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Abstract 

We describe a technique using a focused ion beam instrument to fabricate high quality 

plan-view specimens for transmission electron microscopy studies. The technique is 

simple, site-specific and is capable of fabricating multiple large, >100 µm
2
 electron 

transparent windows within epitaxially-grown thin films. A film of La0.67Sr0.33MnO3 

is used to demonstrate the technique and its structural and functional properties are 

surveyed by high resolution imaging, electron spectroscopy, atomic force microscopy 

and Lorentz electron microscopy. The window is demonstrated to have good 

thickness uniformity and a low defect density that does not impair the film’s Curie 

temperature. The technique will enable the study of in–plane structural and functional 

properties of a variety of epitaxial thin film systems. 
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1. Introduction 

The focused ion beam (FIB) instrument is an extremely versatile tool for the 

preparation of high quality specimens for transmission electron microscopy (TEM) 

[1-3], for rapid lithographic device prototyping [4-6] and for local modification of 

material properties [7-9]. FIB preparation of cross-sectional specimens for TEM is 

now commonplace [10] and is applicable to almost arbitrary materials, including 

polymers [11], biomaterials [12] and ceramics [13]. A major advantage is the 

unrivalled site-specificity offered by dual-beam FIB systems, which simultaneously 

image a sample with an electron beam whilst using an ion beam (most commonly 

Ga
+
) to cut out a thin, micron-scale lamella from a bulk specimen [14]. Popular FIB 

techniques are well-suited to samples that can be cross-sectioned; i.e. where the 

structural features of interest extend several tens of nanometres in at least one 

dimension that can be aligned to lie perpendicular to the plane of the final TEM 

specimen. In these cases the tolerance on positional accuracy is eased and cross-

section samples are routinely prepared to enable analysis of, for example, grain 

boundaries and thin film interfaces. However, these techniques are less suited to plan-

view TEM studies, where the plane of the electron-transparent lamella may need to be 

aligned to include nanomaterials of comparable thickness to that of the lamella itself. 

One example of where plan-view samples are particularly important is in the 

characterisation of features within the plane of a thin film. Rather than the limited 

field of view offered by a cross-section through the film, it is preferable to align the 

plane of the film perpendicular to the TEM electron beam – i.e. in plan view – in 

order to assess areal densities of defects, or to map strain or functional properties such 
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as ferromagnetism. The latter could be achieved, for example, by imaging the 

response of patterned elements within the film to an external electric or magnetic 

field, similar to studies of amorphous materials described elsewhere, using either the 

microscope’s own magnetic field or that created by electrical connections within the 

sample rod [15]. A difficulty arises in the preparation of plan-view samples because it 

is challenging to align and retain a wide area of undamaged thin film within the plane 

of the TEM lamella. Previous top-down preparations of plan-view specimens have 

used chemical etching [16,17], Ar-ion milling [18,19] and tripod polishing [20]. 

However, etching protocols require material-specific, highly selective etchants whilst 

milling and polishing provide very limited site-specificity. In some cases, the thin film 

of interest can instead be deposited directly onto an electron-transparent membrane 

such as amorphous silicon nitride [21] or single-crystalline GaAs [22] but these 

substrates do not provide a widely-applicable protocol since they are still limited to 

the growth of amorphous, polycrystalline or specific lattice-matched materials. It 

would therefore be useful to employ the advantages of FIB techniques, and although a 

small number are mentioned in the literature we have found that they can be 

unreliable. These techniques tend to conclude with sequential ion-polishing of either 

side of the lamella, where it can be difficult to ensure that the material of interest is 

retained within a lamella that may only be a few tens of nanometres thick. As a 

consequence, recent reports that successfully employ a FIB for site-selective 

preparation of plan-view TEM specimens [23-31] often employ intricate [23] or 

multi-step processes, for example the use of a micromanipulator [24, 28], that can 

increase the risk of specimen loss or damage. In this manuscript we propose a simpler 

approach that derives from previous ‘H-bar’ techniques [24] and is appropriate for the 

fabrication of plan-view specimens from epitaxially-grown thin films. Notably, we 

use a combination of electron microscopy techniques and atomic force microscopy to 

assess the quality of lamellae produced. We demonstrate, using a ferromagnetic 

perovskite oxide epitaxial film, a FIB-based preparation of plan-view samples that is 

widely applicable, preserves the substrate/film epitaxy and imparts minimal damage 

to the region of interest. Furthermore, this approach enables multiple site-specific 

plan-view specimens to be fabricated from one polished film, which is challenging 

using conventional techniques. 

 

2. Specimen pre-treatment 

The thin film used in this study is the perovskite La0.67Sr0.33MnO3 (LSMO) grown on 

SrTiO3 (STO), one of a number of complex oxide heterostructures of current interest 

for device fabrication and emergent interfacial phenomena [32, 33]. LSMO is a 

ferromagnetic half metal with a Curie temperature, TC, around 370 K, which is useful 

in the context of this study since Tc is known to be depressed by structural defects and 

so serves as a simple measure of film quality [34]. LSMO was deposited as a 120 nm 

thick film onto a 500 µm thick SrTiO3(111) (STO) substrate by metalorganic aerosol 

deposition (MAD) [35], a technique that we have found to be very reliable for the 

production of films of a high Curie temperature, suggesting a low defect density. The 

(111) STO substrate orientation is of particular interest as a result of proposed 

enhanced structural and electronic coupling at the surface [36]. Cross-sectional TEM 

imaging (not shown here) shows there to be high quality epitaxial growth of the 

LSMO film on STO. Prior to FIB work, approximately 470 µm of material was 

removed from the sample’s underside as follows. The sample was fixed, with the 

LSMO film face-down, onto a specimen mount using Kemdent® wax to protect the 
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LSMO. It was then thinned to ~30 µm using a Gatan® Disc Grinder and diamond 

paper, using progressively finer grades (30 µm to 0.5 µm grit). The sample was then 

mounted onto a slotted TEM Cu grid that had been partially cut away using an epoxy 

adhesive (Araldite®, cured at 55°C for 1 hour), similar to the process sketched in Ref. 

[1]. It was then placed onto a hotplate to melt the wax and release the original mount. 

Wax residue was removed using acetone and the specimen was cleaned in ethanol and 

IPA, then dried under nitrogen. This preparation stage could be completed in around 2 

hours including curing of the epoxy for one hour. 

 

3. Instrumentation 

The instrument used for sample preparation was an FEI Dual Beam FIB Nova 200, 

consisting of a 30kV electron column for scanning electron microscopy (SEM) and a 

30kV sidewinder ion column (Ga
+
), mounted at 52° to the electron column. The 

system is equipped with an in-situ micro-manipulator and gas injectors for the in-situ 

deposition of Pt and W, which were not required here. Structural characterisation was 

carried out using a JEOL ARM-200cF scanning transmission electron microscope, 

using a Gatan Quantum 965 spectrometer for electron energy loss spectroscopy 

(EELS) analysis. A bespoke detector assembly was used for magnetic characterisation 

of samples via differential phase contrast imaging, a Lorentz electron microscopy 

technique [37]. Scanning probe microscopy was performed ex-situ, using a Veeco 

Dimension 3100 instrument in tapping mode. 

 

4. FIB Back-milling  

Unlike typical cross-section preparation, a protective Pt layer was not deposited on the 

sample prior to ion milling because it would be difficult to remove and can damage 

slightly the uppermost material. Although a protective cap is useful, we tried a variety 

of materials, including organic coatings that can be subsequently removed by 

solvents; in each case, the cap obscured visualisation of the thin film in SEM, making 

it difficult to determine the point at which milling should be stopped. As we show 

below, if care is taken during the final milling stages, then a protective cap layer is 

unnecessary. As a consequence, it was essential to avoid imaging or exposing the 

upper surface of the LSMO to the ion beam at any stage, in order to minimise 

damage. 

The FIB process developed here is outlined in Fig. 1. The first stage, which can be run 

under the automated control of a script, is to ion-mill a trench of material using a 

‘polygon’ pattern (using the FEI nomenclature [38]). Substrate material was sputtered 

away by rastering the beam within a user-defined volume, illustrated by the red 

shaded region in Fig. 1a. Note that in these images, the Ga
+
 beam is oriented normal 

to the ‘top view’ and SEM images are collected simultaneously, viewing the sample 

as sketched in the ‘back view’. Thus, the window of material of interest is aligned 

parallel to the ion beam. This first step was performed using a 30 kV beam and a high 

beam current, Iion, of 21 nA in order to remove rapidly a large volume of material. It 

resulted in a 10 µm × 20 µm thinned region as illustrated. We find that regions wider 

than 10 µm have proved challenging to thin homogeneously and without buckling, 

although it may be possible to further deepen the regions beyond 20 µm or to 

incorporate additional Pt bars for structural support, as demonstrated elsewhere [39]. 

An SEM image acquired at the end of the first stage is given in Fig. 1b and shows a 
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distinctive rectilinear step/terrace morphology within the milled region, which arises 

from the crystallography of the substrate [40]. The second stage, which can also be 

automated, continues to thin the region of interest to around 300 nm (illustrated 

schematically in Fig. 1c). During the script, the ion beam current was progressively 

reduced from 6.5 nA for a rough mill, to 2.8 nA and finally to 300 pA for a fine 

milling stage. Lower beam currents are particularly important for the final stages of 

milling as they provide sharper probes with smaller tails, thus offering more precise 

milling and minimising damage. The specimen was tilted to +1.5° (i.e. the angle 

between the Ga
+
 beam and the normal to top view) during the second mill and to 

+1.2° during the fine mill. This increase in incidence angle with respect to the plane 

of the thinned region increases slightly the sputter yield [41] and acts to smooth or 

polish the sample face. It is similar to the polishing stage of standard cross-section 

preparation [10]. An SEM image following this stage is given in Fig. 2d, which shows 

the back face of the window to be significantly smoother.  

The third stage (Fig. 1e,f) thins the region of interest to electron transparency and is 

best done with live monitoring of the SEM image. A 93 pA beam was used and the 

specimen was tilted to +0.2°. Milling was constrained within a rectangular pattern 

[38] of approximate dimensions 15 µm x 160 nm. The pixel dwell time was set to 

ensure that the total patterning time was less than 1 minute, thereby allowing a 

number of incremental steps with frequent inspection. SEM was used during this stage 

to observe the changes to the specimen in real time. For example, bending or buckling 

of the thinned region under the influence of the ion beam may result from accidental 

irradiation of the front side of the specimen whilst over-polishing would puncture the 

film itself. Similarly, SEM contrast changes during milling are a good indication of 

the thickness uniformity and can be assessed in real time, to quickly adapt the milling 

if inhomogeneities arise. 

A final low energy polish was carried out at 5 keV and at an incidence angle of +7° to 

minimise the ion beam damage and Ga
+
 implantation, similar to the final stages of 

cross-section fabrication. The reduced beam energy is known to reduce damage and 

implantation, as discussed elsewhere [10]; our own SRIM calculations [42], for 

example, indicate that the penetration depth at normal incidence of Ga
+
 ions in SrTiO3 

reduces from 36 nm at 30 keV to just 11 nm at 5 keV. An SEM image of the 

completed window is given in Fig. 1f, where the window appears bright, indicating 

electron transparency. Indeed, variations in contrast during this stage can be used to 

ensure that the sample is uniformly thick.  

The above FIB protocols take approximately 3 hours, a time that could be scaled in 

accordance with the thickness of the bulk film, the desired window size and the 

sputter yield of the materials. The material’s sensitivity to damage and Ga
+
 ion 

implantation may also necessitate a reduction in the ion beam energies during the final 

milling stage [43], and we have some experience of successful sample preparation 

using a final 0.5 keV milling step. An attractive aspect of this method is that scripting 

can be implemented to select a number of locations along the specimen edge in order 

to mill a series of windows automatically, requiring user intervention only for the 

final polishing.  

5. Results 

Typical results of the above procedure are illustrated in Fig. 2, which shows a plan-

view section of La0.7Sr0.3MnO3/STO(111). The bright field TEM image of Fig. 2a 

demonstrates that relatively large, uniform windows can be fabricated with ease; in 
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this case the window is approximately 3µm × 5 µm in area. Contrast in the image is 

dominated by thickness fringes and bend contours, which are inevitable in plan-view 

crystalline samples [44]. They occur here at a relatively low density, in agreement 

with the thickness and bending that we quantify below. Importantly, the fringes do not 

prohibit subsequent large area magnetic characterisation by Lorentz TEM. Figs. 2b 

and 2c demonstrate that the crystal structure of the specimen has been preserved. The 

selected area electron diffraction image (Fig. 2b) is dominated by a single set of sharp 

spots that indicate a lattice spacing of 3.9 Å. The pattern lacks either spot splitting 

arising from recrystallisation or diffuse rings arising from amorphisation: the epitaxial 

structure has been preserved. Fig. 2c presents direct visualisation of the atomic 

arrangement, and is a typical high-angle annular dark field (HAADF) image, where 

the bright spots are individual atom columns, arranged with hexagonal symmetry 

consistent with viewing the crystal along the <111> axis. 

Electron energy loss spectroscopy (EELS) was used to quantify the variations in 

lamella thickness that were seen as contrast changes in the SEM image of Fig. 1f. 

Thickness variations arise because the window has a tendency to deflect during 

milling. Fig. 3a shows a map of sample thickness that has been determined by the 

spectrum imaging technique [45] whereby low-loss EELS spectra were acquired in 

each pixel whilst operating the microscope in scanning TEM mode. In this case, a 

number of spectrum images were stitched together to span the complete field of view. 

The log-ratio method [46] was then used to determine relative thickness at each pixel, 

using the mean atomic number of LSMO to derive an electron mean free path [47] 

and thereby an absolute thickness. These calculations were performed using the 

Digital Micrograph™ software package. The results indicate a sample thickness of 69 

+/- 25  nm (mean +/- standard deviation). The standard deviation is dominated by the 

combination of a thicker region at the top of left of the window and thinner regions 

running down the right hand side but there are several square microns of material with 

much better homogeneity. For example, there is a (4µm)
2
 region lying towards the 

middle of the region where the thickness is 76 +/- 5 nm (mean +/- standard deviation). 

For this particular lamella, we note that the final thickness is less than the nominal 

150 nm of LSMO originally deposited, which is of use for our purposes because we 

are interested in the properties of LSMO independent of substrate-induced strain. Of 

course, the technique is equally applicable to thinner epitaxial films with some 

substrate crystal retained within the window. If very thin specimens are required for 

nanoanalysis (<10 nm), the structural stability of large windows may become 

problematic, and fabricating smaller windows (or smaller regions within windows) 

may be preferable to maintain mechanical stability. A certain amount of Ga
+
 ion 

implantation is expected within the underside surface region of the window. For the 

window described here, a weak Ga L edge at 1115 eV was visible in EELS spectra. 

Summing the integrated signal across the entire window, we estimate the 

concentration to be <~1 at.%: as described below, this level was not found to have any 

adverse effects on the film properties. 

It is common for some buckling and surface roughening of the specimen to occur 

during FIB milling [48], irrespective of the clamping on three sides of the window. 

Whilst thickness variations are easy to assess, quantification of surface roughness and 

buckling is difficult to determine using TEM alone, as images present only a 

projection of the specimen. Atomic force microscopy (AFM) was therefore used in 

combination with the above EELS data to assess independently the window 

topography from thickness variations and results are presented in Fig. 3b. The image 



6 

 

has been flattened by subtraction of a low-order polynomial to ensure that the 

unmilled substrate beyond the lamella is flat. The approximate location of the 

electron-transparent region is indicated by the dashed green line. Notably, the window 

region was found to be ~120 nm higher than the surrounding film, with the maximum 

height found close to the centre of the window. This bulging may be surprising given 

the initial tensile epitaxial strain caused by a ~1% lattice mismatch between the STO 

substrate (lattice constant, a = 0.391 nm) and LSMO film (a = 0.387 nm) but it should 

be noted that at a film thickness of 120 nm, the lattice mismatch will have been 

accommodated by misfit dislocations and that the film will be largely strain-free. 

Indeed, although the buckling looks substantial by AFM, it represents an extension of 

less than 0.03 % across the ~11.7 µm lamella width. We are currently exploring 

results in systems with a greater amount of residual strain as the preparation technique 

outlined here provides a useful means of manipulating the in-plane strain applied to 

films, which could be useful in studies of functionality including magnetism. We find 

it common for lamellae to buckle slightly during milling, resulting in a thicker central 

region that can be compensated for by changing the milling pattern. It is also 

interesting to note that the buckling in this case extends beyond the electron 

transparent region because the final milling stage created a ‘pocket’ behind the 

lamella that is also evident in the SEM image of Fig. 1f and which could be removed 

by reducing the duration of the final milling stage. Ideally, pocket formation should be 

minimised. 

AFM also allows the surface roughness, and hence damage, to be assessed directly. 

Representative line-scans taken from the middle of the upperside of the lamella (light 

green trace) and from a region that has not been exposed to the Ga
+
 beam (dark blue 

trace) are presented in figure Fig. 3c. Both line traces were collected from a (5 µm)
2
 

scan and have had a low-order polynomial subtracted to isolate high spatial 

frequencies from scan distortions and from the buckling effect. We find that the peak-

to-peak roughness is increased slightly on the window surface, which we attribute to 

slight modification and sputtering caused by imaging with the ion beam at low 

incidence angles for registration during the script. It is also likely that the line trace 

collected away from the window was compromised by surface contamination and 

residue from the epoxy and wax used during the sample preparation process, since 

atomic-scale steps were not observed but have been measured on similar surfaces 

after appropriate cleaning. Nevertheless the modest alteration to film roughness 

indicated by Fig. 3c did not cause any perceptible changes to the film properties.  

With the thickness map presented above, it is possible to derive an absolute measure 

of the LSMO film’s (in-plane) magnetic induction using Lorentz microscopy 

techniques [37], and thereby measure the Curie temperature of the LSMO within the 

window region. A detailed magnetic characterisation of the film is beyond the scope 

of this publication and will be reported separately. However, Fresnel images are given 

in Fig. 4 to illustrate that the film is ferromagnetic at room temperature. Fresnel 

imaging is performed by conventional TEM, and reveals magnetic contrast when the 

imaging lens is defocused. This has the effect of raising or lowering the object plane 

relative to the specimen, depending on whether the lens is under- or over-focused; no 

magnetic contrast is observed when the image is in focus. Fig. 4a shows an 

underfocused Fresnel image, which highlights a magnetic domain wall in the form of 

a bright band of electron intensity, indicated by the red arrows. Confirmation that this 

is magnetic contrast may be obtained by observing a focused image of the same 

region, as in Fig. 4b, where the magnetic domain wall disappears. By defocusing the 
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imaging lens in the opposite direction, Fig. 4c, the domain wall appears with the 

reverse contrast, i.e. a dark band of intensity. The main result of the Lorentz 

characterisation is that the local Curie temperature is hardly affected by the process of 

making a plan-view specimen. For example, the Curie temperature of the film within 

a similar window to that illustrated here was found to be 349 ± 3K, which is in 

excellent agreement with the as-grown value of 353 K. This result is important 

because both damage and Ga implantation [34] impair Tc in LSMO: the Tc recorded 

here therefore indicates very little damage.  

 

6. Summary and conclusions 

In summary, we have detailed a simple, practical method for fabricating large area 

plan-view TEM specimens, with minimal damage. Specific milling parameters have 

been provided for each stage, aiding application of the technique to other material 

systems. The technique’s main novelty is its simplicity as it is fast, and does not 

involve complex material pre-treatment or micromanipulation. The technique is site-

specific and ideally suited to the production of large plan-view areas of epitaxial thin 

films with a reasonable yield. It can be readily applied to other material systems by 

appropriate consideration of ion beam energies and milling parameters. Furthermore, 

it is feasible to create a large number of plan-view samples from one substrate, or to 

mill a series of windows along one edge of a specimen, separated by un-milled bars 

for structural support. This technique therefore offers the ability to view large regions 

of a specimen in plan-view that would otherwise be challenging with conventional 

methods. 
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FIG. 1: (a,c,e) Schematic illustration of successive stages of window fabrication with 

(b,d,f) corresponding SEM images. Upper panels illustrate the SEM view whilst 

middle panels (‘top view’) are as seen from the ion column, with the ion beam 

rastering within the red sections. The first stage (a,b) uses a beam current of 21 nA to 

achieve a window thickness of 10 µm; the second stage (c,d) uses beam currents from 

6.5 nA to 0.3 nA to achieve a window thickness of 300 nm; and the third stage uses an 

ion beam current of 93 pA to achieve electron transparency.  
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FIG. 2: (a) Bright field image of the electron transparent window region, composed of 

several bright field images stitched together. (b) A selected area diffraction pattern 

showing sharp spots with hexagonal symmetry and no apparent structural changes. (c) 

High-angle annular dark field image of a region close to the centre of the film viewed 

along the <111> axis, confirming preservation of the crystal structure. 
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FIG. 3: (a) Thickness map determined by electron energy loss spectroscopy (EELS) 

with contours to guide the eye. (b) AFM height map of the window region, with the 

approximate extent of the electron-transparent region indicated by the green dotted 

line. The image has had a low-order polynomial subtracted to remove scan distortions 

and thereby flatten the surface beyond the window. The window is buckled by up to 

120 nm with respect to the unmilled substrate. (c) Typical AFM line traces across the 

surface of the window (light green) away from the window (dark blue), again after 

removal of a low-order polynomial.  
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FIG. 4: Fresnel image sequence at (a) underfocus, (b) in focus and (c) overfocus. The 

domain wall indicated by the red arrows in (a) appears bright; this contrast reverses 

for an overfocused image, where the domain wall appears dark. 


