The effects of meteorite impacts on the availability of bioessential elements for endolithic organisms

Pontefract, A., Osinski, G. R., Lindgren, P., Parnell, J., Cockell, C. S. and Southam, G. (2012) The effects of meteorite impacts on the availability of bioessential elements for endolithic organisms. Meteoritics and Planetary Science, 47(10), pp. 1681-1691. (doi: 10.1111/maps.12004)

Full text not currently available from Enlighten.

Publisher's URL: http://dx.doi.org/10.1111/maps.12004

Abstract

Meteorite impacts, one of the most ubiquitous processes in the solar system, have the ability to destroy as well as create habitats for life. The impact process can increase the translucency and porosity of the target substrate, as well as mobilize biologically relevant elements within the substrate. For endolithic organisms, this process has important implications, especially in extreme environments where they are forced to seek refuge in the interior of rocks. Here, we show that unshocked target rocks and rocks that have experienced pressures up to about 80 GPa from the Haughton impact structure, Devon Island, Canada, possess a small, but discernible change in bulk chemistry within the major oxide analysis. However, changes in the distribution of elements did occur with increasing shock level for both the sedimentary and crystalline target. Both the crystalline and sedimentary target rocks contain significant amounts of glasses at higher shock levels (up to about 95% by volume), which would improve the availability of these elements to potential microbial endoliths as glasses are more easily dissolved by organic acids. The implication that impact events do not impoverish their capacity to serve as a “substrate” through volatilization is important with respect to analogous impact structures on Mars. After the deleterious effects of the direct meteorite impact, any microorganisms on Mars would have benefited from the input of heat, the mobilization of a possible frozen groundwater system, as well as increased translucency, porosity, and trace nutrient availability of the target substrate.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Lindgren, Dr Paula
Authors: Pontefract, A., Osinski, G. R., Lindgren, P., Parnell, J., Cockell, C. S., and Southam, G.
College/School:College of Science and Engineering > School of Geographical and Earth Sciences
Journal Name:Meteoritics and Planetary Science
Publisher:Wiley
ISSN:1086-9379
ISSN (Online):1945-5100

University Staff: Request a correction | Enlighten Editors: Update this record