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Abstract
We present a theory in Maxwellian form for gravitational waves in a flat
background. This requires us to identify the gravitational analogues of the
electric and magnetic fields for light. An important novelty, however, is that our
analogues are not vector fields but rather rank-two tensor fields; in place of a
three-component vector at each point in space, as in electromagnetism, our fields
are three by three symmetric matrices at each point. The resulting Maxwell-like
equations lead directly to a Poynting theorem for the local energy density
associated with a gravitational wave and to associated local properties including
densities of momentum and angular momentum.

Keywords: gravitational waves, Maxwellʼs equations, general relativity

1. Introduction

The prediction of the existence of gravitational waves was one of the first applications made by
Einstein of his general theory of relativity [1, 2]. In these papers, Einstein solved his field
equations for weak fields to reveal the existence of plane waves travelling at the speed of light; a
natural analogue of the familiar electromagnetic waves of Maxwell. He also showed that these
waves should be generated by the non-uniform motion of masses, in much the same way that
moving charges produce electromagnetic waves. Einsteinʼs treatment and variants of it appear
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in numerous texts on general relativity [3–9], including some devoted primarily to gravitational
waves [10–12].

Analogies between gravitation, as expressed in general relativity, and Maxwellʼs
electromagnetism are often employed. This is entirely natural, of course, as both are relativistic
theories. It is perhaps for gravitational waves that the links between the two are most readily
apparent. In the absence of matter, both electromagnetic and gravitational waves are transverse
and propagate at the speed of light. Both, moreover, display two orthogonal polarizations. The
similarities between gravitational waves and their electromagnetic counterparts have been
proposed as a route to a quantum theory of the gravitational field [13–16].

Our aim in this paper is to present the theory of gravitational waves in a manner that
resembles as closely as possible the Maxwell theory of the free electromagnetic field. To this
end we seek to treat only a very weak field in a flat, Minkowski, background. We introduce
gravitational analogues of the electric and magnetic fields in this background and show that
these are governed by a set of equations resembling Maxwellʼs equations. This is possible only
because our dielectric and magnetic analogues are rank-two tensors, rather than the vectors
encountered with electromagnetic waves. They should not be confused, moreover, with another
analogy, gravito-electromagnetism, in which gravitational effects in the vicinity of of masses
may be described in terms of gravitational vector analogues of the electric and magnetic fields
[3, 8, 17]. The resemblance with Maxwell theory suggests forms for the mechanical properties
of gravitational waves including an energy density and a density of helicity. We find that these
obey local conservation laws with the local conservation of energy, in particular, having a form
strongly reminiscent of Poyntingʼs theorem [18, 19]. These conservation laws, together with
expressions for the densities of linear and angular momentum, may be derived rigorously,
moreover, as consequences of symmetries by Noetherʼs theorem [20, 21].

We work with the natural system of units in which both the speed of light, c, and the
universal gravitational constant, G, are set to unity, as are the electromagnetic constants ε0 and
μ

0
. There exist different conventions for the sign of the metric and of the curvature and these

lead to different forms for the Einstein field equation. In this paper we follow the commonly
used conventions advocated by Schutz [9] and others. Hence our Minkowski metric has the
form −+++( ) so that space-like distances are positive and our Riemann curvature is

Γ Γ Γ Γ Γ Γ= − + −βμν
α

βν μ
α

βμ ν
α

σμ
α

βν
σ

σν
α

βμ
σR . (1), ,

Here Γ σμ
α is the usual affine connection and a comma denotes partial differentiation. These

choices determine our Einstein field equation to be

π− =μν μν μνR g R T
1
2

8 . (2)

Adopting the opposite sign for the metric [6] or for the curvature [3] leads to a minus sign on
the right-hand side of the field equation.

2. Qualitative comparison of gravitational and electromagnetic waves

Let us begin with a qualitative description of gravitational and electromagnetic waves. This will
serve both to highlight similarities and differences between them and also to describe some of
the properties we aim to quantify.
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We consider both gravitational and electromagnetic waves in free space far removed from
any matter. With this idealization, both types of wave propagate at the speed of light, both are
transverse and they each have two orthogonal polarizations. By this we mean that both exist as
(quasi-)plane waves and that the associated fields lie in the plane perpendicular to the wave-
vector. The two types of wave differ, however, in a way that is usually discussed using quantum
language; an elementary excitation of the electromagnetic field (a photon) has spin, or helicity,
1 [22, 23] but an excitation of the gravitational field (a graviton) has spin 2 [11, 15, 16]. The
origin of this difference has been traced to the fact that in electromagnetism like charges repel,
but in gravity particles with the same sign of mass attract (there is only one sign of mass, of
course) [15].

It is reasonable to ask whether the spin-1 and spin-2 nature of the electromagnetic and
gravitational waves might be identifiable by classical, rather than quantum reasoning. To this
end consider that transverse waves might be produced by the motion of a system of charges or
masses for electromagnetic or gravitational waves respectively. Consider, in particular, the
situation depicted in figure 1 in which either a pair of bound charges or a pair of bound masses
are in orbit about their centre of mass. A transverse electromagnetic wave has a natural direction
identified which, by convention, we take to point from the positive to the negative charge. If we
consider rotating the field about its direction of propagation then it is clear that a rotation of π2
is required in order to return to the original orientation. It is in this sense that we can identify
light as having spin 1. For the gravitational source, however, the line joining the masses is
clearly identified, but there is no preferred sense of direction along this line as the two masses
have the same sign. In this sense ‘up’ is much the same as ‘down’ and we can represent the
polarization by a double-headed arrow. A rotation of this field about the direction of
propagation through π, then, first brings us to the initial situation and it is in this sense that we
can associate a spin of 2 with the gravitational wave.

Before presenting the quantitative details, it is worth pausing to understand what it is that
we hope to achieve. The principal aim is to obtain a quantitative theory of gravitational waves
in Maxwellian form and then to exploit this to obtain expressions for the densities of
mechanical properties including energy, momentum, angular momentum and helicity. There are
pit-falls to be avoided, however. In particular, we note the warning given by Misner, Thorne
and Wheeler that the energy of the gravitational field cannot be localized [4]. Einstein,
moreover, deduced only a pseudo energy–momentum tensor, which does not transform like a
true tensor; indeed he wrote of this description that ‘I am still convinced that a more useful
determination of the energy components of the gravitational field—other than the one I have
chosen—is not possible’ [24]. The quantities we seek are intended very much in this spirit.
Hence we seek expressions for the mechanical properties of gravitational waves in a flat
background, very much as we describe the properties of electromagnetic waves.

3. Gravitational and electromagnetic waves

The theory of gravitational waves is presented in detail in the texts listed in the introduction
with detailed presentations, in particular, given in [9–12]. Here we give only a brief outline of
the basic ideas and compare this with the analogous derivation for electromagnetic waves from
Maxwellʼs equations [19].
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We recall that gravitational waves in free space are weak-field solutions of the Einstein
field equation in the absence of matter:

=μνR 0. (3)

Here the indices represent the four dimensions of space–time, with 0, 1, 2 and 3 denoting the
t x y, , and z coordinates respectively. To obtain a weak-field solution in a flat background we
write the metric in the form

η= +μν μν μνg h (4)

where μνh is small, by which we mean that the magnitudes of the elements of μνh are all very

much less than unity.
We shall develop a natural analogy between the quantities μνh and the more familiar

potential μA from electromagnetism. In particular, we note that we are free to change μνh , which

we shall refer to as the gravitational potential, in the following way without changing the
Riemann curvature:

ξ ξ→ − −μν μν μ ν ν μh h . (5), ,

Here ξμ is any differentiable four-vector and the comma represents differentiation so that

ξ ξ= ∂ ∂μ ν μ
νx/, . Transformation (5) is analogous to the gauge transformation of the

electromagnetic potential
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Figure 1. Polarization of (a) an electromagnetic wave radiated by a pair of oppositely
charged particles and (b) a gravitational wave radiated by a pair of masses.



χ→ −μ μ μA A , (6)
,

which leaves the electric and magnetic fields unchanged. For this reason we refer to the
transformation (5) as a gauge transformation [25]. It is convenient to exploit this gauge freedom
to impose the transverse-traceless gauge, by which we mean the following conditions:

=

= =

= =

μ

μ
μ

h

h h

h h

0

0

0 . (7)

ii

ij i ji i

0
TT

TT TT

,
TT

,
TT

Here we employ the usual summation convention in which a summation is implied over
repeated indices1. With this choice of gauge, our gravitational potential is reduced to five
independent components as hij is symmetric under interchange of the indices; we can think of it

as a rank-three symmetric matrix.
With our choice of the transverse symmetric gauge, our field equation (3) becomes a wave-

equation for hij:

□ = − ∂
∂

=h
t

h 0. (8)ij ij
TT 2

2

2
TT

⎛
⎝⎜

⎞
⎠⎟

The natural solutions of this equation are plane waves propagating at the speed of light. This,
together with our transverse-traceless gauge conditions (7), leads to two orthogonal
polarizations for μνh in the plane perpendicular to the wave vector k. For a plane wave

propagating in the z-direction, for example, these two polarizations correspond to the non-
vanishing elements

= − =

= =
+

×

h h h

h h h . (9)

xx yy

xy yx

TT TT

TT TT

We note that each of these two polarizations do not correspond to a simple direction but rather
to an oscillation between two orthogonal directions. The two polarizations are orthogonal to
each other in the sense that =+ ×h h 0ij ij .

Let us compare what we have presented for gravitational waves with the more familiar
electromagnetic waves. In the absence of matter, light, and its associated electric and magnetic
fields, E and B, obey the free-field Maxwell equations:

· =
· =

× = − ∂
∂

× = ∂
∂

t

t

E
B

E
B

B
E

0
0

. (10)
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To make contact with the analysis of gravitational waves we recall that we can write E and B in
terms of the vector potential A and the scalar potential φ:

φ= − ∂
∂

−

= ×
t

E
A

B A. (11)





Our first Maxwell equation fixes the longitudinal and transverse parts of A, ∥A and ⊥A , in the
sense that

φ= = − ∂
∂

⇒ − ∂
∂

=⊥
⊥ ∥

t t
E E

A A
. (12)

If we adopt the Coulomb gauge, so that =∥A 0 and φ = 0, then we have the simple condition

= − ∂
∂t

E
A

. (13)

By choosing the Coulomb gauge, we can reduce the free-field Maxwell equations to a wave-
equation for A:

□ =A 0, (14)

which is the analogue of (8). As with gravitational waves, the natural solutions are plane waves
propagating with the speed of light. This, together with our Coulomb-gauge condition,

· =A 0 , leads to two orthogonal polarizations for A in the plane perpendicular to the wave
vector k. For a plane wave propagating in the z-direction, for example, these two polarizations
correspond to non-vanishing values for Ax and Ay.

4. Duplex symmetry

The duplex symmetry for the free electromagnetic field [19, 26] (also referred to as duality, the
Heaviside–Larmor symmetry and electric–magnetic democracy [26–35]) is a statement that the
free-field Maxwell equations (10) are unchanged by the transformation:

θ θ
θ θ

→ +
→ −

E E B
B B E

cos sin
cos sin , (15)

for any θ. This expresses the fact that we cannot tell if light from a distant source was generated
by a source formed from charges or monopoles [36] or, less provocatively, emitted by an
electric or a magnetic dipole [33]. The symmetry is useful, in particular, because it tells us that
the mechanical properties of the electromagnetic field must be invariant under transformation

(15) [33]. Important examples include the energy density, +E B( )1

2
2 2 , and Poyntingʼs vector,

×E B. We find that an analogous duplex symmetry holds also for gravitational waves and,
moreover, that it is also reflected in the form of the mechanical properties of the waves.

We can extend the duplex symmetry to the level of the potentials by introducing a second
potential [28, 29], C, which we take to be transverse ( = ⊥C C ), such that
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= − ×

= − ∂
∂t

E C

B
C

. (16)



With this identification, we find that C, like the vector potential A, satisfies the wave equation

□ =C 0. (17)

As we have shown previously, the two potentials also satisfy Maxwell-like equations:

· =
· =

× = − ∂
∂

× = ∂
∂

⊥

⊥

⊥
⊥

⊥
⊥

t

t

A
C

A
C

C
A

0
0

. (18)








The duplex symmetry is associated with a conserved quantity, of course, which is the helicity
[37–42]:

 ∫= · − ·d x A B C E
1
2

( ). (19)3

Although the potentials appear in the helicity it is, in fact, a gauge-independent quantity.
It is instructive to reflect on the physical content of the Maxwell equations (18) or, indeed,

(10). There are three points only: (i) both the potentials, ⊥A and ⊥C , satisfy the wave equation
and so there are plane waves travelling at the speed of light, (ii) for each plane wave ⊥A and ⊥C
are perpendicular to the wave vector k and (iii) for each plane wave, ⊥A and ⊥C are mutually
orthogonal and ×⊥ ⊥A C points in the direction of k.

Turning to gravitational waves we recall that, in the transverse-traceless gauge, we have
plane waves with two polarizations in the plane perpendicular to the wave vector k. It
necessarily follows that we can write Maxwell-like equations for gravitational waves. To see
this we introduce, in analogy with C, a second gravitational potential, *hij , which also respects

the transverse-traceless conditions (7). The two gravitational potentials then satisfy the
equations

ε

ε

=

=

= −
∂

∂

=
∂

∂

*

*

*

h

h

h
h

t

h
h

t

0

0

, (20)

ij i

ij i

mlj ij l
im

mlj ij l
im

,
TT

,
TT

,
TT

TT

,
TT

TT

where εmlj is the familiar permuting symbol [43]. The form of these equations suggests that we

seek analogies with electromagnetism based on the associations

New J. Phys. 16 (2014) 023027 S M Barnett

7



↔

↔ *

⊥

⊥

h

h

A

C . (21)

ij

ij

TT

TT

We find this association to be most fruitful.

4.1. Gauge dependence?

Before proceeding too far, we should address the point that the electromagnetic potentials, A
and C, and the gravitational potentials, hij and *hij , are gauge-dependent. The simplicity of their

properties, and in particular the fact that they satisfy Maxwell-like equations, is based on the
gauge choices that have been made (Coulomb and transverse traceless). It is important to
realize, however, that these gauges have a special, indeed privileged, status for the free fields.

For the electromagnetic fields we have

= − ∂
∂

= − ∂
∂

⊥

⊥
t

t

E
A

B
C

, (22)

because both E and B are themselves transverse. It necessarily follows that we can write (for
example, by means of a Fourier transform) the quantities ⊥A and ⊥C uniquely in terms of the
gauge-invariant fields E and B. Hence ⊥A and ⊥C are themselves gauge-invariant; they are the
gauge-invariant parts of A and C.

For gravitational waves we can relate, in the transverse-traceless gauge, hij and *hij , to the

curvature. For example [12]

= − ∂
∂

R
t

h
1
2

. (23)i j ij0 0

2

2
TT

The curvature, μνρσR , is gauge-invariant [9] and it necessarily follows that hij
TT is the gauge-

invariant part of the gravitational potential μνh . Similarly *hij
TT is the gauge-invariant part of *

μνh .

We can only conclude that quantities based on ⊥A and ⊥C , for electromagnetism, or on hij
TT

and *hij
TT, for gravity, have a gauge-invariant meaning; we can express physical properties of

light or of gravitational waves in terms of them. Henceforth we specify that all quantities are
written in the Coulomb or transverse-traceless gauge and drop the superscripts.

4.2. Duplex symmetry for the potentials

The electromagnetic potentials, A and C, satisfy the Maxwell equations (18) and this leads us to
require that all physical properties of light are unchanged if we make the duplex transformation
[35]

θ θ
θ θ

→ +
→ −

A A C
C C A

cos sin
cos sin . (24)

The gravitational potentials, hij and *hij , also satisfy Maxwell equations (20) and we therefore

require all physical properties of gravitational waves to be unchanged if we make the duplex
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transformation

θ θ

θ θ

→ +

→ −

*

* *
h h h

h h h

cos sin

cos sin . (25)

ij ij ij

ij ij ij

This symmetry will be our guiding principle in studying the mechanical properties of
gravitational waves.

5. Maxwellian equations for gravitational waves

Associating our electromagnetic and gravitational potentials, as in (21), suggests that we
introduce gravitational analogues of the electric and magnetic fields. These we define by the
relationships:

ε

= −
∂
∂

=
∂
∂

E
h

t

B
h

x
. (26)

ij
ij

ij jlm
im

l

Both these fields are symmetric under interchange of the indices2. It follows, by virtue of our
Maxwell-like equations (20), that we can also write these quantities in terms of our second
gravitational potential:

ε= −
∂
∂

= −
∂
∂

*

*

E
h

x

B
h

t
. (27)

ij jlm
im

l

ij
ij

These definitions, (26) and (27), are the direct analogues of the electromagnetic expressions

= − ∂
∂

= − ×

= × = − ∂
∂

t

t

E
A

C

B A
C

. (28)





Our Maxwellian equations for gravitational waves are then the natural analogues of those for
electromagnetism:
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2 The symmetry of Eij follows directly from the symmetry of hij. To show that Bij is also symmetric, we note that
we can write the antisymmetric part of a quantity Xij as ε ε− =X X X( )ij ji ijm mil kl

1

2

1

2
. Hence we can show that Bij is

symmetric by showing that ε Bmij ij is zero:

ε ε ε
δ δ δ δ

=
= =
= −
=

B h

h

h h
( )

0,

mij ij mij jkl ik l

mk il ml ik ik l

im i ii m

,

,

, ,

where him i, is zero because him is transverse and hii l, is zero because hij is traceless.



ε

ε

=
=

= −
∂

∂

=
∂

∂

E

B

E
B

t

B
E

t

0

0

. (29)

ij j

ij j

mlj ij l
im

mlj ij l
im

,

,

,

,

These equations are the main result of our paper and the mechanical properties we derive arise
directly from them. We should note, for the avoidance of any possible confusion, that other
quite distinct quantities associated with the gravitational field have also been written as Eij and

its magnetic analogue. Two important examples are the ‘electric’ and ‘magnetic’ parts of the
Weyl tensor (which are antisymmetric) [44, 45] and parts of the Riemann tensor [14, 39, 46].
The quantities we have introduced are quite distinct from these, although there is a differential
relationship between our quantities and those in [14, 39, 46].

6. Conserved quantities

If we can construct a Lagrangian for our electromagnetic or gravitational waves, then we can
employ Noetherʼs theorem to extract conserved quantities [20, 21, 47, 48]. The Lagrangian
density is not unique, of course, and this task may be considerably simpler with some forms of
Lagrangian than with others. We proceed by constructing manifestly duplex-symmetric forms.

6.1. Electromagnetic waves

As a prelude to discussing conserved quantities for gravitational waves, we first review the
theory of conserved quantities for the free electromagnetic field. A fuller account may be found
in [47]. Our presentation differs somewhat from that in [47] in that we work throughout with the
Coulomb-gauge potentials A and C.

The conventional Lagrangian density for the free electromagnetic field is

 = −

= −

= ∂
∂

· ∂
∂

− × · ×

αβ
αβF F

E B

t t

A A
A A

1
4

1
2

( )

1
2

( ) ( ) . (30)

2 2

 
⎡
⎣⎢

⎤
⎦⎥

In this form the Lagrangian density is clearly not duplex-symmetric. We can impose the duplex
symmetry, however, by replacing it with the new Lagrangian density

 = − +

= ∂
∂

− × + ∂
∂

− ×

αβ
αβ

αβ
αβ( )F F G G

t t

A
A

C
C

1
8

1
4

( ) ( ) , (31)
2

2
2

2 ⎜ ⎟ ⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥
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where αβG is the dual of the field tensor αβF . It should be noted that applying the relationships
between A and C, implicit in the Maxwell equations (18), gives  = 0. It is necessary,
however, to be able to vary A and C independently and only to apply the relationship between
A and C after performing the variation.

Noetherʼs theorem tells us how to extract conserved quantities associated with symmetries
of the Lagrangian. For brevity we present here only two of these, those associated with time-
translation invariance and with the duplex symmetry. Time-translation invariance of the
Lagrangian density leads to the conserved quantity

  = ∂
∂ ˙

˙ + ∂
∂ ˙

˙ +

= ˙ · ˙ + ˙ · ˙

= +

T
A

A
C

C

E B

A A C C
1
2

( )

1
2

( ), (32)

i
i

i
i

00

2 2

where the dots denote a time derivative. The quantity T 00 is, of course, the familiar energy
density [19]3. Our second example is the duplex symmetry which, in infinitesimal form, is

θ
θ

→ +
→ −

A A C
C C A. (33)

This is, by construction, an explicit symmetry of the Lagrangian density (31). The density of the
associated conserved quantity, obtained by applying Noetherʼs theorem, is [47]

 = ∂
∂ ˙ − ∂

∂ ˙

= · − ·

A
C

C
A

A B C E

h

1
2

( ), (34)

i
i

i
i

which is the natural (albeit non-unique) density associated with the total helicity (19).

6.2. Gravitational waves

We can apply the methods of the preceding section to gravitational waves if we can identify a
suitable Lagrangian density. Our starting point is the familiar action integral for the
gravitational field [6, 11, 16],

∫π
= −I d x g R

1
16

, (35)4

where g is the determinant of the metric and R is the Ricci scalar4. For gravitational waves we
work to the lowest order in μνh which, for the action, is second order. In the transverse-traceless

gauge −g is second order in μνh but R is zero to zeroth order and hence we can replace −g
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by unity to obtain5

∫π
=I d xR

1
16

. (36)4

The Ricci scalar

Γ Γ Γ Γ Γ Γ= − + −μν
μλ σ
σ

μσ λ
σ

ασ
σ

μν
α

αλ
σ

μσ
α( )R g , (37), ,

where Γμλ
σ is the usual affine connection, gives terms containing first derivatives of αβh and also

second derivatives. We can get rid of the problematic second derivatives using integration by
parts [6], which gives the action integral

∫
∫
∫

π
Γ Γ η Γ Γ Γ Γ

π
Γ

π
Γ Γ

= − + + −

=

=

μλ
σ

σ
μλ

μσ
σ

λ
μλ μλ

ασ
σ

μλ
α

αλ
σ

μσ
α

α
μλ

μλ
α

μαλ
αμλ

( )I d x g g

d x h

d x

1
16

1
32

1
16

. (38)

4
, ,

4
,

4

⎡⎣ ⎤⎦

Comparison of this with our electromagnetic Lagrangian density (30) suggests, or perhaps
reinforces, the idea that hij is the analogue of Ai and Γμαλ is the analogue of μνF .6

The most natural step is to write our Lagrangian density in a form that expresses,
manifestly, our duplex symmetry. In order to achieve this, however, we first need to exploit the
lack of uniqueness of the Lagrangian density to modify the obvious candidate for Lagrangian
density. Let us start by writing this Lagrangian density in terms of hij:


π

π

= + + − + −

= + + −

( ) ( )

( )

h h h h h h h h

h h h h h h

1
64

1
64

. (39)

ij ij ij k ik j jk i ji k jk i ik j

ij ij ik j ji k jk i ik j

,0 ,0 , , , , , ,

,0 ,0 , , , ,

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

The action integral is unchanged if we add to  any four-divergence and the Lagrangian is
unchanged if we add to  any three-divergence. Hence we can obtain from  the physically
equivalent form

 
π

π

π
ε ε

′ = −

= − − −

= −

( )

( ) ( )

h h

h h h h h h

h h h h

1
64

1
64

1
2

1
64

. (40)

ik j jk
i

ij ij ik j ij k ik j ji k

ij ij ijk ilm nj k nl m

,
,

,0 ,0 , , , ,

,0 ,0 , ,

⎡
⎣⎢

⎤
⎦⎥

⎡⎣ ⎤⎦
If write this Lagrangian density in terms of our gravitational analogues of the electric and
magnetic field (26) then we arrive at the suggestive form
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5 Writing η= +μν μν μνg h and evaluating the determinant as a power series in μνh gives
− = + + − μν

μνg h h h h1 ( )1

2
2 . In the transverse-traceless gauge h = 0 and hence the determinant is quadratic in h.

6 It should be emphasized that the derivation of (38) made explicit use of the transverse-traceless gauge and so is
not expressed in gauge-invariant form.




π

′ = −( )E E B B
1

64
, (41)ij ij ij ij

which is clearly analogous to the familiar Lagrangian density for the electromagnetic field,

 = −E B( )1

2
2 2 .

Our next step is to impose our duplex symmetry directly [47] by writing a new duplex-
symmetric Lagrangian density


π

ε ε ε ε= ˙ ˙ − + ˙ ˙ −* * * *h h h h h h h h
1

128
. (42)ij ij ijk ilm nj k nl m ij ij ijk ilm nj k nl mduplex , , , ,

⎡⎣ ⎤⎦
As with the duplex-symmetric electromagnetic Lagrangian density, this gravitational-wave
Lagrangian density will be zero if we impose on it equations (20), exactly as is found for the
corresponding electromagnetic field [47]. It is necessary, however, to allow for independent
variation of hij and *hij and to impose the relationship between them only after this has been

done.
We can apply Noetherʼs theorem to determine, from our duplex-symmetric Lagrangian

density, the conserved quantities associated with the symmetries of the action. There exists an
infinity of conservation laws for the gravitational field [49], much as is the case for the
electromagnetic field [47]. We restrict our analysis only to the two quantities derived for
electromagnetic waves in the preceding section, namely those associated with time-translation
invariance and the duplex symmetry itself. Time-translation invariance of the Lagrangian
density leads directly to the energy density

  

π

π

=
∂

∂ ˙
˙ +

∂

∂ ˙
˙ −

= ˙ ˙ + ˙ ˙

= +

*
*

* *( )
( )

T
h

h
h

h

h h h h

E E B B

1
64

1
64

, (43)

ij
ij

ij

ij

ij ij ij ij

ij ij ij ij

00 duplex duplex
duplex

which is the natural analogue of the electromagnetic energy density, +E B( )1

2
2 2 .7 We note that

an essentially equivalent expression was given previously by Afanasiev and Stepanovsky,
although these authors consider the quantities we denote as Eij and Bij to be potentials, rather

than the analogues of the electric and magnetic fields [39]. To obtain the conserved quantity
associated with the duplex symmetry we consider this symmetry for hij and *hij in infinitesimal

form:

θ

θ

→ +

→ −

*

* *
h h h

h h h . (44)

ij ij ij

ij ij ij
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1

2
, which is

satisfyingly reminiscent of Poyntingʼs vector for the electromagnetic field. This is demonstrated in section 8.



The density of the associated conserved quantity is given by Noetherʼs theorem:

 

π

π

=
∂

∂ ˙ −
∂

∂ ˙

= ˙ − ˙

= −

*
*

* *

*

( )
( )

h
h

h
h

h h h h

B h E h

h

1
64

1
64

. (45)

ij
ij

ij

ij

ij ij ij ij

ij ij ij ij

duplex duplex

Hence the gravitational-wave analogue of the electromagnetic helicity is simply

 ∫π
= − *( )d x B h E h

1
64

, (46)ij ij ij ij
3

which is analogous to the electromagnetic helicity ∫ · − ·d x A B C E( )1

2
3 . There is an

important subtlety associated with this gravitational helicity. An effective rotation generated by
it, through the angle π2 , transforms the fields into themselves, but for gravitational waves this
first occurs on physically rotating each plane-wave component about its direction of
propagation through a physical angle of π radians. It is usual to define the helicity in terms
of the spin in the direction of propagation so that a π2 effective rotation corresponds to a
physical π2 rotation. In order to conform with this conventional use of the term ‘helicity’ we
prefer as our gravitational-wave helicity the form

 ∫π
= − *( )d x B h E h

1
32

, (47)ij ij ij ij
3

which is also a conserved quantity, of course.

6.3. Example: a plane wave

As an illustration of our results, let us consider the simple case of a plane gravitational wave
propagating in the z-direction. Let us suppose that this plane wave resides in a cubic box of side
L and impose periodic boundary conditions such that =e 1ikL . For such a plane wave we can
write

= + ¯− − −h w e w e , (48)ij ij
ik z t

ij
ik z t( ) ( )

where the overbar denotes complex conjugation. The complex amplitudes wij and w̄ij lie in the

x–y plane, of course, by virtue of our choice of the transverse-traceless gauge. It is
straightforward to calculate from hij the other quantities we need, for example:

ε= + ¯* − − −( )h w e w e . (49)ij jzm im
ik z t

im
ik z t( ) ( )
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For the total energy we find

 ∫π

π

π

= +

= ¯

= ¯ + ¯+ + × ×

( )d x E E B B

k L
w w

k L
w w w w

1
64

16

8
( ), (50)

ij ij ij ij

ij ij

3

2 3

2 3

where we have made use of the + ×, notation from (9). The total helicity (47) is

 ∫π

π
ε

π

= −

= ¯

= ¯ − ¯

*

+ × + ×

( )d x B h E h

i
kL

w w

i
kL

w w w w

1
32

8

4
( ), (51)

ij ij ij ij

jzm im ij

3

3

3

so that the ratio of the helicity to the energy density is


 =

¯ − ¯
¯ + ¯

+ × + ×

+ + × ×

i w w w w

k w w w w
2

( )

( )
. (52)

This takes its extremum values of ±2 if ×w has the same magnitude as +w but is π± /2 out of
phase, so that = ±× +w iw . For such circularly polarized plane waves we find that


 = ±

k

2
, (53)

which may be compared with the corresponding extremum values for an electromagnetic plane
wave,


 = ±

k

1
. (54)

The factor of 2 difference is a manifestation in the quantum theory, of course, of the spins
respectively of the graviton and the photon.

6.4. Energy scale

Our analysis has not yet set a scale to the energy, helicity and other conserved quantities. As for
the free electromagnetic field, there is no reason to prefer one energy scale over another; if the

integral of +E B( )1

2
2 2 is a conserved quantity, then so too is +E B( )a

2
2 2 , for any constant a. In

electromagnetism it is the coupling to charged matter that sets the energy scale; the electron-
volt, for example, is defined in this way. For gravitational waves, it is the coupling to matter that
sets the energy scale. Our Maxwellian theory does not, as yet, include coupling to material
sources of gravitational radiation. A brief account of this is presented in the appendix, but it is
more straightforward to appeal to the existing literature. Doing so has the benefit, moreover, of
providing an independent check on the validity of our expressions.

There are two simple expressions with which we can make a comparison, the form of
the energy–momentum tensor advocated by Brill, Hartle and Isaacson [11, 50, 51] and the
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energy–momentum pseudo-tensor introduced by Einstein [1]. The Brill–Hartle–Isaacson
energy–momentum tensor has the form

π
= 〈 〉μν μ

ρσ
ρσ νT h h

1
32

, (55)BHI
, ,

where the angle brackets denote a (local) spatial average. If we use our preferred transverse-
traceless gauge then we find the energy density [12]

π
= 〈 ˙ ˙ 〉T h h

1
32

. (56)ij ij00
BHI

To compare this expression and our energy density (43), let us write

π
= 〈 + 〉T E E B B

1
64

. (57)ij ij ij ij
00

To connect this with the Brill–Hartle–Isaacson energy density we need only note that the local
averages (or cycle averages) of E Eij ij and of B Bij ij are equal and it follows that

π

π

〈 〉 = 〈 〉

= 〈 ˙ ˙ 〉

T E E

h h

1
32

1
32

. (58)

ij ij

ij ij

00

Evidently, performing a local average of our energy density gives the Brill–Hartle–Isaacson
expression. In our notation, Einsteinʼs pseudo energy–momentum tensor is

π
η= +μν μ ν μν

α
αt h h h h

1
32

1
2

, (59)ij ij ij ij, ,
,

,
⎜ ⎟⎛
⎝

⎞
⎠

so that the energy density is

π
= ˙ ˙ +( )t h h h h

1
64

. (60)ij ij ij k ij k00 , ,

In order to arrive at a form that is directly comparable with our energy density, we subtract from
this a total divergence (which does not change the total volume-integrated energy, of course):

π

π

π

′ = −

= −

= +

( )

( )

t t h h

t h h

E E B B

1
64

1
64

1
64

, (61)

ik ij k
j

ik j ij k

ij ij ij ij

00 00 ,
,

00 , ,

where we have used the transverse property of hij. This is the same expression as arrived at

starting from the Brill–Hartle–Isaacson energy density.
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In summary, the quantities

π

π

π
ε

= +

= −

=

*

( )

( )

w E E B B

h h B h E

S E B

1
64
1

64
1

32
(62)

ij ij ij ij

ij ij ij ij

l ljk ij ik

may be adopted, respectively, as the energy density, helicity density and momentum density for
our gravitational waves, in direct analogy with the corresponding electromagnetic quantities.

7. Poynting theorem for gravitational waves

The similarity between our Maxwellian equations for gravitational waves and the more familiar
electromagnetic Maxwell equations leads directly to a Poynting theorem for the local
conservation of energy [18, 19]. We derive this from our Lagrangian by use of Noetherʼs
theorem or, more appealingly, directly from our gravitational Maxwell equations (29). This
leads to the local conservation law

π π
ε∂

∂
+ + ∂

∂
=( )

t
E E B B

x
E B

1
64

1
32

0, (63)ij ij ij ij
l

lmj im ij
⎜ ⎟⎛
⎝

⎞
⎠

from which we obtain the Poynting vector for gravitational waves:

π
ε=S E B

1
32

. (64)l lmj im ij

Our gravitational Poynting theorem is the clear and natural analogue of that for the free
electromagnetic field,

∂
∂

+ + · × =
t

E B E B
1
2

( ) ( ) 0. (65)2 2 

We can incorporate, into these conservation laws, sources of gravitational or electromagnetic
waves by coupling to matter or charges. A brief indication of how this may be achieved is given
in the appendix.

8. Momentum and angular momentum for gravitational waves

It remains to determine the linear and angular momentum of gravitational waves and to address
the separation of the total angular momentum into its component spin and orbital parts. As in
our derivations of the energy and the helicity, our guide will be Noetherʼs theorem as applied to
our dual symmetric Lagrangian density (42). Translation invariance leads directly to the
(canonical) momentum density
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π

= ∂
∂ ˙ + ∂

∂ ˙

= ˙ + ˙

*
*

* *( )

T
h

h
h

h

h h h h
1

64
. (66)

i

jk
jk i

jk

jk i

jk jk i jk jk i

canonical
0

, ,

, ,

As in the corresponding electromagnetic analysis, we can exploit the non-uniqueness of
densities obtained from Noetherʼs theorem by adding to this the divergence of a quantity to give

π

π

π

π
ε

= − ˙ + ˙

= − ˙ + ˙

= ˙ − + ˙ −

=

* *

* *

* * *

( )
( )

( ) ( )

T T h h h h

T h h h h

h h h h h h

E B

1
64

1
64

1
64

1
32

, (67)

i i
jk ji jk ji

k

i
jk ji k jk ji k

jk jk i ji k jk jk i ji k

ilm jl jm

0
canonical
0

,

canonical
0

, ,

, , , ,
⎡⎣ ⎤⎦

which is the natural analogue of Poyntingʼs vector:

π
ε=S E B

1
32

, (68)l ljk ij ik

which therefore plays the dual role of both momentum density and also energy flux, just as in
electromagnetism.

In order to obtain the angular momentum, we need to consider a rotation of both the
magnitude of hij and also of the indices. It is straightforward to see that a rotation through the

infinitesimal angle θ (that is, a rotation through θ about an axis in the direction of θ) gives the
change

δ ε θ ε θ ε θ= − − +h h h x h , (69)ij ikl k lj jkl k il klm k l ij m,

where x is a vector joining the local point to the axis of rotation. It is straightforward to confirm
that this rotation preserves the transverse-traceless character of hij:

δ ε θ
δ ε θ ε θ δ

= − =
= − + =

h h

h h h

2 0

0. (70)
ii ikl k li

ij i ikl k lj i klm k il ij m, , ,

Applying this symmetry transformation to our Lagrangian density gives the canonical density
of the conserved total angular momentum:




ε ε ε

ε ε ε

π
ε ε ε

ε ε ε

= ∂
∂ ˙ − − +

+ ∂
∂ ˙

− − +

= ˙ − − +

+ ˙ − − +

*
* * *

* * * *

( )

( )

( )

( )

M
h

h h x h

h
h h x h

h h h x h

h h h x h

1
64

. (71)

k

ij
ikl lj jkl il klm l ij m

ij

ikl lj jkl il klm l ij m

ij ikl lj jkl il klm l ij m

ij ikl lj jkl il klm l ij m

canonical
0

,

,

,

,

⎡⎣
⎤⎦
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We can replace this by a more familiar form by, once again, subtracting a total divergence:

π
ε ε

π
ε

π
ε

= − ˙ + ˙

= − ˙ + ˙

* *

* *

( )
( )

M M h x h h x h

x S h h h h

1
64

1
32

1
64

. (72)

k k
ij klm l im ij klm l im

j

klm l m jkl ij il ij il

0
canonical
0

,

Here, at last, we have a difference with electromagnetism in that this is not simply the cross-
product of the local position, x, and our Poynting vector. The additional pieces reflect the spin-2
nature of the polarization and have their origin in the fact that there are two indices to rotate on
the hij.

Returning to our original canonical angular momentum density (71), it is natural to
separate this angular momentum density into spin and orbital parts:

π
ε

π

= +

= − × + ×

*

*

M E h B h

M E h B hr r

1
32

1
64

( ) ( ) . (73)

k
kjl ij il ij il

k
ij m ij ij m ij

spin
0

orbit
0  

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

The volume-integrals of these are then the total spin and orbital parts of the angular momentum.
As is the case in optics, neither of these integral quantities, alone, is a true angular momentum
[35, 52, 53]. The principal reason for this is that the transformation generated by each of them
alone is not a true rotation but rather that part of a rotation that preserves the transverse (and for
gravitational waves traceless) character of the fields. We note that the total spin and orbital
angular momenta have also been obtained previously, but not in a form that is manifestly
duplex-symmetric [11].

9. Conclusion

Our aim in this work was to express the theory of gravitational waves in a form that is as close
as possible to the more familiar Maxwell theory of electromagnetic waves. The benefits to be
gained, one would hope, are to draw on new insights drawn from electromagnetism, such as the
role of the duplex symmetry, and also an easier access to the phenomenon of gravitational
waves for those without a strong background in general relativity. To reach such a description
we have had to forego some of the ‘generality’ of general relativity, most particularly in that our
description is very much of a gravitational field in a flat background space–time. Perhaps this is
not too surprising, however, as it is precisely in this context that the Maxwell theory of the
electromagnetic field is presented. It is for the reader to judge, of course, whether this is a price
worth paying.

The astute reader will have noticed that our gravitational analogues of the electric and
magnetic fields, Eij and Bij, are not gauge-invariant. By this we mean that they do not keep their

form under transformation (5). It is perhaps principally for this reason that components of the
(fully gauge-invariant) curvature have been compared with the electric and magnetic fields,
rather than those adopted here [14]. The gravitational gauge transformation is intimately
connected, however, with a change of coordinate system [25] and hence, in a description such
as ours in which this is fixed, the lack of gauge invariance may be understood; indeed it would
be remarkable were our expressions to be fully gauge-invariant. There is, nevertheless, a natural
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explanation for the simplicity of the expressions we have derived which is that, relative to our
chosen background space–time, we have expressed our mechanical properties in terms of the
gauge-invariant parts of our two potentials hij and *hij

With the above caveats in mind, we have presented a theory of gravitational waves in
Maxwellian form by writing a set of Maxwell-like equations for the fields associated with a
gravitational wave. The reasons for the success of such a programme derive, fundamentally,
from the similarities between electromagnetic and gravitational plane waves: they are both
transverse, have two orthogonal polarizations and propagate, in the absence of matter, at the
speed of light.
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Appendix. Coupling of gravitational waves to matter

We have seen that freely propagating gravitational waves in a flat background have many
properties in common with electromagnetic waves in free space. It remains to determine how
gravitational waves are generated by matter sources in our Maxellian theory.

As a starting point we take the linearized Einstein field equation which, with a suitable
choice of gauge, may be written as

π□ ¯ =αβ αβh T16 , (A.1)matter

where ¯
αβh is the trace-reversed αβh . The transverse-traceless part of ¯

αβh (or equivalently of αβh )

couples to the transverse-traceless part of the matter energy–momentum tensor. Hence we can
write

π□ =h T16 . (A.2)ij ij
TT matter TT

Henceforth we shall drop the TT superscript and understand that all quantities are the
transverse-traceless parts.

Equation (A.2) is reminiscent of the corresponding electromagnetic equation

□ = −⊥ ⊥A J . (A.3)

This suggests that we might associate the transverse-traceless part of the matter energy–
momentum tensor for gravitational waves with the transverse part of the electric current for
electromagnetic waves. As further evidence that this is indeed a suitable association, we note
that including the transverse-traceless part of the matter energy–momentum tensor leads to the
modified Maxwellian
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ε

ε π

=
=

= − ˙

= ˙ +

E

B

E B

B E T

0

0

16 , (A.4)

ijj

ij j

mlj ij l im

mlj ij l im im

,

,

,
matter

which is analogous to the electromagnetic Maxwell equations for the transverse parts of the
fields:

ε

ε

=
=
= − ˙

= ˙ + ⊥

E

B

E B

B E J

0

0

. (A.5)

i i

i i

ijk j k i

ijk j k i i

,

,

,

,

From these equations we can readily derive two ‘Poynting’ theorems:

π π
ε

ε

∂
∂

+ + ∂
∂

= −

∂
∂

+ + ∂
∂

= − ⊥

( ) ( )

( )( )

t
E E B B

x
E B E T

t
EE B B

x
E B J E

1
64

1
32

1
2

1
2

. (A.6)

ij ij ij ij lmj
l

im ij lm lm

i i i i ijk
i

j k i i

matter
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