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Abstract. In this paper the trapping of high energy particles in

solar coronal loops is addressed. Using simulations, the time

evolution of electrons and protons trapped in a magnetic bottle

is calculated under various scattering conditions and the results

compared with loss-cone analysis. Thereafter the case of time-

dependent injection into a magnetic loop is addressed, and the

results compared with previous analytic work on X and γ-ray

delay times.
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1. Introduction

Partial trapping of electrons and protons in the solar corona is an

inevitable consequence of field convergence between the coro-

nal and chromospheric/photospheric parts of a coronal loop,

which form a magnetic bottle (among such loops, the flare loop

is the focus of this work). The ‘trap-plus-precipitation’ model

is a popular model for the non-thermal flare component, and

has been called upon to explain, for example, the time delay

between hard X-rays and prompt γ-rays, e.g. Hulot et al. 1989

and Hulot et al. 1992 (hereafter HVT, HVCDK). Note, these

delays have also been interpreted as being due to a two-step ac-

cleration process, e.g. Bai (1982). In the trap-plus-precipitation

model, particles are partially trapped in the convergent magnetic

field of a coronal loop, with the trapped proportion and trapping

timescale dependent on the energy and pitch-angle distribution

of the injected population. In the absence of scattering, those

particles with pitch-angle greater than a certain value defined

by the ratio of field strengths (see Eq. 1) are trapped in the low-

field region. In the presence of scattering, particles can enter

the ‘loss-cone’ and leave the magnetic bottle. Particles of dif-

ferent energies are trapped for different times in the coronal

bottle, and the various time delays observed in flare signatures

are explained as being either due to the different emission peaks

from of trapped and precipitating particles, or by precipitating

particles which leave the magnetic bottle at different times, de-

pending on their energies.

There is a considerable literature in existence on this prob-

lem. The idea of the magnetic trap in a solar context has been

around since the 1960’s (e.g. Takakura & Kai 1966). Melrose &

Brown (1976) introduced the trap-plus-precipitation model in

the context of a solar flare, taking into account the consequences

of scattering in a coronal trap, whether by Coulomb collisions,

or by some anomalous scattering mechanism. A number of more

refined analytic treatments have appeared by e.g. MacKinnon

(1988) and Alexander (1990), who both treated idealised forms

of the weak diffusion (low scattering) limit, and by MacKin-

non (1991) who treated the generalised problem (all scattering

regimes), but used a Heaviside step function to approximate

the loss-cone term (effectively the same as removing the spa-

tial dependence of magnetic field convergence). McClements

(1990a,b) used numerical and analytical techniques to study the

case of an exponentially convergent magnetic field, but claimed

that the results of his treatment would be insensitive to the de-

pendence of the field convergence term on the spatial dimension.

Precisely this dependence, amongst other factors, will here be

investigated.

The aim of this paper is to use numerical simulations to study

the evolution of electrons and protons trapped in a coronal loop.

First of all, the ‘loss-cone analysis’ of particle evolution is com-

pared with the results of numerical simulations with arbitrary

scattering, in the case of gradual and abrupt field convergences.

The method is then applied to the case of particles supposed to

generate observable emission (hard X-rays and γ-rays), includ-

ing Coulomb scattering and energy losses. The results of these

simulations are compared with quantities such as the delay time

calculated in the analytic work of HVT and the observed delay

times reported in HVCDK.

2. Particle trapping in a coronal loop

Once they have been accelerated into a coronal loop, e.g. dur-

ing a solar flare, energetic protons and electrons are influenced

in their further progress by a number of factors which deter-

mine their lifetime and hence the time over which they emit

observable radiation. Whilst non-thermal signatures are gener-

ated in the chromosphere, certain types of observed radiation are

thought to be produced when particles are trapped in the solar

corona (for example, long-lived γ-ray line emission produced
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Table 1. Diffusion conditions

Type Condition Trap lifetime

Weak Dµµ << α2
ov/2L 1/Dµµ = τsc

Intermediate Dµµ ∼ α2
ov/2L τt/α

2
o

Strong Dµµ >> α2
ov/2L > τt/α

2
o

by trapped ions), and with the trap-plus-precipitation model it

is possible to address the timing, sites of production and relative

intensities of these signatures.

Most treatments of the effect of magnetic field convergence

have relied on a simple description of particle losses from the

trap, known as loss-cone analysis, as follows. If a particle’s

velocity vector has an angle to the magnetic field (pitch-angle)

smaller than αo where

sin2 αo =
Bmin

Bmax

, (1)

Bmin and Bmax being the minimum and maximum mag-

netic fields in the trap, it may exit the trap. The cone in pitch-

angle space of half-angle αo is known as the ‘loss-cone’. Parti-

cles may enter and leave the loss-cone by scattering, and whether

they do, and how rapidly, depends on the diffusion coefficient.

Based on this, there are three types of diffusion (e.g. Kennel

1969, Melrose 1986). Each case has associated with it a typical

mean lifetime of a trapped particle, defined (in the case of steady

and uniform injection into the trap) in the following way:-

τtrap =
N

Q
(2)

(cf. Bespalov et al. 1991) where Q is the rate of injection (par-

ticles per second) into the trap and N is the number of trapped

particles found once the population has stabilised at a constant

value. Values for the trap lifetime, in the steady-state case, are

given in Table 1 (e.g. Bespalov et al. 1991, MacKinnon, 1991).

In Table 1, v is the particle velocity and L the structure half-

length. The transit time τt of particles in the loop is ∼ L/v. In

the weak case, particles scatter slowly towards the loss-cone,

compared to the time they take to cross the structure, but once

there they precipitate out almost instantaneously, and the loss-

cone is almost empty. In the strong case particles are scattered

quickly to the loss-cone compared with their structure-crossing

timescale but once there may be scattered out again. The loss-

cone in this case is almost full.

One problem with this treatment is that it is not always pos-

sible to define the loss-cone properly. The use of a single value

for the loss-cone angle throughout a loop assumes that the mag-

netic field converges at a single position from the minimum to

the maximum value. However if one suspects a magnetic field

which varies along its entire length, the loss-cone is a varying

function of particle position and also energy. This is not simple

to treat analytically, so in this article the trapping and escape

process is studied numerically, as described in the following

section.

3. The transport equation

The motion of individual particles in a coronal loop is governed

by various convective and diffusive influences - field conver-

gence, energy loss, Coulomb scattering, etc. We shall initially

(in Sect. 4) leave out any consideration of particle energy losses

due to collisions or radiation, and concentrate on the effect of dif-

fusion and magnetic field convergence. The equation describing

the evolution of the particle distribution f (S, γ, µ, t) as a whole

is the Fokker-Planck (F-P) equation, (including here the energy

loss term, for future reference):

∂f

∂t
+ µv

∂f

∂S
−moD

∂

∂E

(

f

v

)

−
D

v3γ2

∂

∂µ

(

(1 − µ2)
∂f

∂µ

)

−
v

2

∂

∂µ

(

(1 − µ2)
dlnB

dS
f

)

= s(S, γ, µ, t), (3)

where γ, v, µ, S, t are the particle energy in units of its rest-

mass energy, speed, cosine of the particle pitch-angle, position

along the field and time. Its rest mass is m0, D = D(S, γ) is

the local pitch-angle diffusion coefficient, and s(S, γ, µ, t) is the

source term for the injection of particles into the loop. Rather

than seek an analytic solution to the F-P equation, the evolution

of the distribution function will be modelled by simulating the

motion of particles using a stochastic simulation. This technique

allows one to study the the effect of scattering in combination

with other effects such as magnetic field convergence. It is am-

ply described in e.g. MacKinnon & Craig (1991), Achterberg &

Krülls (1992), Fletcher & Brown (1995), Fletcher (1995). The

reliability of the method in dealing with particle transport has

been demonstrated by testing against restricted classes of nu-

merical solutions. Briefly, a stochastic simulation is similar to

a Monte-Carlo simulation in execution, in that the distribution

function is built up by following the orbits of many individual

test ‘particles’ under the influence of the relevant forces (in this

case the magnetic mirror force and a scattering term). These

are in general dependent on spatial and velocity co-ordinates

of the test particle and so require to be continually updated as

the calculation progresses. This is easily done in the stochastic

simulation. The source term s is reflected in the initial distri-

bution of injected particles, and the stochastic code models the

post-injection transport of the particles.

The factor which makes the simulations particularly rep-

resentative of real situations is that the diffusion term, often

modelled in other Monte-Carlo treatments by a rather arbitrary

amount of scattering, is calculated bearing in mind the physical

nature of the scattering and of the particle distribution which

results from it. So for example if one considers Coulomb scat-

tering, the distribution of pitch-angle cosines which results from

the scattering of an intially single pitch-angle distribution can

be shown to be (almost) a Gaussian distribution with half-width

proportional to the square root of the product of diffusion coef-

ficient and time elapsed. (We say ‘almost’ because of course the

pitch-angle cosine must always have magnitude less than one,

whereas the Gaussian distribution extends to infinity.) So in the
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simulation a representative value for the amount of pitch-angle

scattering is at each timestep drawn from a Gaussian distribu-

tion and scaled by the square root of the product of the timestep

used with the magnitude of the diffusion coefficient.

In a recent paper by Park & Petrosian (1996) the relative

merits of stochastic simulations and finite difference methods

in the solution of F-P equations were examined, for the case

of Fermi-type acceleration. They found that, although reliable,

the stochastic simulation method is not recommended for solv-

ing 1-d F-P equations being computationally expensive, and

suffering from Poisson noise in cases where many decades in

energy/intensity must be covered in a single simulation. The

computational cost has indeed been found to be high when run-

ning simulations of particularly the weak-scattering cases, but

we cover at the most two decades in energy in a single simula-

tion. Also the framework for this type of solution was already

in place, and it is conceptually simple. So although maybe the

computations were not gone about in the best possible way,

results obtained are satisfactory for the effort expended.

4. Particle trapping in converging magnetic fields - arbitrary

scattering

4.1. A continuously convergent magnetic field

To get an idea of how representative or otherwise the loss-cone

analysis is in general, the case of particles trapped in a magnetic

field converging according to the following form,

B(s) = Bmin(1 + s2/h2) (4)

is studied, where s is the distance along a field line, h is the field

scale length and Bmin is the field minimum at the midpoint of

the loop. In this case there will be a loss-cone whose angle varies

continuously with position throughout the coronal loop.

There is no specified scattering mechanism, but diffusion is

present, with coefficient scaled to the critical diffusion coeffi-

cient νc,

νc =
α2
oc

2L
(5)

where c is the speed of light, so we are considering relativistic

particles. The values L = 109cm and α2
o = 0.1 are used. So

νc = 1.5. Let us calculate what loss-cone analysis predicts in

these cases.

1) Weak scattering: Dµµ = 0.01νc. The prediction is τesc =

66.7s

2) Intermediate scattering, Dµµ = νc. The prediction is τesc =

0.33s

3) Strong scattering: Dµµ = 100νc. The prediction is τesc >
0.33s

The time dependence of the total number of trapped par-

ticles in the strong and intermediate scattering cases are now

studied numerically. Particles are injected at z = 0, the top of

the loop, uniformly over a time period equal to twice the time

interval over which the distribution is recorded. This ensures

that there are no ‘edge’ effects. All particles are injected with

Fig. 1. The time evolution of the total population of trapped particles

in the strong scattering case for a variety of values of the diffusion

coefficient

Fig. 2. As in Fig. 1, but for intermediate scattering

the same energy of γ+1 = 10. In these, and all following simula-

tions, the input distribution is uniform over particle pitch angle,

which, if azimuthal symmetry is assumed, corresponds in 3-d to

a strong degree of beaming along the magnetic field (equal par-

ticle numbers in equal angular intervals dθ, but the surface area

on a sphere subtended by dθ at θ varies as 1/ sin θ, therefore the

surface density increases towards small θ - i.e., the beam axis).

In the weak scattering case, run-times are prohibitively long,

and the use of a finite-difference approach is advocated. The

results of the simulations for the strong scattering case are shown

in Fig. 1.

From Fig. 1, in the simulated strong scattering cases the

lifetimes derived for Dµµ = 100, 1000 and 10000 νc are 0.044,

0.072 and > 0.24s respectively. The lifetimes thus show the

correct variation with increasing diffusion coefficient but are

well below the minimum theoretical value of 0.33s. This could

be because the trapped particles are not executing truly random

walks, meaning that they escape faster than predicted. Alter-
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Fig. 3. The shape of the field convergence used in the strong conver-

gence calculations. Only the bottom 108 cm is shown - the remainder

of the loop has a constant magnetic field of 100G

natively, since the magnetic field structure is not one of abrupt

convergence, the loss-cone description is not strictly applicable.

This latter possibility can be tested by changing the field shape,

which is done in the following Subsection.

Figure 2 shows the intermediate scattering case. The life-

times simulations for Dµµ = 1 and 10νc are > 1.5s and 0.25s

respectively. These are comparable to the theoretical value of

0.33s.

4.2. An abruptly convergent magnetic field

We use this time a magnetic field shape which more closely

mimics the ideal case of instantaneous strong convergence. The

field equation is

Br(S) = Bmin +
(Bmax −Bmin)

(p2 − p1)
[p2x

p1 − p1x
p2 ] (6)

(MacKinnon & Brown 1990) where (p1, p2) are parameters con-

trolling respectively the convergence strength and position and

x is the scaled distance parameter s/L. We utilise parameters

(p1, p2) = (2, 3) corresponding to a relatively sharp convergence

near the tube ends. The field shape at the bottom of the loop is

shown in Fig. 3. The field strengths at the top and bottom of

the tube are the same as in Sect. 4.1, but the nature and posi-

tion of convergence has been altered. In this case, the uniform

field region has a half-length of 109cm, added onto which is

the convergence region, 2 × 108 cm. The predicted lifetime is

thus > 0.4s in the strong scattering case. As will be seen in

Fig. 4 below, the agreement between the loss-cone predictions

and the simulation results is somewhat better in this case, with

lifetimes of 0.58s, 0.46s and 0.50s for 100, 1000 and 10000 νc
respectively. In the calculation performed for the intermediate

scattering case, lifetimes of 0.8, 1.0 and 1.2 s for 10, 1, and 0.1

νc are determined, which should be compared with the analytic

value of 0.4s.

Fig. 4. As Figs. 1 and 2 but for the case of abrupt magnetic field

convergence as shown in Fig. 3.

The indication from this series of simulations is that not only

the amount but the form of magnetic field convergence has an

important effect on the escape timescales of particles in the loop,

at least in the strong and intermediate cases investigated. There

can be more than an order of magnitude difference between the

timescale predicted by loss-cone analysis and the simulation

results, depending on the shape of the field and the value of

the diffusion coefficient. In the case of continuous convergence,

the strong diffusion escape timescales were considerably lower

than those predicted by the loss-cone analysis, whilst in the

abrupt convergence case they were in better agreement. This

suggests that the weak field gradient near the base of the loop in

the gradual convergence case is not enough to kick the rapidly

scattered particles near the base of the loop back into the body

of the loop before they diffuse out of the structure. The result of

field-shape variations in the intermediate scattering case is also

consistent with this, though the effect is not so pronounced.

Whether or not a particle will precipitate in this case is not

so much determined by diffusion at the base of the coronal
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structure, but by its initial pitch-angle compared to that which

would allow it to escape in the complete absence of scattering.

These results suggest that a degree of caution should be

exercised in using loss-cone analysis for the analysis of data

in the trap-plus-precipitation model, certainly in the strong and

to a lesser extent in the intermediate scattering regimes. Such

a conclusion is important in the context of the analysis of γ-

ray/HXR delays, where strong scattering is invoked as a trapping

mechanism.

5. The time and energy distribution of trapped protons

It is of interest to see how trapping behaves as a function of

energy, since this is the basis for the analysis of delays in X and

γ-ray signatures. To this end, we study the evolution of a dis-

tribution of protons, which we model as a power-law in energy.

Protons are responsible for prompt γ-ray emission in impul-

sive solar flares. Note that in what is to come we are concerned

with the time-dependent case, thus the loss-cone analysis is in-

applicable anyway. In the simulations of this section, the ratio

α2
o/L = 10−10cm−1, the injection time profile is symmetric

and triangular, with total duration 10s, the injected proton en-

ergy distribution is a power-law in flux, with index -3.5, being

a typical solar flare power-law spectrum (a cutoff is imposed

at 10MeV). The injection is intially isotropic. The field conver-

gence is of the gradual nature used in Sect. 4.1.

5.1. Coulomb diffusion

In the following simulations we include the effects of field con-

vergence, scattering and energy loss due to Coulomb collisions,

which are taken to be the only source of particle diffusion, thus

relating the scattering regime to the loop density. For these non-

relativistic protons, the diffusion coefficient (as used in Eq. 2)

is

Dµµ,p =

(

me

mp

)

Dµµ,e =

(

me

mp

)

8πΛnle
4

m2
ev

3
, (7)

where nl is the local electron density (assuming completely

ionised hydrogen) me,mp are the electron and proton rest-

masses, and Λ is the Coulomb logarithm. In the loss-cone de-

scription, with parameters L = 109cm, α2
o = 0.1 and v ∼

1× 1010cms−1, the value of the critical diffusion coefficient νc
is 0.5, so a typical solar flare density in the range 109−12cm−3

places us in the weak diffusion limit for protons, and 1013−15

cm−3 corresponds to intermediate to strong diffusion. Obser-

vationally there is no evidence for loop densities above a few

×1012cm−3 but this strong scattering case is included for the

sake of illustration.

The simulation parameters have been chosen to enable com-

parison between the timing results of the present method with

those of HVT and HVCDK (though more particularly in the

next section where we consider also non-Coulomb diffusion).

Some time profiles of the trapped particle distribution as

a function of energy, in a number of scattering regimes, are

presented in Fig. 5.

Fig. 5. The time evolution of a distribution of trapped protons shown as

a function of energy for three different density values, in the weak, in-

termediate and strong diffusion cases. All scattering is due to Coulomb

collisions
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1) Weak scattering: Fig. 5, top panel - at a density of 1010cm−3

the particle distribution shows a fairly rapid rise to a maximum

number density at a few seconds after the injection maximum,

followed by a slow decay. The decay time constant increases

with increasing energy - high energy particles are trapped with

greater efficiency than low energy particles (note that the decay

is due to trap losses rather than Coulomb losses - the timescale

for the latter is far longer than the interval shown). On average

the maximum of the distribution function is 4-5 seconds after the

time of the injection peak (seen if one expands the n(t) axis).

Statistics are good in this case because trapping in the weak

scattering regime is efficient and many particles remain in the

trap. The profile remains rather smooth up to 50 MeV or so.

2) Intermediate scattering: Fig. 5, middle panel - at a density of

1012cm−3 we are in the weak/intermediate scattering regime.

The form of the profile is very similar to the above case, but the

time difference has decreased to 3-4 seconds. The decay here is

due mostly to Coulomb losses which at this density and typical

energies have a characteristic timescale of a few seconds. The

values of HVT show delays of 2.5-1.5s.

3)Strong scattering: Fig. 5, bottom panel - at 1014cm−3 we are

in the intermediate/strong scattering regime, and here the time

profile is far more symmetric around the peak injection time,

with much smaller time differences - less than a second.

It is difficult in most cases to measure from the graphs the

difference between injection maximum and population maxi-

mum to better than 0.5-1s. There is often no obvious ‘peak’ to

the population density at a given energy. Of course, the numeri-

cal approach used here means that there may well be an overlap

in the error bars on adjacent bins, thus an effective spreading in

the position of the maximum which can be found from the his-

togram, dependent on the number of particles in the simulation,

but even without this confusion the slow population decay leads

to a very broad maximum. In effect this means that for low trap

densities (<∼ 1012cm−3) the loss of protons from a magnetic trap

in the continually convergent field is rather slow and steady. It

is thus not possible to generate impulsive emission in this low

density case unless an alternative form of diffusion is invoked.

However, such long timescale trapping is recognised as possi-

bly explaining long duration γ-ray events, e.g. Vilmer (1994),

Trottet et al. (1993) - if appropriate twist can be imposed on the

loop to prevent cross-field leakage (cf. Lau et al. 1993).

The time difference between injection and maximum in

trapped populations are derived for densities 1010, 1011 and 1012

cm−3 and shown in Fig. 6. The points are atTmax(E)−Tmax,inj

(s) where Tmax(E) is the time corresponding to the bin with the

maximum counts at a given energy E and Tmax,inj is the time

of the maximum of particle injections, 5s. The error is given by

spread in times over which the
√
N error on the maximum bin

overlaps the tops of the surrounding bins. At the lowest densities

shown the delay is around 5 seconds, with a slight upwards trend.

At 1011 cm−3 the delay calculated is 2 - 5s, with the difference

increasing with increasing energy. At 1010cm−3, HVT found

delays of 3 to 1.5s, falling with particle energy - inconsistent

with the present simulations. At 1011cm−3 they found delays of

2.5-1.5s, falling with particle energy whilst at 1012cm−3 the de-

Fig. 6. The time differences calculated numerically for three density

cases.

lays were from∼ 1−1.5s, peaking around 40 MeV. The present

calculations agree with the results of HVT in that they demon-

strate a delay which is on average decreasing with increasing

local density, however the size of the delay and the variation

with energy found here for 10−10cm−1, is more consistent with

the results of HVT for the case of α2
o/L = 10−11cm−1 - i.e. a

longer loop or a narrower loss-cone (stronger field convergence).

In other words, the case of a gradual field convergence plus the

inclusion of the full scattering treatment gives better trapping

than does the mean-scattering treatment with an abrupt conver-

gence. This is consistent with the fact that in a mean-scattering

treatment the process of diffusion is poorly represented (under-

estimated), especially for particles with high pitch-angles.

The effect of the gradual field convergence may also play a

role in explaining the difference between trapping times found

in this and the previous work. In the intermediate case (Dµµ = νc
in Sects. 4.1 and 4.2) a gradually convergent field appeared to

improve the trapping time compared with an abruptly conver-

gent field. This would also contribute to the discrepancy just

found between these results and those of HVT, at least around

the intermediate scattering region.

We have not been able to perform these simulations for low

loop density values, since they take a prohibitively long time to

run. But following the trends shown it is expected that the time

difference would in be greater than 5 seconds.

6. Gamma-ray/hard X-ray time delays

In this section the time delays are calculated between the peak

emission of hard X-ray and γ-ray emission for comparison with

the work of HVCDK. These authors found that the flux of 4.1-

6.4 MeV γ-rays was, in a number of flares, delayed with respect

to 154-236 keV hard X-rays. This they explained with a mag-

netic trap-plus-precipitation model, in which protons, which

generate the γ-ray emission, are well trapped in the coronal

loop, and the peak of the time profile of precipitating protons
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is delayed with respect to that of precipitating electrons, which

generate the HXR flux. We shall model this situation in the

following section.

Since HXR radiation can only be produced by electrons of

energy above the energy of the radiation, the time of the maxi-

mum in the 150 keV hard X-ray flux is associated with the time

of maximum population of electrons of energy greater than 150

keV (precipitating and trapped, depending also on the density

of the medium in which they generate radiation). Similarly, for

γ-ray emission in the observed energy band, dominated by 12C

and 16C de-excitation lines, we look at protons of >∼ 10MeV.

Both of these channels are of a prompt nature, so there is no

delay between the interaction of fast particle and atom and the

emission of the observable radiation. The maximum in the γ-ray

emission thus occurs at the time of maximum proton popula-

tion. Therefore the difference in time between the maxima in

both particle populations gives a fair idea of the HXR/γ-ray de-

lay which would be observed. The test case chosen is the time

delay observed between γ-ray and HXR fluxes in the short im-

pulsive flare of 7 June 1980, studied by HVCDK. In this flare

the γ-ray profile in the band integrated over 4.1 - 6.4 MeV de-

layed by about 2 seconds with respect to the hard X-ray profile

integrated over 154 - 236 keV.

In modelling this process the conditions used are the same

as those used by HVCDK. The injection has a parabolic time

profile with total duration 5 seconds. The injection, for both

protons and electrons, has the form of a power-law in flux with

index -3.0, and the injection profiles are simultaneous. The case

of Coulomb collisions, with and without an arbitrary strong

(lossless) scatterer is studied. HVCDK also invoked an arbi-

trary source of strong diffusion, identifying it with Alfvèn tur-

bulence, or whistlers. We make no assumptions about the origin

of this extra term, defining only its angular form and magnitude.

The abrupt field convergence of MacKinnon & Brown (1990)

is used, and α2
o/L = 1.0 × 10−10cm−1.

A single value for chromospheric density of 1015cm2 is used,

and particles are considered to have precipitated as soon as they

exit the loop. (Although this means that one may in certain cases

underestimate the time of maximum emission, by neglecting the

transit time to dense regions, the difference in time would be less

than our bin resolution - the energy loss time for 30MeV protons

in a density of 1015cm−3 is less than a tenth of a second).We look

at coronal densities of 1010, 1012 and 1014 cm−3, with the latter

very high density case again being included for the purposes of

illustration.

Electrons: First of all the case is presented in which, in addi-

tion to Coulomb scattering, we use an arbitrary strong scattering

source with Dµµ,e = 104νc. In fact, at all the densities studied,

Coulomb collisions alone would provide a source of strong dif-

fusion for electrons, and no additional scattering source would

be needed to trap them quite efficiently. Results are shown for

three different density values in Fig. 7.

The histograms shown are the sum of the trapped and pre-

cipitating populations, each scaled by the local density and nor-

malised to each other and the chromospheric density. This ac-

Fig. 7. The time profiles of trapped and precipitating electrons of energy

above 150keV, for an arbitrary strong scatterer plus Coulomb collisions

in various density loops. The vertical line marks the time of maximum

injection (2.5s).

counts for the fact that even if the majority of electrons are

trapped, the minority that precipitate would generate intense

HXR emission by virtue of the fact that they enter a dense chro-

mosphere.

At the higher densities of 1012 and 1014cm−3, all particles

in the simulation are trapped, and the entire population loses its

energy in the loop, consistent with what is found by HVCDK.

In both cases the population peaks at almost the same time as

the injection peaks. At the highest density case, particles lose

their energy very rapidly, and the number recorded in the loop is

in consequence very small. At the lower density of 1010cm−3,

most of what is seen is the scaled population of precipitating

particles, but the trapped population peaks at the same time. The

population peak is delayed with respect to the injection peak by

3.25±0.5 seconds, which is considerably longer than was found

under the same conditions by HVCDK. As the presence of the

strong diffusion term places us firmly in the strong scattering

regime, this discrepancy is indicative of the underestimation of

the scattering efficiency which comes of the use of a mean-

scattering treatment by HVCDK.

Next the case of electrons without the presence of the addi-

tional strong scatterer is examined. In this case, more electrons

should be able to precipitate. Results of these simulations are

shown in Fig. 8.

At 1014cm−3, coronal emission dominates - no electrons get

to the chromosphere, because of a combination of high Coulomb

losses and effective Coulomb scattering leading to good trap-

ping. At 1012 cm−3 diffusion and energy loss of electrons by

Coulomb scattering is relatively strong and there is practically

no delay to be seen between the time of maximum of injection

and population maximum. However at n = 1010cm−3, scatter-

ing is quite weak and delay appears, corresponding to particles

taking a while to reach the loss-cone. So it is no surprise to

see a delay between injection maximum and population maxi-
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Fig. 8. The time profiles of trapped and precipitating electrons with

energy above 150keV, for Coulomb collisions in various density loops.

The vertical line shows the time of maximum injection (2.5s).

mum. This delay is more-or-less the same in both the trapped

and precipitating populations, but emission from the precipitat-

ing population dominates. The delay is 1.25 ± 0.75s; smaller

than the delay found at the same density in the previous inves-

tigation, when electrons were well trapped by strong scattering

in the loop. This difference just depends on the choices for the

strength of the strong diffusion term, and the loop density.

In summary, it is found that, the absence or presence of an

additional strong scattering term for electrons does not affect the

timing of the electron population maxima, except at 1010cm−3,

where the delay is longer if a strong scattering source is included,

but that, with the assumption of a chromospheric density of

1015cm−3, the ratio of emission from trapped and precipitated

electrons does change - especially around 1012cm−3.

Protons: Proton simulations have been performed for a variety

of loop densities and arbitrary diffusion coefficients. In the case

of protons, we always assume the combination of Coulomb and

arbitrary strong sources, used by HVCDK. One example case is

presented in Fig. 9. In this case the loop density is 1012cm−3,

and the diffusion coefficient Dµµ,p = 104νc. Summaries of the

proton-electron time delays found by running many simulations

are presented in Tables 2 and 3. Recall that for the simulations

presented in Table 2, only a single value of the strong scattering

coefficient for electrons (= 104νc) was investigated, whereas in

both cases the proton strong scatterer ranges in strength.

As in HVCDK, delays of the order of 2s can be found, but

for different loop conditions. What is immediately obvious from

Table 2 is than in the present simulations, such delays do not oc-

cur if a strong diffusion source is present for both electrons and

protons. In such a case, the electron population peaks around

the same time as the proton population. The delays of order 2s

observed in the June 7 1980 event were interpreted by HVCDK

as originating from a simultaneous injection of electrons and

protons into a trap of density ∼ 5 × 1012cm−3, in the pres-

Fig. 9. The time profile of the trapped proton population in the case of

an arbitrary strong diffusion mechanism dominating

Table 2. 15 MeV Proton - 150 keV Electron maximum time delays

(seconds), in the case of arbitrary strong scatterers for protons and

electrons.

Loop density cm−3 1010 1012 1014

Dµµ,p

102νc 0.25 0.25 0.0

103νc 0.0 0.0 0.0

104νc 0.0 0.0 0.0

Table 3. 15 MeV Proton - 150 keV Electron maximum time delays

(seconds), in the case of an arbitrary strong scatterer for protons only.

Loop density cm−3 1010 1012 1014

Dµµ,p

102νc 2.25 0.75 0.0

103νc 2.0 0.5 0.0

104νc 2.0 0.5 0.0

ence of a strong diffusion source for both electrons and protons.

But in the case of electrons and protons with the additional

strong diffusion source, it should be expected that the delays

between electron and proton maxima are always zero - at the

particle energies of interest the strongest source of scattering

is always provided by the additional strong diffusion term, and

the Coulomb stopping lengths for both species at the energies

chosen (∼ 150 keV electrons and ∼ 15 MeV protons) are ap-

proximately equal. The particles should thus have very similar

trapping and loss timescales.

The alternative scenarios giving positive delays of the pro-

tons with respect to the electrons are as follows:

1) only Coulomb collisions present - in which case at

1010−12cm−3 protons would be confined to the loop for long

periods (cf. Sect 5.1 ) whilst electrons are precipitated immedi-

ately or after about 1.25 seconds (from the simulations presented

in Fig. 8). However, this would not give a proton ‘peak’, because

of the long time-constants for proton trapping.

2) Protons are subjected to strong scattering whilst electrons
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only scatter under the influence of Coulomb collisions. This

second case has been investigated and the results in Table 3 in-

dicate that a time delay of the order of 2 seconds can be found for

a simultaneous injection of protons and electrons, at 1010cm−3.

Even if we interpret this as the leaky trap case of HVCDK, a

lower value of the trap density is found in these simulations. In

the present work, at a density of >∼ 1012cm−3, delays are less

than a second.

We conclude from these simulations that the observed de-

lays between electron and proton signatures cannot be explained

if there is strong scattering present which affects both electrons

and protons (at least if the strong scattering is assumed arbitrar-

ily to have the same timescale for both species). If protons are

strongly scattered but electrons are not, the delays do appear.

This indicates also that if one could be more specific about

sources of scattering, and move away from the simple state-

ment that diffusion is strong, the observed delays could perhaps

be explained by the presence of particular mechanisms other

than Coulomb scattering for both protons and electrons. But ev-

idently, with the extra freedom which would be introduced in

this way, more modelling would be necessary.

7. Discussion and conclusions

It has been shown using numerical simulations of the transport

of energetic particles in a coronal magnetic bottle that the loss-

cone analysis of particle trapping and precipitation does not

always provide an adequate description of the physical situation.

In particular it has been demonstrated that escape timescales

calculated using numerical simulations vary considerably from

those predicted in the loss-cone analysis, if the field shape varies

from the abrupt convergence case, which is the only geometry to

which loss-cone analysis can be safely applied. In solar physics,

therefore, loss-cone analysis should be applied with caution,

particularly to strong scattering cases. If one has evidence for a

considerable field convergence in the corona (e.g. from Yohkoh

SXT images) then particle trapping and precipitation ought to

be modelled by a numerical technique in which the field shape

enters, such as we have presented here. This will be important

in the analysis of CGRO, Yohkoh HXT time and time-of-flight

data. The application of this analysis to any such data is yet to

be attempted

Delay times have been calculated, for comparison with pre-

vious work by HVT and HVCDK. Firstly, the time difference

between the injection maximum and the population maximum

of trapped protons was calculated, and discrepancy found of as

much as 3s over a 10s injection; in explaining delay observa-

tions of a few seconds this can be quite significant. The field

used in these calculations was of the gradually varying type,

so one would expect this to give the biggest differences from

the theoretical treatment, which postulates an instantaneously

varying field. Further calculations were carried out of the de-

lay in the population maxima of protons generating γ-rays and

electrons emitting hard X-rays. It was found that with the pa-

rameters used by HVT, although delays of around 2 seconds

could be generated by trapping, these delays were not present

in the case where both electrons and protons are scattered by

an arbitrary strong source. In the case where protons are sub-

ject to strong and Coulomb diffusion terms, whereas electrons

only suffer Coulomb collisions, a delay of around 2 seconds was

found, but this occurred at a lower density than was found by

HVCDK. The discrepancies between the current and the previ-

ous work can be, at least qualitatively, attributed to the difference

between a mean-scattering and full scattering treatment of par-

ticle evolution, the former tending to underestimate the effect

of diffusion.
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Achterberg A., Krülls W., 1992, A&A 265, L13

Alexander D. 1990, A&A 235, 431

Bai T., 1982. In Gamma-Ray Transients and Related Astrophysical

Phenomena, Vol 77, A.I.P., Lingenfelter R.E., Hudson H.S., Worall

D.M. (eds), New York, p. 409

Bespalov P.A., Zaitsev V.V., Stepanov A.V. 1991, ApJ 374, 369

Fletcher L., 1995, A&A 303, L9

Fletcher L., Brown J.C., 1995, A&A 296, 260

Hulot E., Vilmer N., Trottet G., 1989, A&A 213, 383

Hulot E., Vilmer N., Chupp E.L., Dennis B.R., Kane S.R., 1992, A&A

256, 273

Kennel C.F., 1969, Rev. Geophys. 7, 379

Lau Y.-T., Northrop T.G., Finn J.M., 1993, Ap.J. 414, 908

MacKinnon A.L., 1988, A&A 194, 279

MacKinnon A.L., 1991, A&A 242, 256

MacKinnon A.L., Brown J.C., 1990, A&A 232, 544

MacKinnon A.L., Craig I.J.D., 1991., A&A 251, 693

McClements K.G., 1990a, A&A 230, 213

McClements K.G., 1990b, A&A 234, 487

Melrose D.B., Brown J.C., 1976, MNRAS 176, 15

Melrose D.B., 1986, ’Instabilities in Space and Laboratory Plasmas’

p237, C.U.P

Park B.T., Petrosian V., 1996, ApJS 103, 255

Takakura T., Kai K., 1966, PASJ 18, 57

Trottet G., Vilmer N., Barat C., Dezalay J.P., Talon R., et al., 1993,

A&AS, 97, 337

Vilmer N., 1987, Sol.Phys. 111, 207

Vilmer N., 1994, ApJS 90, 611

This article was processed by the author using Springer-Verlag LaTEX

A&A style file L-AA version 3.


