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Abstract

First evidence of the B0 → J/ψω decay is found and the B0
s → J/ψη and B0

s → J/ψη′ decays are studied
using a dataset corresponding to an integrated luminosity of 1.0 fb−1 collected by the LHCb experiment
in proton–proton collisions at a centre-of-mass energy of

√
s = 7 TeV. The branching fractions of these

decays are measured relative to that of the B0 → J/ψρ0 decay:

B(B0 → J/ψω)

B(B0 → J/ψρ0)
= 0.89 ± 0.19(stat)+0.07

−0.13(syst),

B(B0
s → J/ψη)

B(B0 → J/ψρ0)
= 14.0 ± 1.2(stat)+1.1

−1.5(syst)+1.1
−1.0

(
fd

fs

)
,

B(B0
s → J/ψη′)

B(B0 → J/ψρ0)
= 12.7 ± 1.1(stat)+0.5

−1.3(syst)+1.0
−0.9

(
fd

fs

)
,

where the last uncertainty is due to the knowledge of fd/fs, the ratio of b-quark hadronization factors that
accounts for the different production rate of B0 and B0

s mesons. The ratio of the branching fractions of
B0

s → J/ψη′ and B0
s → J/ψη decays is measured to be

B(B0
s → J/ψη′)

B(B0
s → J/ψη)

= 0.90 ± 0.09(stat)+0.06
−0.02(syst).
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Fig. 1. Examples of the dominant diagrams for the B0
(s) → J/ψX0 decays (where X0 = η, η′ , ω or ρ0).

1. Introduction

Decays of B mesons into a J/ψ and a light meson are dominated by color-suppressed tree
diagrams involving b̄ → c̄cs̄ and b̄ → c̄cd̄ transitions (see Fig. 1). Contributions from other
diagrams are expected to be small [1]. Measurements of the branching fractions of these de-
cays can help to shed light on hadronic interactions. The decay B0 → J/ψω has not been
observed previously. The CLEO Collaboration has set the most restrictive upper limit to date
of B(B0 → J/ψω) < 2.7 × 10−4 at 90% confidence level [2].

The B0
s → J/ψη(′) decays were observed by the Belle Collaboration [3] with branching frac-

tions B(B0
s → J/ψη) = (5.10±0.50±0.25+1.14

−0.79)×10−4 and B(B0
s → J/ψη′) = (3.71±0.61±

0.18+0.83
−0.57)× 10−4, where the first uncertainty is statistical, the second is systematic and the third

one is due to an uncertainty of the number of produced B0
s B̄0

s pairs. Since both final states are
CP eigenstates, time-dependent CP violation studies and access to the B0

s –B̄0
s mixing phase φs

will be possible in the future [4,5]. The theoretical prediction for these branching fractions and
their ratio relies on knowledge of the η–η′ mixing phase φP. Taking φP = (41.4 ± 0.5)◦ [6] and
ignoring a possible gluonic component and corrections due to form factors, the ratio becomes

B(B0
s → J/ψη′)

B(B0
s → J/ψη)

× Fη
s

Fη′
s

= 1

tan2 φP
= 1.28+0.10

−0.08.

Here Fη(′)
s is the phase space factor of the B0

s → J/ψη(′) decay and the uncertainty is due to the
inaccuracy in the knowledge of the mixing phase. As discussed in Ref. [1], a precise measurement
of this ratio tests SU(3) flavour symmetry. In addition, in combination with other measurements,
the fraction of the gluonic component in the η′ meson can eventually be estimated [7].

The analysis presented here is based on a data sample corresponding to an integrated luminos-
ity of 1.0 fb−1 collected by the LHCb detector in 2011 in pp collisions at a centre-of-mass energy
of

√
s = 7 TeV. The branching fractions of these decays are measured relative to B(B0 → J/ψρ0)

and the ratio B(B0
s →J/ψη′)

B(B0
s →J/ψη)

is determined.

2. LHCb detector

The LHCb detector [8] is a single-arm forward spectrometer covering the pseudorapidity
range 2 < η < 5, designed for the study of b- and c-hadrons. The detector includes a high preci-
sion tracking system consisting of a silicon-strip vertex detector surrounding the pp interaction
region, a large-area silicon-strip detector located upstream of a dipole magnet with a bending
power of about 4 T m, and three stations of silicon-strip detectors and straw drift tubes placed
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downstream. The combined tracking system has a momentum resolution �p/p that varies from
0.4% at 5 GeV/c to 0.6% at 100 GeV/c, and an impact parameter resolution of 20 µm for
tracks with high transverse momentum (pT). Charged hadrons are identified using two ring-
imaging Cherenkov (RICH) detectors. Photon, electron and hadron candidates are identified by a
calorimeter system consisting of scintillating-pad and pre-shower detectors, and electromagnetic
and hadron calorimeters. Muons are identified by a system composed of alternating layers of iron
and multiwire proportional chambers.

The trigger consists of a hardware stage, based on information from the calorimeter and muon
systems, followed by a software stage which applies a full event reconstruction. This analysis
uses events triggered by one or two muon candidates. In the case of one muon, the hardware
level requirement was for its pT to be larger than 1.5 GeV/c; in case of two muons the restriction√

pT1 · pT2 > 1.3 GeV/c was applied. At the software level, the two muons were required to
have an invariant mass in the interval 2.97 < mμ+μ− < 3.21 GeV/c2 and to be consistent with
originating from the same vertex. To avoid the possibility that a few events with high occupancy
dominate the trigger processing time, a set of global event selection requirements based on hit
multiplicities was applied.

For the simulation, pp collisions are generated using PYTHIA 6.4 [9] with a specific LHCb
configuration [10]. Decays of hadronic particles are described by EVTGEN [11] in which final
state radiation is generated using PHOTOS [12]. The interaction of the generated particles with
the detector and its response are implemented using the GEANT4 toolkit [13] as described in
Ref. [14]. The digitized output is passed through a full simulation of both the hardware and
software trigger and then reconstructed in the same way as the data.

3. Data sample and common selection requirements

The decays B0
(s) → J/ψX0 (where X0 = η, η′, ω and π+π−) are reconstructed using the

J/ψ → μ+μ− decay mode. The X0 candidates are reconstructed in the η → γ γ , η → π+π−π0,
η′ → ρ0γ , η′ → ηπ+π− and ω → π+π−π0 final states. Pairs of oppositely charged particles
identified as muons, each having pT > 550 MeV/c and originating from a common vertex, are
combined to form J/ψ → μ+μ− candidates. Well identified muons are selected by requiring that
the difference in logarithms of the global likelihood of the muon hypothesis, � lnLμh, provided
by the particle identification detectors [15], with respect to the hadron hypothesis is greater than
zero. The fit of the common two-prong vertex is required to satisfy χ2/ndf < 20, where ndf is
the number of degrees of freedom. The vertex is deemed to be well separated from the recon-
structed primary vertex of the pp interaction by requiring the decay length significance to be
greater than 3. Finally, the invariant mass of the dimuon combination is required to be within
±40 MeV/c2 of the nominal J/ψ mass [16].

To identify charged pions the difference between the logarithmic likelihoods of the pion and
kaon hypotheses provided by RICH detectors, � lnLπK, should be greater than zero. In the
reconstruction of the B0

(s) → J/ψπ+π− decay this requirement is tightened to be � lnLπK >

2 so as to suppress the contamination from B0
(s) → J/ψπK decays with misidentified kaons.

In addition, the pion tracks are required to have pT > 250 MeV/c. A minimal value of �χ2
IP,

defined as the difference between the χ2 of the primary vertex, reconstructed with and without
the considered track, is required to be larger than four.

Photons are selected from neutral clusters in the electromagnetic calorimeter with minimal
transverse energy in excess of 300 MeV. To suppress the large combinatorial background from
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Fig. 2. Invariant mass distribution for selected B0 → J/ψω candidates. The black dots correspond to the data distribution,
the thick solid blue line is the total fit function, the blue dashed line shows the background contribution and the orange
thin line is the signal component of the fit function. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

π0 → γ γ decays, photons that can form part of a π0 → γ γ candidate with invariant mass
within ±25 MeV/c2 of the nominal π0 mass are not used for reconstruction of η → γ γ and
η′ → ρ0γ candidates.

The η → γ γ (π0 → γ γ ) candidates are reconstructed as diphoton combinations with invari-
ant mass within ±70(25) MeV/c2 around the nominal η(π0) mass. To suppress the combina-
torial background to the η → γ γ decay, the cosine of the decay angle θ∗

η , between the photon
momentum in the η rest frame and the direction of the Lorentz boost from the laboratory frame
to the η rest frame, is required to have | cos θ∗

η | < 0.8.
The η′ candidates are reconstructed as ηπ+π− and ρ0γ combinations with invariant mass

within ±60 MeV/c2 from the nominal η′ mass. For the η′ → ρ0γ case, the invariant mass of the
π+π− combination is required to be within ±150 MeV/c2 of the ρ0 mass. For η → π+π−π0

(ω → π+π−π0) candidates the invariant mass is required to be within ±50 MeV/c2 of the
nominal η(ω) mass.

The B0
(s) candidates are formed from J/ψX0 pairs with pT > 3 GeV/c for the X0. To improve

the invariant mass resolution a kinematic fit [17] is applied. In this fit, constraints are applied on
the known masses [16] of intermediate resonances, except the wide ρ0 and ω states, and it is also
required that the candidate’s momentum vector points to the associated primary vertex. The χ2

per degree of freedom for this fit is required to be less than five. Finally, the decay time (cτ ) of
the B0

(s) candidates is required to be in excess of 150 µm.

4. Evidence for the B0 → J/ψω decay

The invariant mass distribution of the selected J/ψω candidates is shown in Fig. 2, where a B0

signal is visible. To determine the signal yield, an unbinned maximum likelihood fit is performed
to this distribution. The signal is modelled by a Gaussian distribution and the background by an
exponential function. The peak position is found to be 5284 ± 5 MeV/c2, which is consistent
with the nominal B0 mass [16] and the resolution is in good agreement with the prediction from
simulation. The event yield is determined to be YB0 = 72 ± 15.
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Fig. 3. Background-subtracted (a) γ γ and (b) π+π−π0 invariant mass distributions for B0 → J/ψπ+π−γ γ decays.
In both distributions the line is the result of the fit described in the text.

The statistical significance for the observed signal is determined as S = √−2 ln(LB/LS+B),
where LS+B and LB denote the likelihood of the signal plus background hypothesis and the
background hypothesis, respectively. The statistical significance of the signal is found to be 5.0
standard deviations. Taking into account the systematic uncertainty related to the fit function,
which is discussed in detail in Section 7.1, the significance is 4.6σ ; this also takes into account
the freedom in the peak position and width in the nominal fit.

To demonstrate that the signal originates from B0 → J/ψω decays, the sPlot technique [18]
has been applied. Using the J/ψπ+π−γ γ invariant mass as the discriminating variable, the dis-
tributions for the invariant masses of the intermediate resonances π0 → γ γ and ω → π+π−π0

have been obtained. The invariant mass window for each corresponding resonance is released
and the mass constraint is removed.

The invariant mass distributions for γ γ and π+π−π0 from B0 → J/ψω candidates are shown
in Fig. 3. Clear signals are seen for both the ω → π+π−π0 and π0 → γ γ decays. The γ γ

distribution is described by a sum of a Gaussian function and a constant. The ω → π+π−π0

signal is modelled by a convolution of a Gaussian and a Breit–Wigner function with a constant
background. The peak positions are in good agreement with the nominal π0 and ω masses and
the yields determined from the fits are compatible with the B0 → J/ψω yield. The nonresonant
contribution in each case is found to be consistent with zero.

5. Decays into J/ψη(′) final states

The invariant mass spectra for B0
s → J/ψη(′) candidates are shown in Fig. 4, where signals

are visible. To determine the signal yields, unbinned maximum likelihood fits are performed.
For all modes apart from J/ψη′ (η′ → ρ0γ ), the B0

s signal is modelled by a single Gaussian
function. In all cases there is a possible corresponding B0 signal, which is included in the fit
model as an additional Gaussian component. The difference of the means of the two Gaussians is
fixed to the known difference between the B0

s and the B0 masses [19]. Simulation studies for the
J/ψη′ (η′ → ρ0γ ) mode indicate that in this case a double Gaussian resolution model is more
appropriate. The mean values of the two Gaussian functions are required to be the same, and
the ratio of their resolutions and the fraction of the event yield carried by each of the Gaussian
functions are fixed at the values obtained from simulation.

The combinatorial background is modelled by an exponential function. In addition, a compo-
nent is added to describe the contribution from partially reconstructed B decays. It is described
with the phase space function for two particles in a three body decay under the hypothesis of
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Fig. 4. Invariant mass distributions for selected B0
s → J/ψη(′) candidates: (a) B0

s → J/ψη (η → γ γ ), (b) B0
s → J/ψη

(η → π+π−π0), (c) B0
s → J/ψη′ (η′ → ρ0γ ) and (d) B0

s → J/ψη′ (η′ → π+π−η). In all distributions the black dots
show the data. The thin solid orange lines show the signal B0

s contributions and the orange dot-dashed lines correspond
to the B0 contributions. The blue dashed lines show the combinatorial background contributions and the dotted blue lines
show the partially reconstructed background components. The total fit functions are drawn as solid blue lines. The results
of the fit are described in the text. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Table 1
Signal yields, YB0

s
, the fitted B0

s mass, mB0
s

and mass resolutions, σB0
s

for the B0
s → J/ψη(′) decays.

Mode YB0
s

mB0
s

[MeV/c2] σB0
s

[MeV/c2]
B0

s → J/ψη (η → γ γ ) 810 ± 65 5367.2 ± 3.5 40.1 ± 3.6

B0
s → J/ψη (η → π+π−π0) 94 ± 11 5368.4 ± 2.6 20.3 ± 2.3

B0
s → J/ψη′ (η′ → ρ0γ ) 336 ± 30 5367.0 ± 1.1 8.0 ± 1.1

B0
s → J/ψη′ (η′ → π+π−η) 79 ± 10 5369.0 ± 2.8 20.7 ± 2.3

B → J/ψη(′)X decay, where X can be either a kaon or a pion, which escapes detection. The
phase space function is convolved with a resolution factor, which is fixed at the value of the
signal resolution.

The fit results are summarized in Table 1. In all cases the position of the signal peak is con-
sistent with the nominal B0

s mass [16] and the resolutions agree with the expectations from
simulation. The statistical significances of all the B0

s decays exceed 7σ .
To test the resonance structure of the B0

s → J/ψη(′) decays, the sPlot technique is used. For
the π0, η and η′ candidates the background-subtracted invariant mass distributions are studied.
The restrictions on the invariant mass for the corresponding resonance are released and the mass
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Fig. 5. Background-subtracted invariant mass distributions for (a) γ γ from B0
s → J/ψη (η → γ γ ); (b) π+π−π0 from

B0
s → J/ψη (η → π+π−π0); (c) and (d) π+π−γ and π+π− from B0

s → J/ψη′ (η′ → ρ0γ, ρ → π+π−); (e) and (f)
ηπ+π− and γ γ from B0

s → J/ψη′ (η′ → ηπ+π−). The purple line is the result of the fit described in the text. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

constraints (if any) removed. The background-subtracted distributions are then fitted with the
sum of a Gaussian function and a constant component for the resonant and nonresonant compo-
nents respectively. In the fit of the dipion invariant mass for the η′ → π+π−γ decay a modified
relativistic Breit–Wigner function is used as the signal component [20,21].

Background-subtracted invariant mass distributions of the intermediate resonance states from
the B0

s → J/ψX0 decays, are shown in Fig. 5. Clear signals are seen. In all cases the signal
yields determined from the fits are in agreement with the event yield in the B0

s signal within one
standard deviation (Table 1). The signal positions are consistent with the nominal masses of the
η(′) mesons and the nonresonant contribution appears to be negligible. In each case the invariant
mass resolution agrees with the expectation from simulation studies.
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Fig. 6. Invariant mass distribution for selected B0
(s) → J/ψπ+π− candidates. The black dots show the data. The dot-

dashed thin orange line shows the signal B0 contribution and the orange solid line shows the signal B0
s contribution, a

reflection from misidentified B0 → J/ψ (K∗ → Kπ) is shown by a blue dotted line. The blue dashed line shows the
background contribution. The total fit function is shown as a solid blue line. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

6. The B0 → J/ψπ+π− decay

The B0 → J/ψρ0 (ρ0 → π+π−) decay is used as a normalization channel [22]. Since it
contains a J/ψ meson and two pions in the final state, the systematic uncertainty is reduced in
the ratio of the branching fractions, as the corresponding reconstruction and particle identification
uncertainties are expected to cancel.

The invariant mass spectrum for B0
(s) → J/ψπ+π− candidates is presented in Fig. 6, where

three clear signals are visible. Two narrow signals correspond to the B0 → J/ψπ+π− and B0
s →

J/ψπ+π− decays. The latter decay has been studied in detail in Refs. [23,24]. The peak at lower
mass corresponds to contamination from B0 → J/ψK∗0 (K∗0 → K+π−) decays with a kaon
being misreconstructed as a pion. A contribution from B0

s → J/ψK∗0 decay is considered to be
negligible.

The invariant mass distribution is fitted with a sum of three Gaussian functions to describe the
three signals, and an exponential function to represent the background. The fit gives a yield of
1143 ± 39 for B0 → J/ψπ+π−.

Previous studies at BaBar [22] show that the B0 → J/ψπ+π− final state has contributions
from decays of ρ0 and K0

S mesons, as well as a broad S-wave component. A further component
from the f2(1270) resonance is also hinted at in the BaBar study. To study the dipion mass
distribution the sPlot technique is used. With the J/ψπ+π− invariant mass as the discriminating
variable, the π+π− invariant mass spectrum from B0 → J/ψπ+π− decays is obtained (see
Fig. 7). A dominant ρ0 signal is observed together with a narrow peak around 498 MeV/c2

due to K0
S decays. There is also a wide enhancement at a mass close to 1260 MeV/c2. The

position and width of this structure are consistent with the interpretation as a contribution from
the f2(1270) state. This will be the subject of a future publication.

The distribution is fitted with the sum of several components. A P-wave modified rela-
tivistic Breit–Wigner function [20,21] multiplied by a phase space factor describes the ρ0

signal. A D-wave relativistic Breit–Wigner function is added to describe the enhancement at
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Fig. 7. Background-subtracted π+π− invariant mass distribution from B0 → J/ψπ+π− decays. The black dots show
the data. A violet solid line denotes the total fit function, the solid orange line shows the ρ0 signal contribution and the
blue dashed line shows the f2(1270) contribution. The blue dot-dashed line shows the contribution from the f0(500). The
region ±40 MeV/c2 around the K0

S mass is excluded from the fit.

Table 2
Fitted yields of the ρ0 resonance, the relative yields of the f2(1270) and f0(500)

components and probabilities, P , of the fits to the uncorrected and efficiency-
corrected π+π− invariant mass distributions.

Uncorrected fit Efficiency-corrected fit

ρ0 event yield 811 ± 38 (27.6 ± 1.3) × 103

f0(500) fraction 0.20 ± 0.04 0.19 ± 0.04
f2(1270) fraction 0.14 ± 0.03 0.16 ± 0.04
P [%] 40 46

1260 MeV/c2. The parameters (width and mean value) of this function are fixed to the known
f2(1270) mass and decay width [16]. The S-wave contribution expected from the f0(500) res-
onance is modelled by a Zou and Bugg [25,26] function with parameters from Ref. [27]. The
ρ0 parameters (mass and width) are fixed at their nominal values and the region around the K0

S
peak is excluded from the fit. The excluded region is ±40 MeV/c2 which is four times the mass
resolution. A small systematic uncertainty is induced by neglecting the ρ0–ω interference. The
value of the uncertainty is estimated to be 0.5% relative to the ρ0 event yield.

The reconstruction and selection efficiency for the dipion system has some dependence on
the dipion invariant mass. A study using simulated data has shown that with the increase of the
π+π− invariant mass in the range 300–1500 MeV/c2 the efficiency decreases by approximately
16%. As the ρ0 meson has a significant width, this dependence needs to be accounted for in the
determination of the ρ0 signal yield. For this, the efficiency dependence on π+π− invariant mass
extracted from the simulation is described with a linear function. Then each entry in the invariant
mass distribution is given a weight proportional to the inverse value of the efficiency function
and the efficiency-corrected invariant mass distribution is refitted with the same sum of functions
to extract the efficiency-corrected event yield for B0 → J/ψρ0. The resulting fit parameters both
for the uncorrected and efficiency-corrected distributions are listed in Table 2.
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Table 3
Branching fractions of the intermediate resonances, total efficiencies (excluding the branching fractions of the intermedi-
ate resonances), εtot, and the photon and π0 efficiency correction factors ηcorr for various channels. For the B0 → J/ψρ0

decay the total efficiency includes only the detector acceptance and trigger efficiencies, as the reconstruction and selection
efficiency for this channel has been discussed in Section 6.

Mode B [%] εtot [%] ηcorr [%]

B0
s → J/ψη (η → γ γ ) 39.31 ± 0.20 0.236 ± 0.006 98.0 ± 7.5

B0
s → J/ψη (η → π+π−π0) 22.74 ± 0.28 0.059 ± 0.002 94.1 ± 7.5

B0
s → J/ψη′ (η′ → ρ0γ ) 29.3 ± 0.6 0.142 ± 0.004 98.0 ± 3.7

B0
s → J/ψη′ (η′ → π+π−η) 18.6 ± 0.3 0.068 ± 0.003 96.0 ± 7.5

B0 → J/ψω (ω → π+π−π0) 89.2 ± 0.7 0.043 ± 0.002 94.1 ± 7.5

B0 → J/ψρ0 (ρ0 → π+π−) 98.90 ± 0.16 12.6 ± 0.5 –

7. Measurements of ratios of branching fractions

Ratios of branching fractions are measured using the formula

RB,X0

B,Y0 ≡ B(B → J/ψX0)

B(B → J/ψY0)
= Y(B → J/ψX0)

Y(B → J/ψY0)
× BY0

BX0
×

εtot
B→J/ψY0

εtot
B→J/ψX0

,

where Y are the measured event yields, εtot are the total efficiencies, excluding the branching
fractions of light mesons and BX0(BY0) is the relevant branching ratio of the light meson X0(Y0)

to the final state under consideration [16]. In cases where decays of different types of B mesons
are compared, the ratio of the branching fractions is multiplied by the ratio of the corresponding
b-quark hadronization fractions fd/fs [28].

The total efficiencies consist of three components: the geometrical acceptance of the detector,
the reconstruction and selection efficiency and the trigger efficiency. For the B0 → J/ψρ0 decay,
the event yield Y implies the value weighted by the selection and reconstruction efficiency from
Table 2. Only the acceptance and trigger efficiencies are included in εtot

B0→J/ψρ0 . All efficiency
components have been determined using the simulation and the values are listed in Table 3.

For channels with photons and neutral pions in the final states, the reconstruction and selection
efficiencies are corrected for the difference in the photon reconstruction between the data and
simulation. This correction factor has been determined by comparing the relative yields of the
reconstructed B+ → J/ψK∗+ (K∗+ → K+π0) and B+ → J/ψK+ decays. The results of these
studies are convolved with the background subtracted photon momentum spectra to give the
correction factor for each channel. The values of the correction factors (ηcorr) are also listed in
Table 3.

7.1. Systematic uncertainties

Most systematic uncertainties cancel in the branching fraction ratios, in particular, those re-
lated to the muon and J/ψ reconstruction and identification. For the final states with photons the
largest systematic uncertainty is related to the efficiency of π0/γ reconstruction and identifica-
tion, as described above. The uncertainties of the applied corrections reflect simulation statistics,
and are taken as systematic uncertainties on the branching fractions ratios.

Another systematic uncertainty is due to the charged particle reconstruction efficiency which
has been studied through a comparison between data and simulation. For the ratios where
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Table 4
Relative systematic uncertainties for ratios of the branching fractions (R) for the B0

s → J/ψη(′) channels [%].

Parameter Rη→γ γ

η→π+π−π0 Rη′→ηπ+π−
η→γ γ Rη′→ηπ+π−

η→π+π−π0 Rη′→ρ0γ
η→γ γ Rη′→ρ0γ

η→π+π−π0 Rη′→ρ0γ

η′→ηπ+π−

ηcorr – – – 3.8 3.9 3.9
π± reco 2 × 1.8 2 × 1.8 – 2 × 1.8 – –
Trigger 1.1 1.1 1.1 1.1 1.1 1.1
Fit function +3.7

−0.0
+9.9
−0.0

+1.3
−5.6

+3.4
−0.0 < 0.1 +0.0

−2.8
B(η, η′,ω) 1.3 1.7 2.0 2.1 1.8 2.6

this does not cancel exactly, the corresponding systematic uncertainty is taken to be 1.8% per
pion [29].

The systematic uncertainty related to the trigger efficiency has been obtained by comparison
of the trigger efficiency ratios in data and simulation for the high yield decay mode B± → J/ψK±
with similar kinematics and the same trigger requirements [30]. This uncertainty is taken to be
1.1%.

In the ratios where decays of B mesons of different types are compared (B0 or B0
s ), knowledge

of the hadronization fraction ratio fd/fs is required. The measured value of this ratio [28] has an
asymmetric uncertainty of +7.9

−7.5%.
Systematic uncertainties related to the fit model are estimated using a number of alternative

models for the description of the invariant mass distributions. For the B0
s → J/ψη(′) decays the

tested alternatives include a fit without the B0 component, a fit with the means of the Gaussians
fixed to the nominal B meson masses, a fit with the width of the Gaussians fixed to the expected
mass resolutions from simulation and substitution of the exponential background hypothesis with
first- and second-order polynomials. This uncertainty is calculated for the ratios of the event
yields. For each alternative fit model the ratio of the event yields is calculated and the systematic
uncertainty is then determined as the maximum deviation of this ratio from the ratio obtained
with the baseline model.

A similar study is performed for the B0 → J/ψω channel. As the fit with one Gaussian func-
tion is the baseline model in this case, here the alternative model is a fit with two Gaussian
functions (allowing a possible B0

s signal).
In the B0 → J/ψρ0 case, an alternative model replaces the Zou–Bugg f0(500) term with a

Breit–Wigner shape. The mass and width of the broad f0(500) state are not well known. The
mass measured by various experiments varies in a range between 400 and 1200 MeV/c2 and the
measured width ranges between 600 and 1000 MeV/c2 [16]. Therefore, the f0(500) parameters
are varied in this range and the ρ0 yield is determined. Again, the maximum deviation from the
baseline model is treated as the systematic uncertainty of the fit.

The uncertainties related to the knowledge of the branching fractions of η, η′, π0 and ω decays
are taken from Ref. [16]. Other systematic uncertainties, such as those related to the selection
criteria are negligible. The systematic uncertainties are summarized in Tables 4 and 5. The total
systematic uncertainties are estimated using a simulation technique (see Section 7.2).

7.2. Results

The final ratios RB0
s ,η

′
B0

s ,η
, RB0

s ,η
(′)

B0,ρ0 and RB0,ω

B0,ρ0 are determined using a procedure that combines

χ2-minimization with constraints and simplified simulation. First, the χ2 is minimized



558

RAPID COMMUNICATION

LHCb Collaboration / Nuclear Physics B 867 (2013) 547–566
Table 5
Systematic uncertainties for ratios of the branching fractions (R) relative to B0 → J/ψρ0 [%].

Parameter RB0
s ,η→γ γ

B0,ρ0→π+π− RB0
s ,η→π+π−π0

B0,ρ0→π+π− RB0
s ,η′→ρ0γ

B0,ρ0→π+π− RB0
s ,η′→ηπ+π−

B0,ρ0→π+π− RB0,ω→π+π−π0

B0,ρ0→π+π−
ηcorr 7.6 8.0 3.8 7.8 8.0
π± reco 2 × 1.8 – – – –
Trigger 1.1 1.1 1.1 1.1 1.1
Fit function +5.1

−3.7
+5.0
−4.3

+5.0
−5.7

+5.0
−8.7

+6.4
−8.8

B(η, η′,ω) 0.5 1.2 2.1 1.6 0.8

χ2 =
∑

i

χ2
i ,

where the sum is performed over the six measured event yields for the six different modes: B0
s →

J/ψη(η → γ γ ), B0
s → J/ψη(η → π+π−π0), B0

s → J/ψη′(η′ → ρ0γ ), B0
s → J/ψη′(η′ →

ηπ+π−), B0 → J/ψω and B0 → J/ψρ0, and χ2
i = (x−Yi )

2

σ 2
Yi

. In this procedure the following

constraints are imposed

YB0
s →J/ψη(η→γ γ )

εB0
s →J/ψη(η→γ γ ) ×B(η → γ γ )

= YB0
s →J/ψη(η→π+π−π0)

εB0
s →J/ψη(η→π+π−π0) ×B(η → π+π−π0)

,

YB0
s →J/ψη′(η′→ρ0γ )

εB0
s →J/ψη′(η′→ρ0γ ) ×B(η′ → ρ0γ )

= YB0
s →J/ψη′(η′→ηπ+π−)

εB0
s →J/ψη′(η′→ηπ+π−) ×B(η′ → ηπ+π−)

.

The ratios RB0
s ,η

′
B0

s ,η
, RB0

s ,η
(′)

B0,ρ0 and RB0,ω

B0,ρ0 are determined using the event yields obtained from

the minimization procedure. For this determination the efficiencies εi have been varied using
a simplified simulation taking into account correlations between the various components where
appropriate. As both the χ2 and the ratios R depend only on the ratios of efficiencies, system-
atic uncertainties are minimized. The remaining systematic uncertainties have been taken into
account as uncertainties in the efficiency ratios. In total, 106 simulated experiments with differ-
ent settings of εi have been performed. The symmetric 68% intervals have been assigned as the
systematic uncertainty.

The obtained ratios R are

RB0
s ,η

′
B0

s ,η
= 0.90 ± 0.09+0.06

−0.02,

RB0
s ,η

B0,ρ0 = (
3.75 ± 0.31+0.30

−0.40

) ×
(

fd

fs

)
,

RB0
s ,η

′
B0,ρ0 = (

(3.38 ± 0.30+0.14
−0.36

) ×
(

fd

fs

)
,

RB0,ω

B0,ρ0 = 0.89 ± 0.19+0.07
−0.13,

where the first uncertainty is statistical and the second is systematic.
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8. Summary

With 1.0 fb−1 of data, collected in 2011 with the LHCb detector, the first evidence for the
B0 → J/ψω decay has been found, and its branching fraction, normalized to that of the B0 →
J/ψρ0 decay, is measured to be

B(B0 → J/ψω)

B(B0 → J/ψρ0)
= 0.89 ± 0.19(stat)+0.07

−0.13(syst).

Multiplying by the known value of B(B0 → J/ψρ0) = (2.7 ± 0.4) × 10−5 [22], the absolute
value of the branching fraction is

B(B0 → J/ψω) = (
2.41 ± 0.52(stat)+0.19

−0.35(syst) ± 0.36(BB0→J/ψρ0)
) × 10−5.

Using the same dataset, the ratio of the branching fractions of B0
s → J/ψη and B0

s → J/ψη′
decays has been measured. As each of the decays has been reconstructed in two final states, the
resulting ratio has been calculated through an averaging procedure to be

RB0
s ,η

′
B0

s ,η
= B(B0

s → J/ψη′)
B(B0

s → J/ψη)
= 0.90 ± 0.09(stat)+0.06

−0.02(syst).

This result is consistent with the previous Belle measurement of RB0
s ,η

′
B0

s ,η
= 0.73 ± 0.14 [3], but is

more precise. Assuming that the contribution from the purely gluonic component is negligible,
this ratio corresponds to a value of the η–η′ mixing phase of φP = (45.5+1.8

−1.5)
◦. The branching

fractions of the B0
s → J/ψη and B0

s → J/ψη′ decays have been determined by normalization to
the B0 → J/ψρ0 decay branching fraction, and using the known value of fs/fd = 0.267+0.021

−0.020
[28] their ratios are

B(B0
s → J/ψη)

B(B0 → J/ψρ0)
= 14.0 ± 1.2(stat)+1.1

−1.5(syst)+1.1
−1.0

(
fd

fs

)
,

B(B0
s → J/ψη′)

B(B0 → J/ψρ0)
= 12.7 ± 1.1(stat)+0.5

−1.3(syst)+1.0
−0.9

(
fd

fs

)
.

When multiplying by the known value of B(B0 → J/ψρ0), the branching fractions are mea-
sured as

B(B0
s → J/ψη) =

(
3.79 ± 0.31(stat)+0.20

−0.41(syst)+0.29
−0.27

(
fd

fs

)
± 0.56(BB0→J/ψρ0)

)
× 10−4,

B
(
B0

s → J/ψη′) =
(

3.42 ± 0.30(stat)+0.14
−0.35(syst)+0.26

−0.25

(
fd

fs

)
± 0.51(BB0→J/ψρ0)

)
× 10−4.

The branching fractions measured here correspond to the time integrated quantities, while theory
predictions usually refer to the branching fractions at t = 0. Special care needs to be taken when
the B0

s and B0 decays are compared at the amplitude level, corresponding to the branching ratio
at t = 0 [31]. Since the J/ψη(′) final states are CP-eigenstates, the size of this effect can be as
large as 10%, and can be corrected for using input from theory or determined from effective
lifetime measurements [31]. With a larger dataset such measurements, as well as studies of η–η′
mixing and measurements of CP asymmetries in the B0

s → J/ψη(′) modes will be possible.
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