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Abstract

This paper reports the first measurement of the effective B0
s → J/ψK0

S lifetime and an updated mea-
surement of its time-integrated branching fraction. Both measurements are performed with a data sample,
corresponding to an integrated luminosity of 1.0 fb−1 of pp collisions, recorded by the LHCb experiment
in 2011 at a centre-of-mass energy of 7 TeV. The results are: τ eff

J/ψK0
S

= 1.75 ± 0.12 (stat) ± 0.07 (syst) ps

and B(B0
s → J/ψK0

S) = (1.97 ± 0.23) × 10−5. For the latter measurement, the uncertainty includes both
statistical and systematic sources.
© 2013 CERN. Published by Elsevier B.V. All rights reserved.

1. Introduction

In the Standard Model (SM), CP violation arises through a single phase in the CKM quark
mixing matrix [1]. In decays of neutral B mesons (B stands for a B0 or B0

s meson) to a final
state accessible to both B and B , the interference between the amplitude for the direct decay and
the amplitude for decay via oscillation leads to time-dependent CP violation. A measurement
of the time-dependent CP asymmetry in the B0 → J/ψK0

S mode allows for a determination of
the B0–B0 mixing phase φd . In the SM it is equal to 2β [2], where β is one of the angles of the
unitarity triangle in the quark mixing matrix. This phase has already been well measured by the B

factories [3,4], but further improvements are still necessary to conclusively resolve possible small
tensions with the other measurements constraining the unitarity triangle [5]. The latest average
composed by the Heavy Flavour Averaging Group (HFAG) is sinφd = 0.682 ± 0.019 [6]. To
achieve precision below the percent level, knowledge of the doubly Cabibbo-suppressed higher
order perturbative corrections, originating from penguin topologies, becomes mandatory. These
contributions are difficult to calculate reliably and therefore need to be determined directly from
experimentally accessible observables.
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Fig. 1. Decay topologies contributing to the Bd(s) → J/ψK0
S channel: (left) tree diagram and (right) penguin diagram.

From a theoretical perspective, the B0
s → J/ψK0

S mode is the most promising candidate for
this task. It is related to the B0 → J/ψK0

S mode through the interchange of all d and s quarks
(U -spin symmetry, a subgroup of SU(3)) [7], leading to a one-to-one correspondence between
all decay topologies of these two modes, as illustrated in Fig. 1. Moreover, the B0

s → J/ψK0
S

penguin topologies are not CKM suppressed relative to the tree diagram, as is the case for their
B0 counterparts. A further discussion regarding the theory of this decay and its potential use in
LHCb is given in Ref. [8].

To determine the parameters related to the penguin contributions in these decays, a time-
dependent CP violation study of the B0

s → J/ψK0
S mode is required. The determination of its

branching fraction, previously measured by CDF [9] and LHCb [10], was an important first
step, allowing a test of the U -spin symmetry assumption that lies at the basis of the proposed
approach. The second step towards the time-dependent CP violation study is the measurement
of the effective B0

s → J/ψK0
S lifetime, formally defined as [11]

τ eff
J/ψK0

S
≡

∫ ∞
0 t〈Γ (Bs(t) → J/ψK0

S)〉dt
∫ ∞

0 〈Γ (Bs(t) → J/ψK0
S)〉dt

, (1)

where
〈
Γ

(
Bs(t) → J/ψK0

S

)〉 = Γ
(
B0

s (t) → J/ψK0
S

) + Γ
(
B0

s (t) → J/ψK0
S

)
(2)

= RHe−ΓHt + RLe−ΓLt (3)

is the untagged decay time distribution, under the assumption that CP violation in B0
s –B0

s mixing
can be neglected [6]. Due to the non-zero decay width difference �Γs ≡ ΓH − ΓL = 0.106 ±
0.013 ps−1 [12] between the heavy and light B0

s mass eigenstates, the effective lifetime does not
coincide with the B0

s lifetime τB0
s

≡ 1/Γs = 1.513 ± 0.011 ps [12], where Γs = (ΓH + ΓL)/2 is

the average B0
s decay width. Instead, it depends on the decay mode specific relative contributions

RH and RL. These two parameters also define the CP observable

A�Γs ≡ RH − RL
, (4)
RH + RL
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which allows the effective lifetime to be expressed as [11]

τ eff
J/ψK0

S
= τB0

s

1 − y2
s

1 + 2A�Γs ys + y2
s

1 +A�Γs ys

, (5)

where ys ≡ �Γs/2Γs is the normalised decay width difference. For the B0
s → J/ψK0

S mode,
the value of A�Γs depends on the penguin contributions, and in particular on their relative weak
phase φs [7]. Using the latest estimates on the size of the B0

s → J/ψK0
S penguin contribu-

tions [13] gives A�Γs = 0.944 ± 0.066 and the SM prediction

τ eff
J/ψK0

S

∣∣
SM = 1.639 ± 0.022 ps. (6)

Effective lifetime measurements have been performed for the B0
s → K+K− [14] and B0

s →
J/ψf0(980) [15] decay modes.

This paper presents the first measurement of the effective B0
s → J/ψK0

S lifetime, as well as
an update of the time-integrated branching fraction measurement in Ref. [10], performed with a
data sample, corresponding to an integrated luminosity of 1.0 fb−1 of pp collisions, recorded at
a centre-of-mass energy of 7 TeV by the LHCb experiment in 2011.

The LHCb detector [16] is a single-arm forward spectrometer covering the pseudorapidity
range 2 < η < 5, designed for the study of particles containing b or c quarks. The detector
includes a high precision tracking system consisting of a silicon-strip vertex detector surrounding
the pp interaction region, a large-area silicon-strip detector located upstream of a dipole magnet
with a bending power of about 4 Tm, and three stations of silicon-strip detectors and straw drift
tubes placed downstream. The combined tracking system has momentum resolution �p/p that
varies from 0.4% at 5 GeV/c to 0.6% at 100 GeV/c, and impact parameter resolution of 20 µm for
tracks with high transverse momentum (pT) with respect to the beam direction. Charged hadrons
are identified using two ring-imaging Cherenkov detectors [17]. Photon, electron and hadron
candidates are identified by a calorimeter system consisting of scintillating-pad and preshower
detectors, an electromagnetic calorimeter and a hadronic calorimeter. Muons are identified by a
system composed of alternating layers of iron and multiwire proportional chambers.

Events are selected by a trigger system [18] consisting of a hardware trigger, which requires
muon or hadron candidates with high pT, followed by a two-stage software trigger. In the first
stage a partial event reconstruction is performed. For this analysis, events are required to have
either two oppositely charged muons with combined mass above 2.7 GeV/c2, or at least one
muon or one high-pT track (pT > 1.8 GeV/c) with a large impact parameter with respect to all
pp interaction vertices (PVs). In the second stage a full event reconstruction is performed and
only events containing J/ψ → μ+μ− candidates are retained.

The signal simulation samples used for this analysis are generated using PYTHIA 6.4 [19] with
a specific LHCb configuration [20]. Decays of hadronic particles are described by EVTGEN [21]
in which final state radiation is generated using PHOTOS [22]. The interaction of the generated
particles with the detector and its response are implemented using the GEANT4 toolkit [23] as
described in Ref. [24].

2. Data samples and initial selection

Candidate B → J/ψK0
S decays are reconstructed in the J/ψ → μ+μ− and K0

S → π+π−
final state. Candidate J/ψ → μ+μ− decays are required to form a good quality vertex and have
a mass in the range [3030,3150] MeV/c2. This interval corresponds to about eight times the
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μ+μ− mass resolution at the J/ψ mass and covers part of the J/ψ radiative tail. The selected
J/ψ candidate is required to satisfy the trigger decision at both software trigger stages. The K0

S
selection requires two oppositely charged particles reconstructed in the tracking stations placed
on either side of the magnet, both with hits in the vertex detector (‘long K0

S’ candidate) or without
(‘downstream K0

S’ candidate). The long (downstream) K0
S → π+π− candidates are required to

form a good quality vertex and have a mass within 35 (64) MeV/c2 of the known K0
S mass [25].

Moreover, to remove contamination from Λ → pπ− decays, the reconstructed pπ− mass of the
long (downstream) K0

S candidates is required to be more than 6 (10) MeV/c2 away from the
known Λ mass [25]. Furthermore, the K0

S candidates are required to have a flight distance that is
at least five times larger than its uncertainty.

Candidate B mesons are selected from combinations of J/ψ and K0
S candidates with mass

mJ/ψK0
S

in the range [5180,5520] MeV/c2. The reconstructed mass and decay time are obtained

from a kinematic fit [26] that constrains the masses of the μ+μ− and π+π− pairs to the known
J/ψ and K0

S masses [25], respectively, and constrains the B candidate to originate from the PV.
In case the event has multiple PVs, all combinations are considered. The χ2 of the fit, which
has eight degrees of freedom, is required to be less than 72 and the estimated uncertainty on the
B mass must not exceed 30 MeV/c2. Candidates are required to have a decay time larger than
0.2 ps. To remove misreconstructed B0 → J/ψK∗0 background that survives the requirement
on the K0

S flight distance, the mass of the long B0 → J/ψK0
S candidates computed under the

J/ψK±π∓ mass hypotheses must not be within 20 MeV/c2 of the known B0 mass [25].

3. Multivariate selection

The loose selection described above does not suppress the combinatorial background suffi-
ciently to isolate the small B0

s → J/ψK0
S signal. The initial selection is therefore followed by a

multivariate analysis, based on a neural network (NN) [27]. The NN classifier’s output is used as
the final selection variable.

The NN is trained entirely on data, using the B0 → J/ψK0
S signal as a proxy for the B0

s →
J/ψK0

S decay. The training sample is taken from the mass windows [5180,5340] MeV/c2 and
[5390,5520] MeV/c2, thus avoiding the B0

s signal region. A normalisation sample consisting
of one quarter of the candidates, selected at random, is left out of the NN training to allow an
unbiased measurement of the B0 yield. The signal and background weights are determined using
the sPlot technique [28] and obtained by performing an unbinned maximum likelihood fit to the
mass distribution of the candidates surviving the loose selection criteria. The fitted probability
density function (PDF) is defined as the sum of a B0 signal component and a combinatorial
background. The parametrisation of the individual components is described in more detail in the
next section.

Due to the differences in the distributions of the input variables of the NN, as well as the
different initial signal to background ratio, the multivariate selection is performed separately for
the B candidate samples containing long and downstream K0

S candidates. In the remainder of this
paper, these two datasets will be referred to as the long and downstream K0

S sample, respectively.
The NN classifiers use information about the candidate kinematics, vertex and track quality,
impact parameter, particle identification information from the RICH and muon detectors, as well
as global event properties like track and interaction vertex multiplicities. The variables that are
used in the NN are chosen to avoid correlations with the reconstructed B mass.
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Fig. 2. Fitted B → J/ψK0
S candidate mass distributions and their associated residual uncertainties (pulls) for the (left)

long and (right) downstream K0
S samples, after applying the final requirement on the NN classifier outputs.

Final selection requirements on the NN classifier outputs are chosen to optimise the expected
sensitivity to the B0

s signal observation. The expected signal and background yields entering
the calculation of the figure of merit [29] are obtained from the normalisation sample by scal-
ing the number of fitted B0 candidates, and by counting the number of events in the mass
ranges [5180,5240] MeV/c2 and [5400,5520] MeV/c2, respectively. After applying the final
requirement on the NN classifier output associated with the long (downstream) K0

S sample, the
multivariate selection rejects, relative to the initial selection, 98.7% (99.6%) of the background
while keeping 71.5% (50.2%) of the B0 signal. Due to the worse initial signal to background
ratio, the final requirement on the NN classifier output is much tighter in the downstream K0

S
sample than in the long K0

S sample.
After applying the full selection, the B candidate can still be associated with more than one PV

in about 1% of the events. Likewise, about 0.1% of the selected events have several candidates
sharing one or more tracks. In these cases, respectively one of the surviving PVs and one of the
candidates is used at random.

4. Event yields

For the candidates passing the NN requirements, the ratio of B0
s and B0 yields is determined

from an unbinned maximum likelihood fit to the mass distribution of the reconstructed B can-
didates. The fitted PDF is defined as the sum of a B0 signal component, a B0

s signal component
and a combinatorial background. The B0

s component is constrained to have the same shape as
the B0 PDF, shifted by the known B0

s –B0 mass difference [30]. The mass lineshapes of the
B → J/ψK0

S modes in both data and simulation exhibit non-Gaussian tails on both sides of
their signal peaks due to final state radiation, the detector resolution and its dependence on the
decay angles. Each individual signal shape is parametrised by a double-sided Crystal Ball (CB)
function [31]. The parameters describing the CB tails are taken from simulation; all other param-
eters are allowed to vary in the fit. The background contribution is described by an exponential
function.

The results of the fits are shown in Fig. 2, and the fitted yields are listed in Table 1. The B0

yield is determined in the normalisation sample and scaled to the full sample, whereas the B0
s
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Table 1
Signal yields from the unbinned maximum likelihood fits to the B → J/ψK0

S candidate mass distributions. The uncer-

tainties are statistical only. The yield ratio is calculated from the quantities highlighted in boldface, where the fitted B0

yield is first multiplied by a factor of four.

Sample Yield Long K0
S Downstream K0

S

Normalisation B0 → J/ψK0
S 2205 ± 47 3651 ± 61

B0
s → J/ψK0

S 21 ± 5 49 ± 8
Background 56 ± 11 110 ± 16

Full B0 → J/ψK0
S 9031 ± 96 14,391 ± 122

B0
s → J/ψK0

S 115 ± 12 158 ± 15
Background 287 ± 23 490 ± 32

Yield ratio R ≡ NFull
B0

s →J/ψK0
S
/4NNorm

B0→J/ψK0
S

0.0131 ± 0.0014 0.0108 ± 0.0010

Average yield ratio R 0.0116 ± 0.0008

yield is obtained directly from the full sample. The scaled B0 yield, obtained from the unbiased
sample, differs from the corresponding fit result in the full sample by −211 ± 211 events for the
long K0

S sample and by 213 ± 273 events for the downstream K0
S sample. Both results are in

good agreement, showing that the NN is not overtrained. The yield ratios obtained from the long
and downstream K0

S samples are compatible with each other and are combined using a weighted
average.

5. Decay time distribution

Following the procedure explained in Ref. [32], the effective B0
s → J/ψK0

S lifetime is de-
termined by fitting a single exponential function g(t) ∝ exp(−t/τsingle) to the decay time distri-
bution of the B0

s → J/ψK0
S signal candidates. In this analysis, the exponential shape parameter

τsingle is determined from a two-dimensional unbinned maximum likelihood fit to the mass and
decay time distribution of the reconstructed B candidates. The fitted PDF is again defined as the
sum of a B0 signal component, a B0

s signal component and a combinatorial background. The
freely varying parameters in the fit are the signal and background yields, and the parameters
describing the acceptance, mass and background decay time distributions.

The decay time distribution of each of the two signal components needs to be corrected with
a decay time resolution and acceptance model to account for detector effects. The shape of the
acceptance function affecting the B0

s → J/ψK0
S mode is, like the lineshape of its mass distribu-

tion, assumed to be identical to that of the B0 → J/ψK0
S component. The acceptance function

is obtained directly from the data using the B0 → J/ψK0
S mode. Contrary to the B0

s system,
the B0 system has a negligible decay width difference �Γd [25]. The decay time distribution
of the B0 → J/ψK0

S channel is therefore fully described by a single exponential function with
known lifetime τB0 = 1.519 ps [6]. Hence, fixing the B0 lifetime to its known value allows the
acceptance parameters to be determined from the fit.

From simulation studies it is found that the decay time acceptance of both signal components
is well modelled by the function

fAcc(t) = 1 + βt

−κ
. (7)
1 + (λt)
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Fig. 3. Fitted B → J/ψK0
S candidate decay time distributions and their associated residual uncertainties (pulls) for the

(left) long and (right) downstream K0
S samples, after applying the final requirement on the NN classifier outputs.

The parameter β describes the fall in the acceptance at large decay times [12]. The parameters
κ and λ model the turn-on curve, caused by the use of decay time biasing triggers, the initial
selection requirements and, most importantly, the NN classifier outputs.

The decay time resolution for the signal and background components is determined from
candidates that have an unphysical, negative decay time. Due to the requirement of 0.2 ps on the
decay time of the B candidates applied in the initial selection, such events are not present in the
analysed data sample. Instead, a second sample, that is prescaled and does not have the decay
time requirement, is used. This sample consists primarily of J/ψ mesons produced at the PV
which are combined with a random K0

S candidate. The decay time distribution for these events
is a good measure of the decay time resolution and is modelled by the sum of three Gaussian
functions sharing a common mean. Two of the Gaussian functions parametrise the inner core of
the resolution function, while the third describes the small fraction of outliers.

The background decay time distributions are studied directly using the data. Their shape is
obtained from background candidates that are isolated using the background weights determined
by the sPlot technique, and cross-checked using the high mass sideband. The exact values of
the shape parameters are determined in the nominal fit. Because of the differences induced by
the multivariate selection, the background decay time distribution of the long and downstream
K0

S samples cannot be parametrised using the same background model. For the long K0
S sample,

the background is modelled by two exponential functions, describing a short-lived and a long-
lived component, respectively. In the downstream K0

S sample such a short-lived component is
not present due to the tighter requirement on the NN classifier output. Its decay time distribution
is better described by a single exponential shape corrected by the acceptance function in Eq. (7)
with independent parameters (κ ′, α′, β ′). The parameter β ′ is set to zero because we also fit the
lifetime of the single exponential function itself, and the combination of both parameters would
result in ambiguous solutions.

The decay time distributions resulting from the two-dimensional fits are shown in Figs. 3 and 4
for candidates in the full mass range mJ/ψK0

S
∈ [5180,5520] MeV/c2 and in the B0

s signal re-

gion mJ/ψK0
S

∈ [5340,5390] MeV/c2, respectively. The fitted values are τsingle = 1.54 ± 0.17 ps

and τsingle = 1.96 ± 0.17 ps for the long and downstream K0 sample, respectively. The 1.7σ
S
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Fig. 4. Fitted B → J/ψK0
S candidate decay time distributions and their associated residual uncertainties (pulls) for

the (left) long and (right) downstream K0
S candidates in the B0

s signal region m
J/ψK0

S
∈ [5340,5390] MeV/c2, after

applying the final requirement on the NN classifier outputs.

difference between both results is understood as a statistical fluctuation. The two main fit results
are therefore combined using a weighted average, leading to

τsingle = 1.75 ± 0.12 ps,

where the uncertainty is statistical only. The event yields obtained from the two-dimensional fits
are compatible with the results quoted in Table 1.

6. Corrections and systematic uncertainties

A number of systematic uncertainties affecting the relative branching fraction B(B0
s →

J/ψK0
S)/B(B0 → J/ψK0

S) and the effective lifetime are considered. The sources affecting the
ratio of branching fractions are discussed first, followed by those contributing to the effective
lifetime measurement.

The largest systematic uncertainty on the yield ratio comes from the mass shape model, and in
particular from the uncertainty on the fraction of the B0 → J/ψK0

S component’s high mass tail
extending below the B0

s signal. The magnitude of this effect is studied by allowing both tails of
the CB shapes to vary in the fit. The largest observed deviation in the yield ratios is 3.4%, which
is taken as a systematic uncertainty. The mass resolution, and hence the widths of the CB shapes,
is assumed to be identical for the B0 and B0

s signal modes, but could in principle depend on the
mass of the reconstructed B candidate. This effect is studied by multiplying the CB widths of
the B0

s signal PDF by different scale factors, obtained by comparing B0 and B0
s signal shapes

in simulation. The largest observed difference in the yield ratios is 1.4%, which is taken as a
systematic uncertainty. Varying the B0

s –B0 mass difference within its uncertainty has negligible
effect on the yield ratios.

The selection procedure is designed to be independent of the reconstructed B mass. Simulated
data is used to check this assumption, and to evaluate the difference in selection efficiency arising
from the different shapes of the B0 → J/ψK0

S and B0
s → J/ψK0

S decay time distributions. The
ratio of total selection efficiencies is equal to 0.968 ± 0.007, and is used to correct the yield ratio.
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Table 2
Corrections and systematic uncertainties on the
yield ratio.

Source Value

Fit model 1.000 ± 0.034
B0

s mass resolution 1.000 ± 0.014
Selection efficiency 0.968 ± 0.007

Total correction fB
corr 0.968 ± 0.034

The stability of the multivariate selection is verified by comparing different training schemes
and optimisation procedures, as well as by calculating the yield ratios for different subsets of
the long and downstream K0

S sample. All of these tests give results that are compatible with the
measured ratio.

The corrections and systematic uncertainties affecting the branching fraction ratio are listed
in Table 2. The total systematic uncertainty is obtained by adding all the uncertainties in quadra-
ture.

The main systematic uncertainties affecting the effective B0
s → J/ψK0

S lifetime arise from
modelling the different components of the decay time distribution. Their amplitudes are evaluated
by comparing the results from the nominal fit to similar fits using alternative parametrisations. All
tested fit models give compatible results. The largest observed deviations in τsingle are 3.9% due
to modelling of the background decay time distribution, 0.47% due to the acceptance function
and 0.39% due to the reconstructed B mass description, all of which are assigned as systematic
uncertainties. Variations in the decay time resolution model are found to have negligible impact
on τsingle.

The assumed value of the B0 lifetime has a significant impact on the shape of the acceptance
function, and the β parameter in particular, which in turn affects the fitted value of τsingle. This
effect is studied by varying the B0 lifetime within its uncertainty [25]. The largest observed
deviation in τsingle is 0.52%, which is taken as a systematic uncertainty.

The fit method is tested on simulated data using large sets of pseudo-experiments, which
have the same mass and decay time distributions as the data. Different datasets are generated
using the fitted two-dimensional signal and background distributions, and τsingle is then again
fitted to these pseudo-experiments. The fit result is compared with the input value to search for
possible biases. From the spread in the fitted values and the accompanying residual distributions,
a small bias is found. This bias is attributed to the limited size of the background sample, and
the resulting difficulty to constrain the background decay time parameters. A correction factor of
1.002 ± 0.002 is assigned to account for this potential bias.

Due to the presence of a non-trivial acceptance function, the result of fitting a single exponen-
tial to the untagged B0

s decay time distribution does mathematically not agree with the formal
definition of the effective lifetime in Eq. (1), as explained in Ref. [32]. The size and sign of the
difference between τsingle and τ eff

J/ψK0
S

depend on the values of τB0
s
, ys , A�Γs , and the shape of the

acceptance function. The difference is calculated with pseudo-experiments that sample the ac-
ceptance parameters, τB0

s
and ys from Gaussian distributions related to their respective fitted and

known values. Since A�Γs is currently not constrained by experiment, it is sampled uniformly
from the interval [−1,1]. The average difference between τ eff

0 and τsingle, obtained using

J/ψKS
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Table 3
Corrections and systematic uncertainties on the
effective B0

s → J/ψK0
S lifetime.

Source Value

Background model 1.000 ± 0.039
Acceptance model 1.000 ± 0.005
Mass model 1.000 ± 0.004
B0 lifetime 1.000 ± 0.005
Fit method 1.002 ± 0.002
Effective lifetime definition 0.999 ± 0.001

Total correction f eff
corr 1.001 ± 0.040

the acceptance function affecting the long (downstream) K0
S sample, is found to be −0.001 ps

(−0.003 ps). A correction factor of 0.999 ± 0.001 is assigned to account for this bias.
The presence of a production asymmetry between the B0

s and B0
s mesons could potentially

alter the measured value of the effective lifetime, but even for large estimates of the size of this
asymmetry, the effect is found to be negligible.

Finally, the systematic uncertainties in the momentum and the decay length scale propagate to
the effective lifetime. The size of the former contribution is evaluated by recomputing the decay
time while varying the momenta of the final state particles within their uncertainty. The system-
atic uncertainty due to the decay length scale mainly comes from the track-based alignment. Both
effects are found to be negligible.

The stability of the fit is verified by comparing the nominal results with those obtained using
different fit ranges, or using only subsets of the long and downstream K0

S samples. All these tests
give compatible results.

The corrections and systematic uncertainties affecting the effective B0
s → J/ψK0

S lifetime
are listed in Table 3. The total systematic uncertainty is obtained by adding all the uncertainties
in quadrature.

7. Results and conclusion

Using the measured ratio R = 0.0116 ± 0.0008 of B0
s → J/ψK0

S and B0 → J/ψK0
S yields,

the correction factor f B
corr = 0.968 ± 0.034, and the ratio of hadronisation fractions fs/fd =

0.256 ± 0.020 [33], the ratio of branching fractions is computed to be

B(B0
s → J/ψK0

S)

B(B0 → J/ψK0
S)

= R × f B
corr × fd

fs

= 0.0439 ± 0.0032 (stat) ± 0.0015 (syst) ± 0.0034 (fs/fd),

where the quoted uncertainties are statistical, systematic, and due to the uncertainty in fs/fd ,
respectively.

Using the known B0 → J/ψK0 branching fraction [25], the ratio of branching fractions can
be converted into a measurement of the time-integrated B0

s → J/ψK0
S branching fraction. Tak-

ing into account the different rates of B+B− and B0B0 pair production at the Υ (4S) resonance
Γ (B+B−)/Γ (B0B0) = 1.055 ± 0.025 [25], the above result is multiplied by the corrected value
B(B0 → J/ψK0) = (8.98 ± 0.35) × 10−4 and gives
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B
(
B0

s → J/ψK0
S

) = [
1.97 ± 0.14 (stat) ± 0.07 (syst) ± 0.15 (fs/fd)

± 0.08
(
B

(
B0 → J/ψK0))] × 10−5,

where the last uncertainty comes from the B0 → J/ψK0 branching fraction. This result is com-
patible with, and more precise than, previous measurements [9,10], and supersedes the previous
LHCb measurement. The branching fraction is consistent with expectations from U -spin sym-
metry [10].

Using τsingle = 1.75 ± 0.12 ps and the correction factor f eff
corr = 1.001 ± 0.040, the effective

B0
s → J/ψK0

S lifetime is given by

τ eff
J/ψK0

S
= f eff

corr × τsingle

= 1.75 ± 0.12 (stat) ± 0.07 (syst) ps.

This is the first measurement of this quantity. The result is compatible with the SM prediction
given in Eq. (6).
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