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Human communication systems evolve culturally, but the evolutionary

mechanisms that drive this evolution are not well understood. Against a baseline

that communication variants spread in a population following neutral evol-

utionary dynamics (also known as drift models), we tested the role of two

cultural selection models: coordination- and content-biased. We constructed a

parametrized mixed probabilistic model of the spread of communicative

variants in four 8-person laboratory micro-societies engaged in a simple

communication game. We found that selectionist models, working in combi-

nation, explain the majority of the empirical data. The best-fitting parameter

setting includes an egocentric bias and a content bias, suggesting that partici-

pants retained their own previously used communicative variants unless they

encountered a superior (content-biased) variant, in which case it was adopted.

This novel pattern of results suggests that (i) a theory of the cultural evolution

of human communication systems must integrate selectionist models and

(ii) human communication systems are functionally adaptive complex systems.
1. Introduction
Human communication systems, such as language, evolve culturally [1,2]; the

diverse range of words and grammatical forms used in today’s language

families can be traced back to a common ancestor [3–7]. The precise mechanism

behind the spread of communicative variants, however, is not clear. Neutral

evolution (also known as ‘drift’) models have been used to explain the evol-

ution of human communication systems [8–10], and cultural evolution more

generally [11,12]. Under this account, cultural change is unbiased: for instance,

vocabulary, baby names [11] and pottery designs [12] have been found to

spread through random copying. This is a neutral account because all variants

encountered are considered equal candidates for copying. This paper shows

that drift alone is insufficient to explain the evolution of human communication

systems. We demonstrate that selectionist cultural evolutionary pressures are

necessary to fully explain the rapid propagation of communication variants

in a population of interacting human agents.

In any finite evolving population, the frequencies of different variants are

affected by drift, but not by selectionist forces; for this reason, drift can be

taken as the null hypothesis against which selection can be tested [13–15].

While drift is the null hypothesis for several models of cultural evolution

[8–10], it does not always adequately explain empirical results [10,16]. In

alternative cultural-selectionist models variant adoption is biased. Theoretical

models of human communication argue that during conversation interlocutors

are biased to adopt the same labels and other aspects of linguistic represen-

tation (including prosody and syntax) [17]. This alignment mechanism has

been extended by computer simulation to account for the emergence of linguis-

tic conventions: when agents are biased to match the linguistic behaviour of

their interlocutor, a single variant can propagate across a population of interact-

ing computer agents [18,19]. This behaviour-matching account operates at the

level of the individual. We call it the coordination-biased model. Under a different

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2014.0488&domain=pdf&date_stamp=2014-06-25
mailto:nicolas.fay@gmail.com
http://dx.doi.org/10.1098/rspb.2014.0488
http://dx.doi.org/10.1098/rspb.2014.0488
http://rspb.royalsocietypublishing.org
http://rspb.royalsocietypublishing.org
http://rspb.royalsocietypublishing.org/


A A

AA

B

B B

B C C

C C

D D

P1

G1

G2

G3

G4

G5

G6

G7

P2 P3 P4 P5 P6 P7 P8

D D

CA B DC AD B

CA B DB DA C

BA B AC DD C

DA B CC BD A

DA B CA DB C

Figure 1. Cultural evolution of the signs used to represent soap opera in an 8-person micro-society (from [29]). Columns correspond to participants (P1 – P8) and
rows to generations (G1 – G7). Capital letters (AA, BB, CC, DD) indicate the different participant pairings in a given generation, and colours indicate the different
variant types. When participants played with their first partner (generation G1), they used a variety of different signs: a bar of soap and a musical note (red variant),
a television (green), a shower (blue) and a love heart (yellow). At generation G1, participants tended to adopt the sign their partner produced. As they interacted
with the other members of their micro-society, the soap and musical note (red variant) propagates until everyone is using a refined version of this sign (either soap,
a musical note or both) by generation G4. Note that participants retain their initial variant until they encounter the soap and musical note variant (red), after which
they only use this variant. This suggests a strong content bias for the soap and musical note variant (red) such that it was more likely to be adopted by participants
compared with its competitors in this particular micro-society. In each micro-society, participants communicate 16 concepts, giving 64 distinct data structures like the
above (a total of 3584 signs).
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selection account, called content-biased selection [20,21],

functional selection [10] or replicator selection [16], variant

adoption depends upon the intrinsic value of the particular

variant. For example, variants that are easier to learn or use

have an increased likelihood of being adopted, and therefore

propagate in populations faster than a neutral drift model

would predict. This second alternative account operates at

the level of the cultural variant. Following Boyd & Richerson

[20], we call it the content-biased model. For a discussion of the

other types of cultural bias that can affect social learning, see

[20,22]. Against a baseline drift model, this paper tests the

coordination- and content-biased selection models’ ability

to explain the spread of communication variants in an exper-

imental micro-society. It examines for the first time the

explanatory power of each evolutionary account and the

interplay between them before concluding that a theory of

the cultural evolution of human communication systems

must integrate the two selectionist models.

Laboratory experiments are being increasingly used to

study the mechanisms that underpin cultural evolution (for

reviews, see [23,24]). By virtue of their ability to control

and manipulate variables of interest, experiments allow

researchers to test specific hypotheses about the social learn-

ing mechanisms critical to cultural change. Artificial

language learning studies have been used to study the evol-

ution of language-like structure [25–27], and experimental-

semiotic studies have been used to study the evolution of

sign systems [28–32]. This paper models the results of an
experimental-semiotic study, where human participants com-

municate a set of fixed concepts by drawing on a shared

digital whiteboard [29]. In this paradigm, participants are

not allowed to use conventional language (spoken or writ-

ten), forcing them to create a new graphical communication

system from scratch (for a review, see [33]). Participants

were organized into four 8-person micro-societies and com-

municated a list of recurring concepts (e.g. art gallery,
drama, theatre; see the electronic supplementary material, S1

for a full listing) to their partner (i.e. all communication

took place in pairs). After several games, they switched part-

ners and continued in this way until they had interacted with

each of the other members of their group.

Within each micro-society, sign variation was lost as mem-

bers of the group aligned on a uniform inventory of single

sign-to-meaning mappings. A representative example of the

spread of a cultural variant for the concept soap opera within a

micro-society is given in figure 1. Across micro-societies sign

variation increased: different micro-societies aligned on different

inventories of sign-to-meaning mappings. To be clear, there was

no common pattern in the communication systems that evolved

across the different isolated micro-societies; different micro-

societies developed different ‘dialects’. Analogous to the great

variety of human languages [34], sign diversity was a defining

outcome of communication in the separate populations.

What cultural evolutionary dynamics best explain the

change in frequencies of the communication variants within

each experimental micro-society? To answer this question,

http://rspb.royalsocietypublishing.org/
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Figure 2. Three data structures that reflect the changing frequencies of the variants used to communicate soap opera (panel (a), from figure 1), microwave (panel
(b); see the electronic supplementary material, S2) and Brad Pitt (panel (c); see the electronic supplementary material, S3). Columns correspond to participants
(P1 – P8) and rows to generations (G1 – G7). Capital letters (A with A, and so on) indicate the different participant pairings in a given generation, and colours
indicate the different variant types. Boxes with a solid border indicate the participant that drew second in their pair.

Table 1. Descriptive information about the number of variant types found
at each generation in the 64 data structures.

G1 G2 G3 G4 G5 G6 G7

mean 4.19 3.23 2.55 2.25 1.92 1.81 1.64

s.d. 1.39 1.22 1.08 1.07 0.93 0.87 0.76

max. 7 6 5 5 4 4 3

min. 1 1 1 1 1 1 1
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we constructed a model that mirrored the structure and pattern

of interactions of the experimental micro-societies collected

by Fay et al. [29]. This model included parameters for coordina-

tion bias, content bias, memory size and mutation; the drift

baseline condition is modelled by setting the coordination-

and content-bias parameters to zero. The fit of possible

parameter combinations was then assessed against the empiri-

cal data. Simulating the behaviour of corpus data collected

under controlled laboratory conditions minimizes the effect

of extraneous variables and increases our confidence in the

explanatory power of the model.
2. Material and methods
(a) Data
The data to be evaluated, collected by Fay et al. [29], are struc-

tured by micro-society (the four distinct 8-person groups) and

by concept (the 16 concepts in electronic supplementary

material, S1), yielding a total of 64 data structures like the one

illustrated in figure 1. Each data structure includes 56 represen-

tations of the concept: one drawing per participant in each of

the seven generations. The 56 representations in each data struc-

ture were classified into distinct variants (denoted by colour),

reflecting common features and structure. The modelled data

are available at http://comlab.me/ComLab/Selection.html.

The first step of coding each data structure established the

initial state of the communication system, labelling the distinct

variant types at generation 1. In the case of figure 1, four variant

types were identified (red, green, blue and yellow). Because a

variety of distinct signs were used to communicate each mean-

ing, and because different micro-societies used different signs

to communicate the same meaning, a unique coding scheme

was developed for each data structure. The substantial sign vari-

ation made coding the different variants at generation 1

straightforward. The second step tracked the spread of the var-

iant types across the subsequent six generations taking into

account similarity and descent (whether the producer of a var-

iant had seen that variant before and therefore could be

reproducing it rather than independently inventing it). The 64

data structures were coded in this way by two coders (T.M.E.

and N.F.), and a third coder (M.T.) resolved any coding conflicts

(nine coding conflicts arose: 14.06% of the data structures, and

0.0025% of the variants). Three illustrative coded data structures

are shown in figure 2.

Many data structures started off with a large number of variant

types and lost diversity over the generations, but others had very
little diversity from the start, and in yet others, mutation intro-

duced variability at later generations. Table 1 quantifies this

heterogeneity by showing the change in the number of variant

types over generations 1–7.
(b) Model
We constructed a parametrized model of participant variant

choice. The model takes as input the history of the representational

variants the participant had used or seen a partner use and returns

a distribution over how they might next represent that concept.

The model takes four parameters as described below.

Memory size (m). Simulations of cultural evolution have shown

that a smaller memory for experienced past variants promotes

more rapid population-level convergence on a single communi-

cation variant [19]. So the model includes a parameter indicating

the maximum amount of history that can influence the variant

choice. Each variant found in the history is marked as either pro-

duced by the participant (E for ego), or by one of their partners

(A for allo). A memory size of m means that the model remem-

bers at most the last m/2 E-entries hjE,m and the last m/2 A-entries

hjA,m from any history h. The relative frequencies of variants

in hjE,m define the egocentric initial distribution f (hjE,m) and in

hjA,m the allocentric distribution f(hjA,m). Here, f maps a list onto

the relative frequencies of items in that list. Memory sizes of 2, 4,

6 and 8 were examined.

Coordination bias (c) fixes the likelihood of being copied

ascribed to variants produced by others and witnessed by the par-

ticipant, and the variants produced by the participant themself. It

takes values ranging from 21 (fully egocentric: preferring self-

produced variants over other-produced variants) to þ1 (fully

allocentric: preferring other-produced variants over self-produced

variants). Zero coordination bias treats variants in hjE,m and in hjA,m

as equally worthy of reproduction, i.e. unbiased. For brevity,

we sometimes use an affine transformation g ¼ (c þ 1)/2 of

http://comlab.me/ComLab/Selection.html
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Table 2. Levels of each parameter examined.

type variable no. levels levels

explanatory content bias 11 b ¼ 0.0 to 1.0 in steps of 0.1

t ¼ 1, 2, 3, 4, 5, 6, 7, 8

explanatory coordination bias 11 c ¼ 21.0 to 1.0 in steps of 0.2

control memory 4 m ¼ 2, 4, 6, 8

control mutation 1 m ¼ 0.02
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coordination bias as an equivalent parameter. Coordination bias

values from 21 to 1 in steps of 0.2 were examined.

Content bias (t, b) comprises two parameters: the target t of the

content bias, identifying which variant is intrinsically preferred

over the others, and the level b, which determines how much the

target variant is preferred over its peers. If the target variant is

not in memory, content bias is ineffective—you need to be familiar

with a possible representation before you can prefer it. For nota-

tional convenience, we will use b ¼ b(t, hjm) as equal to b
whenever t is found in hjm, but 0 otherwise. This value is one of

the coefficients to the singleton distribution dx
t , which is 1 if

t ¼ x, and zero otherwise. The null hypothesis is that the content

bias has level 0, i.e. there is no variant preference. When there is

non-zero content bias and the biased variant is available in

memory, the existing distribution is scaled by (1 2 b) and then b

is added to the probability of the target element t. Content bias

takes values from 0 to 1 in steps of 0.1.

A drift model has a coordination bias of 0 and a content bias

of 0.

Mutation rate (m). On rare occasions, participants generate

novel variants not seen in their history. To capture this possi-

bility, the combined distribution is linearly combined with a

flat distribution w(x) weighted by the mutation rate. If the

mutation rate is 2%, then 98% of variant choices will reflect the

combined distribution, while 2% will be a random choice

among all possible variants. The mutation rate is a constant par-

ameter, fixed across all communities, participants and concepts.

The rate of new, original variants in the data in [29] was found

to consistently fit a mutation rate of 2%, so the parameter was

fixed at this value.

Together the parameters define the probability distribution

shown in equation (2.1), varying over potential representational

variants x, for a given history h. The overbar is used for probabil-

istic complement, i.e. �a ¼ 1� a.

P(xjh) ¼ �m�b�g f (xjhjE,m)þ �m�bg f(xjhjA,m)þ �mbdx
t þ mw(x) (2:1)

Table 2 summarizes the different levels of each parameter

examined. Content bias and coordination bias cover the entire

range of possible values, while (as noted above) mutation is fixed

at a single value. While, theoretically, memory size could take on

larger values, simulations showed that no additional explanatory

value was added by increasing memory size beyond 8.

The conditional probability of an entire data structure for a

given parameter setting is the product of the probabilities of

each choice made (ignoring the first generation, where variant

choice cannot be predicted). These probabilities depend on the

history of the participant making the choice, and on the model

parameters. For each data structure, an exhaustive search was

performed over the values shown in table 2 to find the maxi-

mum likelihood. The parameter combinations with maximum

likelihood were identified.

An example of how a model assigns a probability to a single var-

iant choice is given in the electronic supplementary material, S4.

Electronic supplementary material, S5 extends this to the

calculation of the likelihood of an entire data structure.
3. Results
The values given in table 2 define 484 possible points in the

parameter space. The likelihood of each of the 64 data struc-

tures was evaluated at each point, and the best parameter

setting was retained. The strength of evidence for a bias in

particular data structures was evaluated using a best-account

Bayes’ factor: the maximum likelihood of any model with the

bias divided by the maximum likelihood of any model with-

out the bias. This approach is formally equivalent to Kass &

Raftery’s [35] use of Bayes’ factor, although the thresholds

for different strengths of support differ slightly. Although

Kass & Raftery [35] count strong support from a Bayes factor

of 20, our threshold for significant evidence (in keeping with

the standard p , 0.05 significance criterion) is 19.

Lower memory size (2 or 4) was associated with better

model fit. Contrary to a coordination bias, an egocentric bias

(21.0 to 20.5), where agents tend to re-use variants they have

used previously, was associated with better model fit. Most

data structures are best accounted for with some content bias

(95% of data structures). Although 28% of the data structures

are not distinguishable from a baseline drift account, 72% of

the data structures require a biased account (coordination and

content; figure 3). Although the median Bayes’ factor for coordi-

nation bias alone and content bias alone is below the significant

evidence criterion of 19 (6.03 and 14.11 respectively), together

they returned a median value of 71.52. This indicates a critical

interplay between the biases: people tend to re-use variants

they have used in the past unless the newly encountered variant

is superior, in which case it is adopted (because the content bias

typically overwhelms the egocentric bias).
4. Discussion
Using simulations to model the spread of communication

variants in several experimental micro-societies, we extend

neutral models to show that selection models (coordination-

and content-biased) play a crucial role in the cultural evol-

ution of human communication systems. Our key finding

concerns the symbiotic interplay between the two biases

evaluated. The conservative egocentric bias preserves sign

variation by inhibiting the adoption of variants produced

by others (a similar pattern is observed in natural language,

[36]). This bias on its own acts against the convergence of

the population onto a shared inventory of signs. The content

bias is opportunistic: it encourages variant adoption on the

basis of the intrinsic qualities of the encountered variant; if

the newly encountered variant is superior to previously

used variants it is adopted. The biases in combination maximize

the chance that a population will converge on the best variant

http://rspb.royalsocietypublishing.org/
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available to them. To this end, the egocentric bias acts to preserve

sign variation, giving the overriding content bias a larger, more

competitive inventory of signs to select from. This finding sup-

ports a novel mechanism through which populations converge

on a shared inventory of sign-to-meaning mappings.

Our findings agree with theoretical and experimental studies

of human communication showing that people tend to align

their linguistic representations [17,37,38]. However, it questions

the mechanism through which alignment is achieved. Rather

than consider alignment to be a result of a low-level coordination

bias, our findings suggest that alignment can also be driven by

higher-level selection in tandem with a resistance to alignment

in the form of an egocentric bias. This interplay between content

and egocentric biases may be especially pertinent in the earliest

stages of language evolution when interlocutors do not already

share an inventory of signs. Furthermore, our empirically

grounded simulations suggest an alternative to agent-based

simulations that show population-level convergence occurs

through reinforcement learning [18] or a coordination bias [19]

(for a review, see [39]).

If a content bias affects the spread of communication var-

iants in a population, then this would be reflected by the

improved functional adaptation of the selected variants. Two

experimental studies examined the intergenerational trans-

mission of the communication systems modelled in this paper

(i.e. the same corpus of variants collected by Fay et al. [29]).

One study [40] examined sign adaptation for comprehension.

Using a speeded recognition task, it showed that the selected

signs (generation G7) were decoded faster and more accurately

by naive learners than the initial signs (generation G1). Another

study [41] examined sign adaptation for production. It showed

that the selected signs (generation G7) conferred specific pro-

duction advantages for naive learners: they were quicker to

recall, were more rapidly executed and were reproduced with

higher fidelity than the initial signs (generation G1). This type

of functional adaptation is precisely what would be predicted

if a content bias were operating on the communication variants.

A key innovation of this study is modelling the cultural

spread of communication variants within a small-scale and
tightly constrained experimental environment. This comp-

lements the modelling of cultural phenomena within large-

scale naturalistic datasets [11,16]. A concern with the latter

approach is its reliance on data derived from an uncon-

strained environment, where multiple distinct biases (e.g.

content, model and frequency bias [20]) may obscure one

another, or unanticipated patterns in the data may be over-

looked in the absence of a clear explanation (e.g. a spike in

the frequency of a particular variant such as a baby name

or dog breed, [42,43]). Although ecological validity may be

compromised, modelling the change in the frequency of cul-

tural variants produced in an experimental setting permits a

higher resolution test of the effect of specific cultural biases

within a smaller, but less noisy, dataset.

There are of course other types of bias that may affect the

spread of communication variants in a population. For

instance, people selectively copy the linguistic behaviour of

those who display traits that are perceived as desirable [44].

This type of ‘model bias’ [20] could not influence the data col-

lected by Fay et al. [29], because participants communicated

anonymously across a computer network. A ‘conformity

bias’ reflects the tendency for people to match their behaviour

to the group norm [45,46]. This study helps explain why

particular variants propagate in a population, at which point

a conformity bias can also apply [47]. While the visual modality

offers benefits for communication over the auditory modality

[31,48], we do not expect differences between modalities to

affect the results presented in this paper [49].

In conclusion, some of the modelled data cannot be dis-

tinguished from neutral drift. Crucially, the majority of our

results indicate an important interplay between content and

egocentric biases in explaining the evolution of human com-

munication systems. Accepting that selection pressures drive

the spread of communication variants supports the view that

human communication systems are functionally adaptive

complex systems [50].

Funding statement. N.F. and T.M.E. acknowledge support by an ARC
Discovery grant (no. DP120104237), and M.T. from a UK Arts and
Humanities Research Council grant (no. AH/F017677/1).

http://rspb.royalsocietypublishing.org/


6

 on July 24, 2014rspb.royalsocietypublishing.orgDownloaded from 
References
rspb.royalsocietypublishing.org
Proc.R.Soc.B

281:20140488
1. Croft W. 2000 Explaining language change: an
evolutionary approach. Harlow, UK: Longman.

2. Chater N, Reali F, Christiansen MH. 2009 Restrictions
on biological adaptation in language evolution.
Proc. Natl Acad. Sci. USA 106, 1015 – 1020. (doi:10.
1073/pnas.0807191106)

3. Gray RD, Atkinson QD. 2003 Language-tree
divergence times support the Anatolian theory of
Indo-European origin. Nature 426, 435 – 439.
(doi:10.1038/nature02029)

4. Dunn M, Terrill A, Reesink G, Foley RA, Levinson SC.
2005 Structural phylogenetics and the
reconstruction of ancient language history. Science
309, 2072 – 2075. (doi:10.1126/science.1114615)

5. Pagel M. 2009 Human language as a culturally
transmitted replicator. Nat. Rev. Genet. 10, 405 – 415.

6. Bouckaert R et al. 2012 Mapping the origins and
expansion of the Indo-European language family.
Science 337, 957 – 960. (doi:10.1126/science.
1219669)

7. Gray RD, Drummond AJ, Greenhill SJ. 2009
Language phylogenies reveal expansion pulses and
pauses in Pacific settlement. Science 323, 479 – 483.
(doi:10.1126/science.1166858)

8. Blythe RA. 2012 Neutral evolution: a null model for
language dynamics. Adv. Complex Syst. 15,
1150015. (doi:10.1142/s0219525911003414)

9. Reali F, Griffiths TL. 2010 Words as alleles:
connecting language evolution with Bayesian
learners to models of genetic drift. Proc. R. Soc. B
277, 429 – 436. (doi:10.1098/rspb.2009.1513)

10. Nettle D. 1999 Linguistic diversity. Oxford, UK:
Oxford University Press.

11. Bentley RA, Hahn MW, Shennan SJ. 2004 Random
drift and culture change. Proc. R. Soc. Lond. B 271,
1443 – 1450. (doi:10.1098/rspb.2004.2746)

12. Neiman FD. 1995 Stylistic variation in evolutionary
perspective: inferences from decorative diversity and
interassemblage distance in Illinois Woodland
ceramic assemblages. Am. Antiquity 60, 7 – 36.
(doi:10.2307/282074)

13. Barton N, Briggs D, Eisen J, Goldstein D, Patel N.
2007 Evolution. Cold Spring Harbor, NY: Cold Spring
Harbor Laboratory Press.

14. Duret L. 2008 Neutral theory: the null hypothesis of
molecular evolution. Nat. Educ. 1, 803 – 806.

15. Futuyama D. 2009 Evolution. Sunderland, MA:
Sinauer Associates.

16. Baxter GJ, Blythe RA, Croft W, McKane AJ. 2009
Modeling language change: an evaluation of
Trudgill’s theory of the emergence of New Zealand
English. Lang. Var. Change 21, 257 – 296. (doi:10.
1017/S095439450999010X)

17. Pickering MJ, Garrod S. 2004 Toward a mechanistic
psychology of dialogue. Behav. Brain Sci. 27,
169 – 226. (doi:10.1017/S0140525X04000056)

18. Steels L. 2003 Evolving grounded communication
for robots. Trends Cogn. Sci. 7, 308 – 312. (doi:10.
1016/S1364-6613(03)00129-3)
19. Barr DJ. 2004 Establishing conventional
communication systems: is common knowledge
necessary? Cogn. Sci. 28, 937 – 962. (doi:10.1207/
s15516709cog2806_3)

20. Boyd R, Richerson PJ. 1985 Culture and the
evolutionary process. Chicago, IL: University of
Chicago Press.

21. Richerson PJ, Boyd R. 2005 Not by genes alone: how
culture transformed human evolution. Chicago, IL:
University of Chicago Press.

22. Mesoudi A. 2011 Cultural evolution: how Darwinian
theory can explain human culture and synthesize the
social sciences. Chicago, IL: University of Chicago
Press.

23. Whiten A, Mesoudi A. 2008 Establishing an
experimental science of culture: animal social
diffusion experiments. Phil. Trans. R. Soc. B 363,
3477 – 3488. (doi:10.1098/rstb.2008.0134)

24. Mesoudi A, Whiten A. 2008 The multiple roles of
cultural transmission experiments in understanding
human cultural evolution. Phil. Trans. R. Soc. B 363,
3489 – 3501. (doi:10.1098/rstb.2008.0129)

25. Kirby S, Cornish H, Smith K. 2008 Cumulative
cultural evolution in the laboratory: an experimental
approach to the origins of structure in human
language. Proc. Natl Acad. Sci. USA 105, 10 681 –
10 686. (doi:10.1073/pnas.0707835105)

26. Selten R, Warglien M. 2007 The emergence of
simple languages in an experimental coordination
game. Proc. Natl Acad. Sci. USA 104, 7361 – 7366.
(doi:10.1073/pnas.0702077104)

27. Fedzechkina M, Jaeger TF, Newport EL. 2012
Language learners restructure their input to
facilitate efficient communication. Proc. Natl Acad.
Sci. USA 109, 17 897 – 17 902. (doi:10.1073/pnas.
1215776109)

28. Galantucci B. 2005 An experimental study of the
emergence of human communication systems.
Cogn. Sci. 29, 737 – 767. (doi:10.1207/
s15516709cog0000_34)

29. Fay N, Garrod S, Roberts L, Swoboda N. 2010 The
interactive evolution of human communication
systems. Cogn. Sci. 34, 351 – 386. (doi:10.1111/j.
1551-6709.2009.01090.x)

30. Garrod S, Fay N, Lee J, Oberlander J, MacLeod T.
2007 Foundations of representation: where
might graphical symbol systems come from?
Cogn. Sci. 31, 961 – 987. (doi:10.1080/03640210
701703659)

31. Fay N, Arbib M, Garrod S. 2013 How to bootstrap a
human communication system. Cogn. Sci. 37,
1356 – 1367. (doi:10.1111/cogs.12048)

32. Garrod S, Fay N, Rogers S, Walker B, Swoboda N.
2010 Can iterated learning explain the emergence
of graphical symbols? Interaction Stud. 11, 33 – 50.
(doi:10.1075/is.11.1.04gar)

33. Fay N, Ellison TM, Garrod S. In press. Iconicity: from
sign to system in human communication and
language. Pragmatics Cogn.
34. Evans N, Levinson SC. 2009 The myth of language
universals: language diversity and its importance for
cognitive science. Behav. Brain Sci. 32, 429 – 448.
(doi:10.1017/S0140525X0999094X)

35. Kass RE, Raftery AE. 1995 Bayes factors. J. Am. Stat. Assoc.
90, 773 – 795. (doi:10.1080/01621459.1995.10476572)

36. Knutsen D, Le Bigot L. 2014 Capturing egocentric
biases in reference reuse during collaborative
dialogue. Psychon. Bull. Rev. 2014, 1 – 10. (doi:10.
3758/s13423-014-0620-7)

37. Garrod S, Anderson A. 1987 Saying what you mean
in dialogue: a study in conceptual and semantic co-
ordination. Cognition 27, 181 – 218. (doi:10.1016/
0010-0277(87)90018-7)

38. Branigan HP, Pickering MJ, Cleland AA. 2000
Syntactic co-ordination in dialogue. Cognition 75,
B13 – B25. (doi:10.1016/S0010-0277(99)00081-5)

39. Steels L. 2011 Modeling the cultural evolution of
language. Phys. Life Rev. 8, 339 – 356. (doi:10.1016/
j.plrev.2011.10.014)

40. Fay N, Garrod S, Roberts L. 2008 The fitness and
functionality of culturally evolved communication
systems. Phil. Trans. R. Soc. B 363, 3553 – 3561.
(doi:10.1098/rstb.2008.0130)

41. Fay N, Ellison TM. 2013 The cultural evolution of
human communication systems in different sized
populations: usability trumps learnability. PLoS ONE
8, e71781. (doi:10.1371/journal.pone.0071781)

42. Herzog HA, Bentley RA, Hahn MW. 2004 Random
drift and large shifts in popularity of dog breeds.
Proc. R. Soc. Lond. B 271(Suppl. 5), S353 – S356.
(doi:10.1098/rsbl.2004.0185)

43. Hahn MW, Bentley RA. 2003 Drift as a mechanism
for cultural change: an example from baby names.
Proc. R. Soc. Lond. B 270(Suppl. 1), S120 – S123.
(doi:10.1098/rsbl.2003.0045)

44. Labov W. 1994 Principles of linguistic change.
Volume 1: internal factors. Oxford: Blackwell.

45. Asch SE. 1951 Effects of group pressure upon
the modification and distortion of judgments. In
Groups, leadership, and men S (ed. H Guetzkow),
pp. 177 – 190. Pittsburgh, PA: Carnegie.

46. Sherif M. 1936 The psychology of social norms.
Oxford, UK: Harper.

47. Haun DBM, Rekers Y, Tomasello M. 2012 Majority-
biased transmission in chimpanzees and human
children, but not orangutans. Curr. Biol. 22,
727 – 731. (doi:10.1016/j.cub.2012.03.006)

48. Fay N, Lister CJ, Ellison TM, Goldin-Meadow S. 2014
Creating a communication system from scratch: gesture
beats vocalization hands down. Front. Psychol. 5, 354.

49. Garrod S, Doherty G. 1994 Conversation,
coordination and convention—an empirical
investigation of how groups establish linguistic
conventions. Cognition 53, 181 – 215. (doi:10.1016/
0010-0277(94)90048-5)

50. Beckner C et al. 2009 Language is a complex
adaptive system: position paper. Lang. Learn. 59,
1 – 26. (doi:10.1111/j.1467-9922.2009.00534.x)

http://dx.doi.org/10.1073/pnas.0807191106
http://dx.doi.org/10.1073/pnas.0807191106
http://dx.doi.org/10.1038/nature02029
http://dx.doi.org/10.1126/science.1114615
http://dx.doi.org/10.1126/science.1219669
http://dx.doi.org/10.1126/science.1219669
http://dx.doi.org/10.1126/science.1166858
http://dx.doi.org/10.1142/s0219525911003414
http://dx.doi.org/10.1098/rspb.2009.1513
http://dx.doi.org/10.1098/rspb.2004.2746
http://dx.doi.org/10.2307/282074
http://dx.doi.org/10.1017/S095439450999010X
http://dx.doi.org/10.1017/S095439450999010X
http://dx.doi.org/10.1017/S0140525X04000056
http://dx.doi.org/10.1016/S1364-6613(03)00129-3
http://dx.doi.org/10.1016/S1364-6613(03)00129-3
http://dx.doi.org/10.1207/s15516709cog2806_3
http://dx.doi.org/10.1207/s15516709cog2806_3
http://dx.doi.org/10.1098/rstb.2008.0134
http://dx.doi.org/10.1098/rstb.2008.0129
http://dx.doi.org/10.1073/pnas.0707835105
http://dx.doi.org/10.1073/pnas.0702077104
http://dx.doi.org/10.1073/pnas.1215776109
http://dx.doi.org/10.1073/pnas.1215776109
http://dx.doi.org/10.1207/s15516709cog0000_34
http://dx.doi.org/10.1207/s15516709cog0000_34
http://dx.doi.org/10.1111/j.1551-6709.2009.01090.x
http://dx.doi.org/10.1111/j.1551-6709.2009.01090.x
http://dx.doi.org/10.1080/03640210701703659
http://dx.doi.org/10.1080/03640210701703659
http://dx.doi.org/10.1111/cogs.12048
http://dx.doi.org/10.1075/is.11.1.04gar
http://dx.doi.org/10.1017/S0140525X0999094X
http://dx.doi.org/10.1080/01621459.1995.10476572
http://dx.doi.org/10.3758/s13423-014-0620-7
http://dx.doi.org/10.3758/s13423-014-0620-7
http://dx.doi.org/10.1016/0010-0277(87)90018-7
http://dx.doi.org/10.1016/0010-0277(87)90018-7
http://dx.doi.org/10.1016/S0010-0277(99)00081-5
http://dx.doi.org/10.1016/j.plrev.2011.10.014
http://dx.doi.org/10.1016/j.plrev.2011.10.014
http://dx.doi.org/10.1098/rstb.2008.0130
http://dx.doi.org/10.1371/journal.pone.0071781
http://dx.doi.org/10.1098/rsbl.2004.0185
http://dx.doi.org/10.1098/rsbl.2003.0045
http://dx.doi.org/10.1016/j.cub.2012.03.006
http://dx.doi.org/10.1016/0010-0277(94)90048-5
http://dx.doi.org/10.1016/0010-0277(94)90048-5
http://dx.doi.org/10.1111/j.1467-9922.2009.00534.x
http://rspb.royalsocietypublishing.org/

	Cultural selection drives the evolution of human communication systems
	Introduction
	Material and methods
	Data
	Model

	Results
	Discussion
	Funding statement
	References


