forces in addition to
normal forces. For each bond, the shear force and the nor-
mal force can be calculated from the relative displacement
of nodes with regard to a relative equilibrium position (see
Fig.2). Nodal displacement is primarily caused by externally
applied deformation or by dynamic internal processes such as
fracturing. Macroscopic elastic parameters of the lattice are
controlled by constants, which relate the normal force and
the shear force to the nodal displacement. Details of the un-
derlying mathematics are given inSachau and Koehn(2012).

If a bond exceeds a given fracture criterion, it is removed
from the system and a fracture is formed. The particular

Fig. 2.Relative nodal displacement.
→
r0 is the equilibrium position of

a node with respect to a neighbor node. From the relative displace-

ment
→

1u, the normal displacement
→

1un and the shear angleα/shear

displacement
→

1us can be calculated. Finally, the shear force and the

normal force can be derived from
→

1un and from
→

1us.

Fig. 3. Typical model setup used for most experiments in this pa-
per. Particles next to fractures are displayed in red. A vertical fault
with a height of ca. 5 km is inserted close to the surface in order to
trigger localization. Model scale is 30 km× 60 km× 10 km, density
ρ = 2600 kg m−3, the Young modulusE = 100 GPa, and the Pois-
son ratioν = 0.2. Tensile breaking strengthσ0 = 50 MPa; angle of
internal frictionψ = 34◦.

geometry of the lattice generates elastic isotropy of the lat-
tice, which means that the growth of fractures is entirely con-
trolled by the conditions of the experiment (i.e., by the frac-
ture criterion, the material parameters and the details of the
external deformation, and not by inherent anisotropy).

If not explicitly stated otherwise, the experiments shown
in this paper have usually the following setup: the size of the
model is on the crustal scale with 30 km× 60 km× 10 km.
The model is fully elastic and is subjected to step-wise uni-
axial horizontal extension as well as to its own gravita-
tional load. A single strain increment is 60 m, and the total
strain, at which the fracture network is evaluated, amounts
to 2.4 km, corresponding to a strain ofε = 0.04. The density
ρ of the material is 2600 kg m−3, and the Young modulus
E = 100 GPa, the Poisson ratioν = 0.2. The tensile break-
ing strengthσ0 = 50 MPa, and the angle of internal friction
ψ = 34◦. In order to improve the localization of fractures, a
small vertical fault is inserted prior to the extension (Fig.3).

In the simulation shown in Fig.4a, bonds fail once a crit-
ical tensile stress is exceeded. As a result of the uniaxial
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Fig. 4. Uniaxial horizontal extension of a brittle crust with two dif-
ferent stress-based fracture criteria. Both simulations consider the
gravitational load. For a detailed description of the setup, compare
Fig.3 and Sect.2. The figure shows the simulation at a tensile strain
of 0.04, equivalent to 2.4 km extension. Particles next to broken
bonds are red. Bonds break in(a) if the tensile stressσn exceeds
a given thresholdσ0 and in(b) if eitherσn or the shear stressσs ex-
ceedsσ0 or τ0. None of the results resembles the expected graben
structure.

extension, the entire crust is severed by a single vertical fault.
In Fig. 4b failure occurs if either a critical shear stress or a
critical tensile stress is exceeded. As a consequence a hori-
zontal shear fault is created, which separates the entire up-
permost crust from the lower crust.

None of the fault structures resulting from these classi-
cal stress-based criteria resembles a graben structure, which
would be expected by fracture mechanical considerations
and geological observations (e.g.,Sun and Jin, 2011; Gud-
mundsson, 2012) for the given type of external deformation.

We must therefore conclude that stress-based fracture cri-
teria are not always adequate for the modeling of large-scale
failure in brittle materials. The problem is generally of lesser
significance if such criteria are applied to model the defor-
mation of a layered crust or to heterogeneous bodies. See
discussion in Sect.4 below.

3 New fracture criterion

In order to improve the failure behavior, we propose a new
fracture criterion based on the strain energy stored in each
bond instead of stress. In the failure models described above,
breaking occurs if either the shear stressτ or the tensile nor-
mal stressσt reaches a critical value (Fig.5a). From the re-
sults above it becomes clear that a better link between these
fracture criteria is needed in order to generate more realistic
structures.

For this purpose we propose an elliptical energy model
for mixed mode failure. The total strain energyUtot in a de-
formed body can be calculated by

Fig. 5. The stress-based criterion(a) compared to the elliptical cri-
terion based on strain energy(b). Axes are for shear stressτ and
tensile stressσ ; the respective yield values areτ0 andσ0. Fractur-
ing occurs if the state of stress of a bond plots outside the marked
area. Ifτ0 6= σ0, then(b) represents Eq. (3). If τ0 = σ0, (b) is a cir-
cle representing Eq. (2).

Utot = Ut +Us, (1)

whereUt andUs are the strain energies related to tension and
shear.

If we assume a single critical value for the strain energy
Ec, then failure occurs ifEc = Utot. After substitution into
Eq. (1) and rearrangement, the failure criterion becomes

Us+Ut

Ec
= 1. (2)

We can include separate parameters for the critical ener-
gies related to shear (Ec,τ ) and to tension (Ec,σ ) instead of
using the general valueEc by introducing the following cri-
terion:

Us

Ec
+
Ut

Ec
=

(
σn

σ0

)2

+

(
τ

τ0

)2

= 1, (3)

which describes an ellipse inσn–τ space (cf., e.g.,Sun and
Jin, 2011, for this operation).

The following applies to both Eqs. (2) and (3): if there is
no contribution of either the shear or the normal stress (mean-
ing σn = 0 orτ = 0), then the equation reduces toσn/σ0 = 1
or τ/τ0 = 1, respectively. This is equivalent to tensile failure
or shear failure, just as in simple stress-based models. There-
fore, the critical values for the strain energy related to either
shear (Ec,τ ) or tension (Ec,σ ) can be calculated from the ten-
sile strengthσ0 and the shear cohesionτo of the material:

Ec,τ =
τ0

2G
, Ec,σ =

σ0

2E
. (4)

G andE are the shear modulus and Young’s modulus.
If this criterion is applied to dynamic fracture simulations

with sequential removal of bonds, Eq. (3) can be interpreted
as a probability. The bond with the highest result>1 is re-
moved from the network, and the stress field is recalculated.
The process is successively repeated until no bond with a
probability>1 remains.
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Fig. 6. Application of the new mixed mode fracture criterion in a
setup similar to the crustal-scale simulations shown in Fig.4. The
tensile strain is 0.04 (2.4 km). Particles next to fractures are red. The
fault network forms a graben structure, with the surface subsiding
along the fault planes. This is the structure that fracture mechanics
and geological observations predict.

4 Discussion

Figure6 displays the results of a simulation where the new
criterion is applied. The setup is identical to the one shown
in Sect.2. The resulting fault network resembles a graben
structure and is in line with considerations from fracture me-
chanics and structural geology.

The accuracy of the criterion was tested in a number of
simulations with varying values for the angle of internal fric-
tion (ψ). Usingψ , the angleα between a fault plane and the
orientation of the maximum principal stressσ1 can be cal-
culated from Coulomb theory (e.g.,Gudmundsson, 2012) by

α = 45◦
−
ψ

2
. (5)

The experimental setup is identical to the previous ex-
periment. The orientation ofσ1 is given by the direction
of the gravity force, the orientation ofσ3 by the direction
of the uniaxial extension. The fault planes forψ = 30◦ and
ψ = 45◦ are displayed in Fig.7a and b. The expected incli-
nationα = 30◦ for ψ = 30◦, compared to 29.3◦ in the exper-
iment (Fig.7a). Forψ = 45◦ the calculated angleα equals
22.5◦, compared to 21.8◦ in the simulation (Fig.7b). Note
that it is difficult to assess the exact inclination of a plane
in a lattice-particle model, due to the general roughness of
surfaces.

Figure7c to f compare these results to fault planes gener-
ated by alternative fracture criteria.

The Drucker–Prager criterion has been tested withψ =

30◦ (Fig. 7c and d). The accuracy is low in comparison to
the strain energy criterion:α = 22.6◦, compared to an ex-
pected valueα = 30◦. Convergence to a stable solution re-
quires relatively small strain increments. The strain energy
criterion generates stable results at1s ≈ 10−3, compared to
1s ≈ 10−5 if the Drucker–Prager criterion is applied.

The popular tensile stress criterion (Fig.7e) results in a
vertical fault plane, the shear stress criterion (Fig.7f) in a
horizontal fault plane. These criteria must be considered un-
suitable for the simulation of realistic geological structures.

Finally, we tested the geologically important transition
from vertical fault planes to inclined faults with depth under

Fig. 7. Inclination of fault planes resulting from uniaxial extension.
Results using the proposed fracture criterion are compared with re-
sults using the Drucker–Prager criterion, the tensile stress and the
shear stress criterion. Colors indicate the layering of the model.σ1
is vertical, given by gravity.α is the angle between the fault plane
andσ1.1s is the strain increment per time step.
Structures formed with the proposed fracture criterion converge at
relatively large strain increments (1s ≈ 10−3), compared to the
Drucker–Prager criterion (1s ≈ 10−5). The fault plane inclination
is far closer to expectation values when using the new criterion com-
pared to other fracture criteria.
(a, b)Proposed fracture criterion.(a)φ = 30◦, α = 29.3◦ compared
to α = 30◦ if calculated from Eq. (5). (b). φ = 45◦, α = 22.5◦ ver-
sus 21.8◦ measured.
(c, d) Drucker–Prager criterion. Strain increment dependency: in-
clination of fault planes converges at1s ≈ 10−5, vs.1s ≈ 10−3

using the proposed criterion.φ = 30◦ in both(c) and(b). Expected
α-value = 30◦, measured value = 22.6◦.
(e, f) Shear stress(e) and tensile stress(f) criteria. Fault planes are
perpendicular or parallel to the extension.

tensile conditions. The corresponding numerical experiment
is displayed in Fig.8. Close to the surface, shear stress
is comparatively low, resulting in vertical tensile fractures.
Shear stress increases with the gravitational load, which
leads to shear failure and thus inclined fracture planes at
greater depth. We used the same setup as in Fig.3, but with a
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Fig. 8.Transition from tensile vertical faults to inclined shear faults
with depth. The setup applies uniaxial tension to a similar setup as
in the reference setup in Fig.3, but with a reduced height of just
15 km. The angle of the fault plane to the horizontal (α) is 90◦ at
the surface and about 45◦ at the bottom of the model. Extension of
the model is 0.02, equivalent to 0.6 km.

reduced height of only 15 km. The height reduction is neces-
sary because tensile faults in the crust occur only to a depth
of a few kilometers.

The result of the simulation is in agreement with the ex-
pectations. The angle between fault plane and a horizontal
plane decreases from 90◦ at the model surface to about 45◦

in 15 km depth.
The effect of the strain-based criterion, compared to stress-

based criteria, is less significant in the case of layered mate-
rials or materials with strong heterogeneities. Examples are
models of crustal extension, which include the brittle ductile
transition or materials with strong heterogeneities. We recal-
culated crustal-scale experiments with a brittle elastic crust
from previous publications (Sachau and Koehn, 2010, 2012,
andSachau et al., 2013), with the same results as previously
published.

5 Conclusions

In this article we derived an elliptical fracture model for lat-
tice models, based on the strain energy of bonds connecting
nodes. The model is capable of incorporating classical ge-
ological yield limits for shear stress and tensile stress. The
fracture model has been tested in a variety of tensile crustal-
scale simulations, using a numerical 3-D lattice model. In
these tests we compare the structures that develop in a model
with a stress-based criteria with those that develop when the
fracture criterion is based on strain energy.

Crustal-scale structures, which have been modeled with
the new strain-based criterion, have far more resemblance
with the geological reality and with the predictions of frac-
ture mechanics than structures resulting from stress-based
criteria like the tensile stress criterion and the Drucker–
Prager criterion. The inclination of fault planes is reasonably
accurate if compared to values predicted by the Coulomb cri-
terion. The inclination of fault planes increases with depth,
due to increase in shear stress.

The required size of strain increments to produce stable
results is much larger than for the Drucker–Prager criterion.
This has positive effects on the computation time.

The new criterion is particularly interesting for exclusively
brittle model setups, which do not include other effects, like
viscoelastic behavior near the brittle ductile transition zone.
Also mesh effects may influence the geometry of fractures,
thereby diminishing the role of the fracture criterion. We do,
nevertheless, strongly recommend the application of the new
criterion in any lattice simulation involving brittle fracture.
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