A conceptual model for the origin of fault damage zone structures in high-porosity sandstone

Shipton, Z.K. and Cowie, P.A. (2003) A conceptual model for the origin of fault damage zone structures in high-porosity sandstone. Journal of Structural Geology, 25(3), pp. 333-344. (doi: 10.1016/S0191-8141(02)00037-8)

Full text not currently available from Enlighten.

Publisher's URL: http://dx.doi.org/10.1016/S0191-8141(02)00037-8

Abstract

We present a conceptual model to explain the development of damage zones around faults in high-porosity sandstones. Damage zone deformation has been particularly well constrained for two 4-km-long normal faults formed in the Navajo Sandstone of central Utah, USA. For these faults the width of the damage zone increases with fault throw (for throws ranging from 0 to 30 m) but the maximum deformation density within the damage zone is independent of throw. To explain these data we modify a previously published theoretical model for fault growth in which displacement accumulates by repeated slip events on patches of the fault plane. The modifications are based on field observations of deformation mechanisms within the Navajo Sandstone, the throw profiles of the faults, and inferences concerning likely slip-patch dimensions. Zones of enhanced stress are generated around the tips of each slipping patch, raising the shear stress on adjacent portions of the fault as well as potentially causing off-fault damage. A key ingredient in our model for off-fault damage accumulation is the transition from strain hardening associated with deformation band development, to localised strain softening as a slip-surface develops. This transition occurs at a critical value of deformation density. Once a new slip-surface develops at some distance from the main fault plane and it starts to accumulate throw it can, in turn, generate its own damage zone, thus increasing the overall damage zone width. Our approach can be applied to interpret damage zone development around any fault as long as the host-rock lithology, porosity and deformation mechanisms are taken into consideration.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Cowie, Dr Phillip and Shipton, Dr Zoe
Authors: Shipton, Z.K., and Cowie, P.A.
Subjects:Q Science > QE Geology
College/School:College of Science and Engineering > School of Geographical and Earth Sciences
Journal Name:Journal of Structural Geology
ISSN:0191-8141

University Staff: Request a correction | Enlighten Editors: Update this record