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known pulsars
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ABSTRACT

Several past searches for gravitational waves from a selection of known pulsars have
been performed with data from the science runs of the Laser Inferometer Gravitational-
wave Observatory (LIGO) gravitational wave detectors. So far these have lead to
no detection, but upper limits on the gravitational wave amplitudes have been set.
Here we study our intrinsic ability to detect, and estimate the gravitational wave
amplitude for non-accreting pulsars. Using spin-down limits on emission as a guide
we examine amplitudes that would be required to observe known pulsars with future
detectors (Advanced LIGO, Advanced Virgo and the Einstein Telescope), assuming
that they are triaxial stars emitting at precisely twice the known rotation frequency.
Maximum allowed amplitudes depend on the stars’ equation of state (e.g. a normal
neutron star, a quark star, a hybrid star) and the theoretical mass quadrupoles that
they can sustain. We study what range of quadrupoles, and therefore EoS, would
be consistent with being able to detect these sources. For globular cluster pulsars,
with spin-downs masked by accelerations within the cluster, we examine what spin-
down values gravitational wave observations would be able to set. For all pulsars we
also alternatively examine what internal magnetic fields they would need to sustain
observable ellipticities.
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1 INTRODUCTION

Just under 2000 pulsars are currently known
(Manchester et al 2005) and these provide enticing
targets to search for continuous gravitational wave emis-
sion. Searches for gravitational waves from known pulsars
(Abbott et al 2005, 2007a, 2010a) estimate four unknown
parameters: the gravitational wave amplitude h0, the initial
phase relative to the electromagnetic pulse phase φ0, the
cosine of the orientation angle cos ι, and the polarisation
angle ψ. As yet no signal has been seen from any pulsar,
so observations provide no constraints on these parameters
other than an upper limit on h0. However, with detector
sensitivities improving over the next few years we will be
beating spin-down based upper limits for many pulsars.
This gives us the potential of direct gravitational wave
detection (if gravitational waves provide a braking mech-
anism that is comparable to the electromagnetic braking)
therefore allowing us to place real constraints on these
parameters. The h0 parameter in particular will allow us
to say something about the make up of the neutron star1

⋆ matthew.pitkin@glasgow.ac.uk
1 We will use ‘neutron star’ as a generic term for all types of
compact star used in this paper, unless specifically stated.

itself as it is related to the star’s mass quadrupole moment,
and therefore the equation of state (EoS). Some discussion
of useful astrophysics that could be gained from measuring
cos ι is given in Jones (2007), and accurate polarisation
measurements could provide limits on, or allow the study
of, different theories of gravity (see e.g. Will 2006), but
here we will concentrate on the amplitude and quadrupole
measurement. It is important to stress that there is much
that is unknown about neutron stars and whether they
can produce and sustain large enough quadrupoles to be
observable via gravitational waves, so explaining such issues
is still an area of great interest. In this study we only discuss
prospects for observing non-accreting pulsars. In accreting
systems different gravitational wave emission mechanism
may be present, and the links between electromagnetic
observations and any gravitational wave signal are less
well known. Watts et al (2008) provide a good study of
detection prospects for accreting neutron stars.

1.1 Searches for known pulsars

Since the start of science data taking from the current
generation of interferometric gravitational wave detectors
(LIGO, GEO600, Virgo and TAMA Abbott et al 2004a;
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Acernese et al 2008; Ando et al 2005) searches looking for
gravitational waves from a large selection of known pul-
sars (millisecond and young pulsars with spin frequencies
greater than ∼ 20Hz) have been performed (Abbott et al
2005, 2007a, 2010a). In the most recent analysis 116 pulsars
were searched for using approximately a year and a half of
data from each of the three LIGO detectors (Abbott et al
2010a), which were operating at their design sensitivity
(Abbott et al 2009a). Unfortunately no signal was seen from
any of these objects, but for the majority the sensitivity was
still well above, by factors of 10 to over 100 times, their spin-
down limits. The spin-down limit is set by assuming that the
star’s spin-down luminosity is equal to its gravitational wave
luminosity i.e. all the rotational energy lost by the pulsar is
due to radiation via gravitational waves from the Q22 mass
quadrupole. This limit does require one to assume a mo-
ment of inertia for the star, generally taken as the canonical
value of 1038 kgm2 (or 1045 g cm2 in cgs units), and that its
distance is precisely known. For one object, the Crab pul-
sar, this limit has been passed (Abbott et al 2008a, 2010a)
although still no gravitational waves were seen, and for four
others the upper limit obtained was within a factor of 10
from spin-down.

For known pulsars the parameter space to be searched
over is comparatively small (position and phase evolu-
tion are known) and long observation times can be used
in a coherent way. This makes such searches more sen-
sitive than semi-targeted, or blind searches for similar
sources (Abbott et al 2007b, 2008b, 2009b,c), although po-
tentially will miss out on some interesting, but currently un-
known, objects. Knispel & Allen (2008) discusses the poten-
tial strength of a population of gravitational wave emitting
Galactic neutron stars. Here, we therefore concentrate our
study on estimating the prospects for fully targeted searches.

The paper is set out as follows: in §2 we will assess
the potential signal-to-noise ratios at which currently known
pulsars could be observed with future detectors, review a de-
tection statistic for these pulsars, and demonstrate the pa-
rameter estimation capabilities of the standard search tech-
nique at a variety of signal-to-noise ratios; in §3 we review
some estimates of the maximum quadrupole moments for
neutron stars given a selection of EoS; in §4 we assess the
potential signals, and associated quadrupoles, observable in
future detectors based on spin-down limits and limits on
our sensitivity, and how these limits can be thought of in
terms of internal magnetic field strengths, and for globu-
lar cluster pulsars limits on their spin-down. Parts of this
work are similar in scope to the review by Owen (2006), and
the discussions in Abbott et al (2007b) and Andersson et al
(2011).

2 ESTIMATING SIGNALS IN FUTURE

DETECTORS

The next (2nd) generation of interferometric grav-
itational wave detectors, such as Advanced LIGO
(aLIGO) (Harry et al 2010), Advanced Virgo (AdvVirgo)
(The Virgo Collaboration 2009), the Large-scale Cryongenic
Gravitational wave Telescope (LCGT) (Kuroda 2010) and
GEO-HF (Willke 2006), expect to provide order of magni-
tude sensitivity improvements over current detectors, and
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Figure 1. Design strain curves for Advanced LIGO (aLIGO)
(LIGO Scientific Collaboration 2009) (using the zero detuning,
high laser power configuration), Advanced Virgo (AdvVirgo) (the
baseline sensitivity used here is that of 12 May 2009 found at
http://wwwcascina.virgo.infn.it/advirgo/), and the Einstein
Telescope (ET) in both ET-B and ET-C configurations (taken
from http://www.et-gw.eu/etsensitivities).

offer the opportunity to beat spin-down limits for nearly 60
pulsars (see §2.2). A 3rd generation gravitational wave de-
tector called the Einstein Telescope (ET) (Punturo 2010)
is also under design study, and would offer another order
of magnitude increase in sensitivity. This would bring hun-
dreds of currently known pulsars into the range where we
could beat spin-down limits (see §2.3), and also may coincide
with the completion of the Square Kilometre Array (SKA)
radio telescope, which may give us a vastly larger number
of sources to target. Estimates suggest the SKA may detect
over half of the observable pulsars within the Galaxy giving
∼ 20 000 potential sources (Cordes et al 2004) with ∼ 1000
of them being millisecond pulsars and some of which could
have large spin-down luminosities. Design strain curves for
aLIGO, AdvVirgo and the ET in two different potential con-
figurations are shown in Fig. 1.

Assuming that the star is emitting at its spin-down
limit, and that a fully coherent search can be performed,
we have estimated the angle averaged signal-to-noise ratios
(S/N) for all known pulsars for which a spin-down limit can
be calculated2 given one year observation times, for joint
aLIGO and AdvVirgo observations (ALV) and for the ET
in two potential configurations - ET-B and ET-C (see §2.3).

For the Crab pulsar we will estimate the S/N us-
ing a limit based on the observed upper limit, which at
h95 per cent
0 = 2.0×10−25 (Abbott et al 2010a) is approxi-

mately 7 times below the spin-down limit of 1.4×10−24 for
a star with the canonical moment of inertia and a distance
of 2 kpc. This result also beats limits of Palomba (2000)
based on the Crab pulsar’s observed braking index. For the
Vela pulsar and B0540−69 (J0540−6919), for which braking

2 Many of the millisecond pulsars found so far are seen in glob-
ular clusters, and accelerations within these clusters can mask
the spin-down and even produce an observed spin-up, so in this
section we exclude these.

http://wwwcascina.virgo.infn.it/advirgo/
http://www.et-gw.eu/etsensitivities
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indices can also be reliably measured, we use upper limit es-
timates based on those calculated by Palomba (2000). For
Vela (using the Vela age of 11 000 years given in Abadie et al
2011) this gives limits 4 times lower than the spin-down
limit of 3.3× 10−24 , and for B0540−69 this gives a limit
6 times lower than the spin-down limit of 5.2×10−26 . For
these three pulsars our S/N estimates used known values of
the pulsar inclination angle and gravitational wave polarisa-
tion angles as taken from fits to the pulsar wind nebulae in
Ng & Romani (2008). As can be seen in Fig. 3 these three
pulsars would have S/N greater than 5 for all future detec-
tors if emitting at their spin-down, or observationally con-
strained, upper limits. They are not included in the numbers
quoted in the rest of this section.

2.1 Assessing detection and parameter estimation

We can estimate the S/N for all known pulsars for a given
gravitational wave detector, or set of detectors, to assess our
ability detect them and perform parameter estimation. The
S/N, ρ, can be calculated from the square root of the inner
product of the signal h with itself, ρ =

√

(h|h), (the inner,
or scalar, product for real time domain functions is given
by (x|y) = (2/Sn(ν))

∫ T

0
x(t)y(t)dt) which given the time

domain signal model of (e.g. Dupuis & Woan 2005)

h(t) = h0

[

1

2
(1 + cos 2ι)F+(t, ψ) cos φ(t) +

cos ιF×(t, ψ) sinφ(t)

]

, (1)

gives

ρ =

[

h2
0

Sn(ν)

T

N

N
∑

k

(

[
1

2
(1 + cos 2ι)F+(tk, ψ)]

2

+[cos ιF×(tk, ψ)]
2
)

]1/2

, (2)

under the assumption that νT ≫ 1, and where Sn(ν) is the
frequency dependent one sided noise power spectral density3

in Hz, T is the total observation time in seconds, N is the
number of samples used, and F+ and F× are the source po-
sition and polarisation dependent detector antenna patterns
(see e.g. Jaranowski et al 1998).

The S/N depends on the orientation of the pulsar, so
upper and lower values can be set for the best and worst
case orientations. The best case in terms of S/N is for a
pulsar’s spin axis to be along the line of sight (ι = 0◦ or
180◦, or cos ι = ±1), which gives rise to circularly polarised
radiation; the worst case is for the pulsar’s spin axis to per-
pendicular to the line of site (ι = 90◦ or cos ι = 0), which
gives rise to just linearly polarised radiation. The S/N ranges
over a factor of ∼ 3 between best and worst cases, and the
angle averaged, or expected, S/N (averaging over a uniform
distribution in cos ι, ψ and φ0) is ∼ 1.69 times below that
for best case orientation value. For a fixed S/N the angle av-
eraged value of h0 is 1.89 times the value needed to give the

3 This is related to the noise variance via Sn = 2σ2∆t, where ∆t
is the sample interval in the data time series.

same S/N for the best case orientation4 (i.e. for the best case
orientation a smaller value of h0 will produce an equivalent
S/N). In this section we will be asking the question “Given
that the star is emitting gravitational waves at an amplitude
X, what is the expected S/N it would have?”, whereas in §4
we will be asking the question “Given that the signal has
an S/N of X, what will the expected h0 (or parameter such
as ratio to spin-down limit or mass quadrupole that scales
with h0) be?”. When estimating the number of pulsars that
are potentially observable using either an expected S/N cal-
culated from a given h0, or an expected h0 calculated from
a given S/N, then the results will be slightly different.

2.1.1 Detection statistic

For the rest of this paper we will assume an S/N for a signal
that we believe provides a good chance of detection. To do
this we will use Bayesian hypothesis testing to provide a de-
tection statistic with which to assess detection efficiency at
different S/N (see e.g. Clark et al 2007 or Prix & Krishnan
2009). We produced a Bayes factor in which the two com-
peting models are that of data containing Gaussian noise
and a known pulsar signal compared to data just containing
Gaussian noise. Uniform priors were set for the signal pa-
rameters, and a prior odds for the competing models of 1 was
used. To assess this we produced Monte Carlo simulations of
2000 signals, with fixed sky position, but randomly chosen
values of cos ι, ψ and φ0, in different realisations of noise
at a range of S/N. The approach is essentially using what
is described as the B-statistic in Prix & Krishnan (2009),
which they show to be slightly more efficient, although com-
putationally more expensive, than the more widely used F-
statistic (Jaranowski et al 1998; Abbott et al 2004b).

If we have a threshold false alarm rate due to back-
ground of 1 per cent, then Monte Carlo simulations show
that an S/N of 5 gives a detection probability of 95 per
cent (see Fig. 2) which we will use as our required value for
confident detection in the subsequent sections. Real data is
generally non-stationary and may contain interference, so
this idealised detection statistic may be slightly optimistic,
but should be close to reality, given well understood and
cleaned data.

2.2 Second generation detectors

For aLIGO we assume two 4 km interferometers based at
the Hanford site and one 4 km interferometer at the Liv-
ingston site all with equivalent sensitivity and operating
at the designed value (LIGO Scientific Collaboration 2009).

4 Note that the angle averaged S/N for a given value of h0 and the

angle averaged h0 for a given S/N are not interchangeable. This
comes about because for the first case the angle averaged S/N
〈ρ〉 ∝ h0〈C〉, whereas in the second case the angle averaged ampli-
tude 〈h0〉 ∝ ρ〈1/C〉, where C =

∑N
k ([ 1

2
(1 + cos 2ι)F+(tk , ψ)]

2 +

[cos ιF×(tk , ψ)]
2)−1/2 and 〈f(y)〉 =

∫ ymax

ymin
p(y)f(y)dy. For an in-

dividual pulsar, i.e. a single sky position, the dependence on po-
larisation angle disappears for data spans a lot greater than a
day, and as can be seen from Eqn. 2 the phase dependence is no
longer present, so the orientation angle is the only one needing
averaged over for which we use a uniform distribution between
−1 and 1 giving p(cos ι) = 1/2.
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Figure 2. The top figure shows the Receiver Operating Charac-
teristic (ROC) curves for a variety of S/N (ρ), with the ρ = 4
curve showing the same form as that given by Prix & Krishnan
(2009). The bottom figure shows the detection efficiency of the
known pulsar search as a function of S/N given a background
false alarm rate of 1 per cent.

For AdvVirgo we use one 3 km interferometer at its design
sensitivity (see Fig. 1). Fig. 3 gives the angle averaged S/N
for 1 year of observations with all these detectors (3 aLIGO
and 1 AdvVirgo, or ALV from now on) and shows that po-
tentially 58 pulsars could be observed with an S/N greater
than 5 (best case orientation gives 74 with S/N above 5
and the worst case orientation gives 47 with S/N above 5).
Some similar, but unpublished work, has been presented by
Santostasi (2006).

2.3 Third generation detectors

Some assessment of detectability of the currently known pul-
sars, based on their spin-down limits, has previously been
performed for the proposed third generation detector called
the Einstein Telescope in Andersson et al (2011) (along with
the potential for observing neutron stars through other grav-
itational wave emission mechanisms), although this was just
for the ET-B configuration (see below). Here, as above, we
will calculate S/N for the Einstein Telescope. In Fig. 3 we
show S/N based on the sensitivity of the ET-B configura-
tion, as described in Hild et al (2008), with three interfer-
ometers on one site (given here as the current Virgo site) in
an equilateral triangle configuration (Freise et al 2009). For
this configuration of ET-B we could potentially see 312 pul-
sars with an angle averaged S/N greater than 5 (or 405 for
the best case and 223 for worst case). A ‘xylophone’ configu-
ration (ET-C) consisting of different detectors optimised for
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Figure 3. The angle averaged signal-to-noise ratios for all cur-
rently known non-globular cluster pulsars with measured spin-
down values expected for ALV (upper panel) and the Einstein
Telescope in ET-B (middle panel) and ET-C (bottom panel) con-
figurations assuming emission at the spin-down limit (see text for
exceptions). The ⋆ represents the value for the Crab pulsar, the
• represents the value for B0540−69, and the � represents the
value for the Vela pulsar. The thick horizontal dashed line shows
an S/N of 5.
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different frequency bands, with comparable high-frequency
sensitivity, but better low-frequency sensitivity than ET-B,
has also been proposed (Hild et al 2010; Freise et al 2009).
In Fig. 3 we show the S/N based on the ET-C sensitiv-
ity (again with the same layout as ET-B). For ET-C we
could potentially see 648 pulsars with an orientation angle-
averaged S/N greater than 5 (or 771 for the best case and
528 for worst case). These numbers are around double those
for the ET-B configuration due to the lower frequency sen-
sitivity increase, suggesting that this may be the preferred
configuration for known pulsar searches. However, we should
be cautious as we will see in §4 (and also as stated in
Andersson et al 2011) that many of these will have to be
rather exotic, and therefore probably less realistic, stars to
be seen at these levels. A further configuration, called ET-D
(Hild et al 2011), is now also available, although it is very
comparable to ET-C for a wide range of frequencies, so we
have not used it in these studies.

2.4 Parameter estimation

Our ability to constrain the physical parameters of a source
is obviously dependent on the S/N, but the correlated phys-
ical parameters we use to describe the signal can mean that
rather unintuitively a higher S/N signal may not give the
best constraints on h0.

We have simulated a selection of pulsars that give best
case and worst case S/N of around 5, 10, 50 and 100 for ALV
(as shown in Fig. 3), to assess the level of uncertainty on es-
timates of their parameters assuming they are observable
at that level. To do this we used the Markov chain Monte
Carlo technique described in Abbott et al (2010a) to pro-
duce posterior probability density functions (pdfs) on the
four parameters defined in §1. Uncertainties on parameters
can be assessed using a Fisher Information Matrix approach,
for example as done by Jaranowski & Królak (2010), but as
they show, such a method will give biased error estimates
overestimating the uncertainty for signals near cos ι = ±1,
even for very strong signals with S/N approaching 1000.

We calculate the appropriate signal strength needed to
give S/N of 5, 10, 50 and 100 for both the best and worst case
orientations (see Table 1) and produce pdfs on many reali-
sations of the data to give an average pdf. These can be seen
in Fig. 4 and the mean parameter values (not the peak in
the posterior) and their 1σ uncertainties obtained from the
pdfs are given in Table 1. Examples of pulsars that if emit-
ting at their spin-down limits might be observed with ALV
at S/N of ∼ 5, 10, 50 and 100 are respectively J1959+2048,
J0737−3039A (the millisecond pulsar in the famous double
pulsar system), J0537−6910 (an interesting young pulsar in
the Large Magellanic Cloud, with a high glitch rate and
large spin-down rate) and J1952+3252. The main results of
Table 1, i.e. the relative uncertainties in h0 for different S/N
signals given the best and worst case orientation scenarios,
are extrapolated to higher S/N and shown as the thick black
lines in Fig. 8 (they are equivalent to the uncertainties on
the quadrupole assuming the distance is precisely known).

It can clearly be seen by looking at Eqn. 1, and from our
posteriors in Fig. 4, that for a signal with cos ι ≈ ±1 the h0

and cos ι parameter are highly correlated, which leads to the
h0 posterior being spread to higher values, and cos ι extend-
ing towards zero. In such a case the φ0 and ψ parameters
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Figure 5. The correlations between the h0 and cos ι, and φ0 and
ψ parameters for a simulated signal with the best case orientation.
The data points from the Markov chain Monte-Carlo (MCMC)
and the probability contours derived from them are shown. The
cross marks the parameters used to produce the signal.

are also very highly correlated, with the posterior on ψ be-
ing flat over its range (see Fig. 4), and φ0 only constrainable
to within a 180◦ range i.e. the direction the star is rotating
in can be found, but otherwise these parameters are ill de-
fined to represent such a situation. These correlations can
be seen more easily in Fig. 5, and they lead to the slightly
paradoxical fact that when comparing equivalent signals in
Fig. 4 we can actually place the tightest constraints on h0

for the worst case orientation, i.e. lower S/N, signals! Due
to these correlations we do not quote mean, or uncertainty,
values on ψ in Table 1 as they are meaningless, we also only
quote mean values for φ0 to show that the value found is
oriented in the correct sense. If we were to cast the the un-
certainties in ι and ψ as a solid angle then at cos ι = ±1 the
associated error ellipses for different S/N would be entirely
proportional to the error on ι alone (i.e the error on psi stays
constant). For a signal with S/N ≈ 20 the best and worst
case solid angles covering the ∼ 1σ probability contour in
ι−ψ space are 0.35 sr and 6×10−4 sr respectively. The ratio
of these areas scales very roughly linearly with S/N (within
about a factor of 2) as 50ρ, up to S/N of ∼ 100.

In the case of pulsars like the Crab pulsar where X-
ray observations and modelling of their pulsar wind nebulae
are possible, there is additional information placing tight
constraints on the orientation and polarisation angles. In-
cluding this will break the degeneracies between parame-
ters, for example as perform in the search by Abbott et al
(2008a). In Fig. 6 the fractional uncertainty on the ampli-
tude estimate (averaged over many simulations) is shown
as a function of cos ι for simulated sources where in one
case the orientation and polarisation angles are known (i.e.
these are fixed at their known values and not searched over,
equivalent to having very tight prior distributions on these
parameters), and in the other case that they are unknown
(i.e. the whole range of cos ι and ψ has to be searched over
with uniform priors). It can be seen in Fig. 6 that for the
case where all parameters are searched over the fractional
uncertainty on the amplitude increases with cos ι, with the
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φ0, cos ι and ψ for four simulated signals. The four signals in each panel (from top left to bottom right) correspond to the parameters
given in each of the four sections (from top to bottom) of Table 1. In an individual panel lines of the same colour represent signals with
identical amplitude, solid lines represent the signals with the worst case orientation (cos ι = 0) and dashed lines represent the signals
with the best case orientation (cos ι = 1). The tapering off of the φ0 posteriors for the best case orientation at π ± π/2 is an artifact of
the plotting and these parameters should really have abrupt cut-offs at these values.

steepest rise between about cos ι = 0.5–0.7. However, when
cos ι & 0.8 the fractional error slightly decreases again sug-
gesting that a cos ι = ±1 does not actually given the worst
estimate of h0. This is actually slightly misleading as the
reason for the downturn becomes more apparent from look-
ing at the curves of fractional uncertainty given the true
h0 values (rather than the fractional uncertainty based on
the mean h0 value), and plots of pdfs for h0 in Fig. 4 –
at values of cos ι approaching ±1 the mean estimate of h0

starts to increase relative to the true value, whilst the un-
certainty starts to plateau, leading to the downturn. This
means that estimates of h0 when cos ι = ±1 would still give
values furthest from the true value, but due to the shifting
of the whole posterior towards higher values rather than it
widening. For the case where the cos ι and ψ values are held
fixed at their known values during the parameter estimation
the fractional amplitude uncertainty behaves as one would
expect and decreases as the S/N increases as cos ι tends to
1. The fractional amplitude uncertainty, whether calculated
with the mean or true h0 value follow the same path, because
the posterior stays symmetrical about the true value.

Current detectors have systematic uncertainties in am-
plitude and phase due to calibration in the region of 10–15
per cent and 5◦ respectively (Abadie et al 2010). For second
generation detectors it is hoped to further reduce amplitude
uncertainty to less than 10 per cent, but if we are lucky
enough to see any high S/N (& 20) signals this may be the
main source of error in the h0 estimates.

2.4.1 Dependence on distance

The gravitational wave amplitude, and its uncertainties, can
be directly measured. However, if we want to convert this
into a physical quantity related to the star, such as the mass
quadrupole moment (see Eqn. 3) then the uncertainty on the
distance to the pulsar will come into play. Current distance
measurements for nearby pulsars come from parallax mea-
surements, but for most others come from dispersion mea-
sure observations extrapolated from a model of the Galactic
free electron distribution Cordes & Lazio 2002. For the ma-
jority of pulsars distances generally have uncertainties at
∼ 2 per cent or more (even > 100 per cent) of the best
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Table 1. Mean parameter estimates, and their uncertainties, at a variety of signal-to-noise ratios given best and worst case
orientations. The true value of h0 is given followed by the average (over many trials) mean estimate and standard deviation
on each parameter. The fractional uncertainty on h0 is also given. In the low S/N cases where the signal peaks near zero a
95 per cent confidence upper limit is given. The true values of φ0 and ψ in all cases are π rads and 0 rads respectively. The
parameter estimates have been performed assuming the ALV combination at design sensitivity.

True h0 ρ h0 ± σh0 σh0/h0 (per cent) φ0 ± σφ0
cos ι± σcos ι ψ ± σψ

cos ι = 0 5.24×10−27 1.7 h95 per cent
0 = 1.08×10−26 * 3.28± 1.24 −0.02± 0.46 0.00± 0.40

cos ι = 1 5.24×10−27 5.0 9.27± 3.72×10−27 40 3.21 0.51± 0.26 *
cos ι = 0 1.59×10−26 5.0 1.49± 0.62×10−26 42 3.20± 0.44 0.00± 0.29 0.03± 0.21
cos ι = 1 1.59×10−26 15.1 2.27± 0.55×10−26 24 3.19 0.67± 0.18 *

cos ι = 0 5.96×10−27 3.4 h95 per cent
0 = 9.15×10−27 * 3.12± 0.90 0.16± 0.36 −0.02± 0.33

cos ι = 1 5.96×10−27 10.0 8.98± 2.49×10−27 28 3.06 0.64± 0.21 *
cos ι = 0 1.77×10−26 10.0 1.76± 0.27×10−26 15 3.17± 0.14 −0.01± 0.06 0.01± 0.07
cos ι = 1 1.77×10−26 29.6 2.24± 0.36×10−26 16 3.15 0.78± 0.14 *

cos ι = 0 2.58×10−26 17.7 2.60± 0.22×10−26 8 3.12± 0.08 0.00± 0.04 0.01± 0.04
cos ι = 1 2.58×10−26 50.0 3.10± 0.40×10−26 13 3.19 0.82± 0.11 *
cos ι = 0 7.31×10−26 50.0 7.30± 0.19×10−26 3 3.14± 0.03 0.00± 0.01 0.00± 0.02
cos ι = 1 7.31×10−26 141.5 8.40± 0.73×10−26 9 3.26 0.87± 0.08 *

cos ι = 0 7.40×10−26 33.8 7.39± 0.33×10−26 4 3.15± 0.04 0.00± 0.02 0.00± 0.02
cos ι = 1 7.40×10−26 100.0 8.41± 0.74×10−26 9 3.14 0.88± 0.08 *
cos ι = 0 2.18×10−25 100.0 2.18± 0.03×10−25 1 3.14± 0.01 0.00± 0.01 0.00± 0.01
cos ι = 1 2.18×10−25 294.8 2.37± 0.12×10−25 5 3.12 0.92± 0.05 *
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Figure 6. The fractional uncertainties on amplitude (standard
deviation over mean - σh0/h0) from many simulations of perform-
ing parameter estimation on a signal (with an S/N of 50 calculated
for the worst case orientation) when all parameters are unknown
(blue) compared to when the cos ι and ψ parameters are known
and fixed in the search. Also shown as dashed lines are the frac-
tional uncertainties given the actual signal h0 values rather than
the mean recovered value.

fit values. In the future, with instruments like the SKA, di-
rect parallax measurements may push these errors down to
the level of < 20 per cent for many millisecond pulsars out
to 9 kpc (Smits et al 2011). Here we will look at how differ-
ent distance uncertainties affect estimates of the quadrupole
moment for a variety of S/N and for the best and worst ori-
entations.

It can be seen from Table 2 and Fig. 7 that for the low-
est S/N signals distance errors of 10–20 per cent give only a
relatively small increase in the uncertainty with which the

quadrupole moment can be measured. The convergence of
the uncertainties on the measurement for the best and worst
case orientations, i.e. when the uncertainties become dom-
inated by the distance uncertainty rather than that on the
measurement, can be seen in Fig. 8. For strong signals (S/N
& 50) the uncertainty on distance will start to dominate
quadrupole estimates if it is & 10 per cent and will also
swamp any differences due to orientation.

Seto (2005) suggests that gravitational wave observa-
tions of pulsars could be used to determine their distances to
. 10 per cent, but only for nearby stars (. 100 pc) with very
large S/N and high frequencies. This is therefore unlikely to
help constrain distances better than other techniques for the
vast majority of known pulsars.

3 EQUATIONS OF STATE

As discussed in Lattimer & Prakash (2007) there are many
ways to attempt to observationally constrain the EoS of a
neutron star through inferences about their mass and ra-
dius e.g. via various observations of binary and accreting
systems. Observations of gravitational waves from merging
neutron stars (or merging neutron stars and black holes)
can also give mass and radius measurements, and informa-
tion about the EoS properties from tidal effects during the
inspiral (Flanagan & Hinderer 2008) and the point at which
the star breaks up (Andersson et al 2011).

However, emission of gravitational waves from indi-
vidual neutron stars, either through a continuous emission
from a sustained triaxiality, or short bursts from vibrational
modes (e.g. Andersson & Kokkotas 1998), could also pro-
vide constraints. Due to the low amplitude of gravitational
waves expected from these sources, such observations would
most likely only be available for Galactic sources. Rather
than studying explicitly what observations of continuous
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Table 2. The uncertainties on the quadrupole moment at a variety of S/N given best and worst case
orientations with uncertainties on the distance measurement of σr = 1, 5, 10, 20 and 50 per cent.

σQ22
/Q22 (per cent)

ρ σh0/h0 (per cent) or σr = 0 per cent σr = 1 per cent σr = 5 per cent σr = 10 per cent σr = 20 per cent

cos ι = 0 1.7 * * * * *
cos ι = 1 5.0 40 41 40 43 46
cos ι = 0 5.0 42 42 44 45 49
cos ι = 1 15.1 24 25 25 27 32

cos ι = 0 3.4 * * * * *
cos ι = 1 10.0 28 29 29 30 35
cos ι = 0 10.0 15 16 17 19 25
cos ι = 1 29.6 16 17 17 20 26

cos ι = 0 17.7 8 9 10 13 21
cos ι = 1 50.0 13 13 14 17 23
cos ι = 0 50.0 3 3 6 11 19
cos ι = 1 141.5 9 9 10 13 21

cos ι = 0 33.8 4 5 7 11 19
cos ι = 1 100.0 9 9 10 13 20
cos ι = 0 100.0 1 2 5 10 18
cos ι = 1 294.8 5 6 7 11 20

gravitational waves from a triaxial neutron star can tell us
about the stars EoS, we flip the question and look at the
maximum magnitudes of signals we could possibly expect
for a variety of EoS. The maximum values we discuss are
likely to be at the extreme end of possibility and in real-
ity they could overestimated (or possibly, but less likely,
underestimated) by several orders of magnitude due to the
uncertain physics of these objects.

3.1 Quadrupole moments

The observable in known pulsar searches that relates to
the neutron star EoS is the gravitational wave amplitude
h0. This is directly related to the star’s l = m = 2 mass
quadrupole moment via

Q22 = h0

(

c4r

16π2Gν2

)

√

15/8π, (3)

where r is the distance in m and ν is the rotation frequency
in Hz. The quadrupole moment is often parametrized in
terms of the star’s principal moment of inertia, Izz, and
ellipticity, ε, via εIzz =

√

8π/15Q22 (Owen 2005). However,
these two parameters cannot be disentangled from observa-
tions, although the range of moments of inertia can be im-
plied from various theoretical EoS mass and radius relations
(generally thought to be in the range 1− 3×1038 kgm2 e.g.
Abbott et al 2007a), allowing ellipticities to be implied from
observations. Often in gravitational wave literature results
are cast in terms of ellipticity as it feels a more physically
tangible parameter, giving a physical “size” of the distortion
of a star.

Following for example Ushomirsky et al (2000) and
Owen (2005) the quadrupole for an incompressible star with
a thin crust can be written as

Q22 =
γµR6〈σ22〉

GM
, (4)

where 〈σ22〉 is the weighted average strain on the crust (con-
tributing to the 22-quadrupole), R and M are the star’s ra-
dius and mass, and γ ≈ 13. Often this equation is quoted as
an upper limit on Q22 by inserting the maximum breaking
strain σmax, however as noted in Ushomirsky et al (2000) the
equation is equally applicable to providing an estimate of the
crustal strain. The parameter in Eqn. 4 that is most depen-
dent on the detailed make-up of the star is the shear modulus
µ, which between theories can potentially vary by many or-
ders of magnitude. Below we will make the assumption that
the stars are incompressible and therefore use Eqn. 4 in cal-
culations, along with an assumed γ = 13 (for a conventional
neutron star γ can be related to the ratio of the thickness
of the star’s crust, ∆R, to it’s radius via γ ≈ 120∆R/R). It
should also be noted that these assume the Cowling approxi-
mation and neglect self-gravity of the density perturbations.
Ushomirsky et al (2000) showed that including self-gravity
can increase the quadrupole calculations by between 25–200
per cent, and similarly Haskell et al (2006) found that self
gravity can affect results by factors of between 0.5–3.

For the millisecond recycled pulsars spin-down argu-
ments alone tell us that their quadrupoles must be relatively
small (. 1030kgm2). Such a quadrupole would be obtainable
with any EoS (see below) meaning that if detected they are
not helpful differentiating between theories, although multi-
ple detections could build up useful statistics on their prop-
erties and limits on their internal magnetic fields.

Here we will review some of the work presented by Owen
(2005) regarding maximum sustainable quadrupoles for a
variety of stellar EoS.

3.1.1 Normal neutron stars

For stars made from normal neutron star matter (neutrons,
protons and electrons) Ushomirsky et al (2000) provide a
detailed model of the quadrupole (see Eqn. 69). Owen (2005)
applies standard numbers in this definition (and corrects the
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Figure 7. The pdf for the quadrupole moment, Q22, given a
simulated signal for the pulsar with h0 = 7.31×10−26 in Table 1
at both cos ι = 0 (top plot) and cos ι = 1 (bottom plot), with S/N
of 50 and 141.5 respectively, over a range of distance uncertainties,
σr , of 1, 5, 10, 20 and 50 per cent.

definition of the shear modulus to be 4×1029 erg cm−3, or
2.5×10−4 MeV fm−3) to give

Q22 = 2.4×1032 kgm2〈σ0.1〉R
6.26
10 M−1.2

1.4 , (5)

where 〈σ0.1〉 is an averaged strain of 0.1, R10 is the radius
in units of 10 km, and M1.4 is the mass in units of 1.4M⊙.
Uncertainties in the star’s mass will only affect this estimate
by small amounts e.g. given theoretical5 and observational
bounds on the mass between ∼ 1− 2.5M⊙ the quadrupole
will only vary within about a factor of three from 0.5–1.5.
However, for the radius, with its far larger exponent, small

5 Theoretically the lower bound on neutron star mass could
be as small as ∼ 0.1M⊙ (Lattimer & Prakash 2001), but
we will assume our population of known pulsars is simi-
lar to the ones with observed masses – see e.g. Fig. 3
of Lattimer & Prakash (2007), or the figure maintained at
http://www.stellarcollapse.org/nsmasses. A discussion of
gravitational waves from neutron stars at the lowest end of the
possible mass range can be found in Horowitz (2010), which sug-
gest these are potentially strong sources, but it is very unlikely
that any known pulsar would be of this type.
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Figure 8. The uncertainties on the estimate of Q22 given in
Table 2 for a variety of distance uncertainties and the best (dashed
lines) and worst (solid lines) case orientations.

differences can give a larger range of possible quadrupoles.
If we take a theoretical range from 10–15 km then this can
change the quadrupole by about an order of magnitude. The
most massive stars will also have the smallest radii, so from
this we get an uncertainty range on the quadrupole from
the unknown mass and radius of between ∼ 0.5–20 times
the value in Eqn. 5, with the most massive, but smallest
stars at the lower end and vice versa.

Here we will assume the breaking strain is at the max-
imum value of σmax ≈ 0.1 calculated by Horowitz & Kadau
(2009) (much previous work has assumed a maximum break-
ing strain of 10−5 6 σmax 6 10−2). This value of the break-
ing strain was calculated for normal neutron star matter, but
for other situations it may well not be a valid assumption.
Using the higher value from the mass/radius uncertainty
as an upper limit, and inserting in the maximum breaking
strain, we could get normal neutron stars with quadrupoles
of Qmax ≈ 4.5×1033 kgm2. Converting this to an approxi-
mate (order of magnitude) estimate of the ellipticity, assum-
ing the canonical moment of inertia, would give ε ≈ 6×10−5.
Although the reasoning behind it is quite different (i.e. just
coming from plugging in masses and radii at the extent of
their ranges, with the majority of the increase over the fidu-
cial value in Owen (2005) coming from using a maximum
radius of 15 km) this value is very similar to that produced
by the perturbative approach to the problem performed
by Haskell et al (2006). Assuming the maximum breaking
strain of 0.1 they would produce a maximum quadrupole
(see Table 4 of Haskell et al 2006) of Qmax = 3.1×1033 kgm2

http://www.stellarcollapse.org/nsmasses
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for a star with a mass of 1.4M⊙, radius 12.3 km and crust
thickness 1.5 km.

3.1.2 Hybrid crystalline colour-superconducting star

In Knippel & Sedrakian (2009), Haskell et al (2007) and Lin
(2007) the quadrupole is calculated for crystalline colour-
superconducting (CSS) hybrid stars. In these stars the grav-
itational wave emission mainly comes from a deformed in-
terior core of quark matter. The quadrupole can again be
approximated by Eqn. 4, but with a shear modulus given by
(Mannarelli et al 2007)

µ = 2.47MeV fm−3∆2
10µ

2
q 400, (6)

where ∆10 is the gap parameter in units of 10MeV, and
µq 400 is the quark chemical potential in units of 400MeV
(which in Mannarelli et al 2007 is estimated to be in
the range 350MeV 6 µq 6 500MeV), and the stellar
mass and radius are replaced by those of the quark core.
Knippel & Sedrakian (2009) assume a range of gap param-
eters6 10 6 ∆ 6 50MeV, and find a maximum core mass of
0.8M⊙ and a maximum core radius of 7 km. For the reasons
stated in §3.1.1 we will assume a slightly more conservative
maximum breaking strain than that for normal neutron stars
of σmax = 10−2. This gives a maximum quadrupole (for ∆ =
50MeV, µq = 500, µ = 97MeV fm−3 ≈ 1.5×1034 Jm−3) of
Qmax ≈ 1.4×1036 kgm2, or almost three orders of magnitude
larger than a normal neutron star, which is not necessarily
surprising since deformations are in the high density core
rather than the crust. Haskell et al (2007) note that for a
star with a fluid envelope around the core the quadrupole
will be suppressed, particularly if there is not a substan-
tial change in density when transitioning between the core
and envelope. Converting this to an approximate estimate of
the ellipticity, by assuming the canonical moment of inertia,
would give an equivalently large ε ≈ 0.02!

3.1.3 Hybrid and meson condensate stars

Owen (2005) also looks at hybrid stars with charged meson
condensates and quark-baryon cores. For these the shear
modulus is given by

µ = 0.25MeV fm−3q20.4D
6
15S

−4
30 , (7)

where q0.4 is the charge density of quark droplets in units of
-0.4e, D15 is their diameter in units of 15 fm, and S30 is their
spacing in units of 30 fm. Following the correction for charge
screening in Owen (2005) an upper limit on shear modulus
is given as µ ≈ 1.3×10−2 MeV fm−3. If we evaluate Eqn. 4
with this, again substituting for the core radius (which as in
§3.1.2 we will set as 8 km) and using a fiducial stellar mass
of 1.4M⊙ and a maximum breaking strain of σmax = 10−2,
we get an upper limit on the quadrupole moment of Qmax ≈
3.5×1032 kgm2. This is less than the extremal value for a
normal neutron star. The work by Kurkela et al (2010a,b)
into cold quark matter suggest that hybrid stars (with pure

6 Mannarelli et al (2007) gives a range from 5 6 ∆ 6 25MeV,
although Knippel & Sedrakian (2009) suggest that for the low
temperature CCS phase appropriate for these cores larger gap
values, maybe up to 100MeV, are possible.

phases of hadronic and quark matter) could have masses up
to ∼ 2.1M⊙ and radii of ∼ 13 km although these are likely
to have only a tiny quark core i.e. they will mainly look like
a normal hadronic neutron star. However, they show that
stars with mixed phases of quarks and hadrons can have
masses of up to ∼ 1.9M⊙ and radii of ∼ 11 km, which with
the above assumptions allows larger quadrupole moments
of Qmax ≈ 1.8×1033 kgm2, comparable to the maximum
obtainable for a normal neutron star (although requiring a
smaller breaking strain). Converting this to an approximate
ellipticity, assuming the canonical moment of inertia, would
give ε ≈ 2×10−5.

3.1.4 Solid strange stars

In Xu (2003) the possibility is presented that neutron stars
could be made of solid strange quark matter. Xu (2003) uses
the observation of kHz quasi-periodic oscillations (QPOs) in
X-ray bursts from neutron stars in X-ray binaries, and their
potential association with torsional modes in the star, to give
a shear modulus for solid strange stars of µ ≈ 4×1031 Jm−3.
As pointed out by Owen (2005) the identification of the
QPO frequencies with torsional modes is somewhat prob-
lematic, but similarly we will take this shear modulus to
be an upper limit for strange stars. Also Lin (2007) notes
that the theoretical arguments for solid strange stars are
less robust that those for the crystalline colour supercon-
ducting stars discussed in §3.1.2. The masses and radii for
models of strange quark stars can be seen, for example,
in Fig. 2 of Lattimer & Prakash (2001). Although these
may not necessarily hold for solid strange stars we will
use the range of masses from 0.5–2M⊙ and radii from 8–
11 km given by this figure to estimate the likely range of
quadrupoles from Eqn. 4. Unlike a normal neutron star mod-
els of quark stars show a decrease in mass with a decrease in
radius. Using the maximum mass and radius and a break-
ing strain of σ = 10−2, gives the highest quadrupole of
Qmax ≈ 3.5×1034 kgm2. Converting this to an approximate
ellipticity, assuming the canonical moment of inertia, would
give ε ≈ 5×10−4.

4 LIMITS FROM DETECTION

The spin-down limit assumes that the total spin-down lu-
minosity of the pulsar is emitted as gravitational radiation,
but if we assume that the currently known pulsars are only
just observable at an S/N of 5 we can estimate what angle

averaged percentage of the spin-down power is going into the
gravitational wave emission. This is shown, for ALV, ET-B
and ET-C in Fig. 9. We can see that for the majority of pul-
sars for which we could beat the spin-down limit more than
1 per cent of the spin-down power would need to be lost via
gravitational waves for us to just observe them (with only 12
per cent, 26 per cent and 34 per cent requiring less than this
for ALV, ET-B and ET-C respectively). Less than 1 per cent
would be consistent with the one pulsar for which we have a
reliable limit on this for (the Crab pulsar) that is losing less
than 2 per cent of its power in this way (Abbott et al 2010a).
However, for the majority of pulsars we have no reliable way
to estimate how much energy is lost via gravitational waves,
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especially given that only a few young pulsars (and no mil-
lisecond pulsars) have measured braking indices, so 10s of
per cent are not ruled out.

As we saw in §3 there are large uncertainties in many of
the parameters that give rise to a neutron stars quadrupole
moment. The stars could also just be intrinsically quite un-
strained i.e. 〈σ22〉 may just be small. This, and the fact that
many parameters are highly correlated, means that gravita-
tional wave observations from the quadrupole of a triaxial
neutron star will generally be unable to pin-down much of
the physics giving rise to it. However, as we have seen in
§3 there are reasonably hard upper limits on the emission
allowable for stars with different EoS, so if we see emission
above a particular EoS limit then these observations could
rule that out for a particular pulsar, or alternatively rule
others in.

With this in mind we will look at all currently known
pulsars within the expected sensitive bands of ALV and the
Einstein Telescope (in ET-B and ET-C configurations) and
say whether they could be constrained to a particular EoS,
or whether a variety of EoS are valid. We will do this for
pulsars that the spin-down limit suggests are observable with
an S/N of 5 or greater. However, it should be noted that our
list of EoS is not exhaustive, and other possibilities may exist
(whether they have already been theorised or not), so here
constraining a pulsar to a particular EoS may not be the
end of the story.

The quadrupole moments for each pulsar that could be
observed with ALV, ET-B and ET-C are shown in Fig. 10,
both for the case that the pulsar is emitting at its spin-
down limit and also an angle averaged scaled value that
assumes the pulsar is only just observable at an S/N of 5
(the scaling factor for each pulsar can be obtained by taking
the square root of the values from Fig. 9). Maximum values
for the different EoS taken from §3 are also shown. The
values are calculated from known spin-down limits, which
are not available for globular cluster (GC) pulsars, so for
these we have limits based on two assumptions. The first
is a spin-down-based limit that assumes (see §4.1) that the

star has a maximal gravitational wave spin-down of ν̇ =
−5×10−13 Hz s−1, and the second is, as above, assuming that
the star is observable at an S/N of 5. As shown in §4.1 the
values of h0 needed to produce the levels of emission required
for this S/N can be converted into equivalent gravitational
wave spin-down values. For ALV about half, and for ET-
B/C all bar one of the pulsars (see Fig. 12), are well within
a range that could be masked by intra-cluster accelerations
(we exclude the others). The number of pulsars with angle
averaged quadrupoles below the spin-down limits for ALV,
ET-B and ET-C are 59, 295 and 624 respectively (or 77, 408
and 774 respectively for the best case orientation, and 50,
408 and 531 for the worst case orientation). Note that due
to the reasons discussed in §2.1 these numbers are not quite
the same as those suggested from an angle averaged S/N.

From Fig. 10 (summarised in histogram form in Fig. 11)
we see that for the vast majority of young pulsars (gen-
erally those below ∼ 40Hz) the S/N limits correspond to
large quadrupoles only supportable by the most extreme
EoS mainly through the the application of a large break-
ing strain. We unfortunately cannot expect the majority of
these quadrupoles to be realistic unless there is a very unex-
pected large population of highly deformed stars. However,
this could be realistic for a small subset of these pulsars, or
some as yet undiscovered sources.

It should be stressed that these pulsars could however
all be very smooth. The spin-down limits alone in Fig. 10
show that the lowest quadrupoles are only a few 1029 kgm2

(or converting to ellipticities a few 10−9) and all pulsars
could be at or below this level. However, even at this low
level Fig. 10 shows that these may be detectable at S/N of
a few with ET.

A summary of the total numbers of pulsars below each
EoS limit for pulsars within, and outside, GCs is given in
Table 3.

4.1 Spin-down limits for Globular Cluster pulsars

Several globular clusters have been specifically targeted in
radio searches for millisecond pulsars due to having a large
population of old stars. This has lead to a selection effect
giving large numbers of the currently known pulsars residing
in GCs. Pulsars within a GC will undergo significant accel-
erations, which contaminate their true spin-down rate ν̇int
via

ν̇obs = ν̇int −
a||
c
ν (8)

where ν̇obs is the observed spin-down, ν is the pulsar fre-
quency and a|| is the pulsar’s acceleration along the line-
of-site – in fact many are observed to have a spin-up due
to the accelerations (as they are millisecond pulsars they
have small intrinsic spin-downs anyway, so it is quite easy
for the accelerations to swamp this value). We can therefore
use gravitational wave observations of this set of pulsars,
either through upper limits or detections, to set limits on
the gravitational wave component of the intrinsic spin-down
rate via

ν̇GW = −h2
0

(

2c3r2ν

5GIzz

)

. (9)
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Figure 10. Necessary quadrupole moments of known pulsars,
based on spin-down limits, for them to be observable with (from
top to bottom) ALV, ET-B and ET-C. Limits based on the ob-
served spin-down, or a spin-down of ν̇ = −5×10−13 Hz s−1 for
GC pulsars, are given as crosses (blue for non-GC pulsars and
black for GC pulsars). Angle averaged quadrupole values based
on emission at an S/N of 5 are given as triangles. The approx-
imate maximum quadrupoles from the various EoS discussed in
§3 are also plotted.
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Figure 11. Quadrupole moments of known pulsars (Fig. 10), for
them to be observable with ALV, ET-B and ET-C if emitting at
the spin-down limit (top) and if scaled as to be just observable
at an S/N of 5 (bottom). The filled histograms show just those
pulsars outside of globular clusters and the unfilled histograms
also include pulsars within globular clusters.

We cannot however limit the overall spin-down as, unless
the stars acceleration can be independently assessed and
the observed spin-down calculated, there is no way to know
what fraction of the total spin-down is due to gravitational
wave emission. As stated in Owen (2006) by looking at
the observed spin-downs given for GC pulsars in the Aus-
tralia Telescope National Facility (ATNF) Pulsar Catalogue
(Manchester et al 2005) it would be hard for cluster dynam-
ics to mask spin-downs larger than ν̇ ∼ −5×10−13 Hz s−1

(this being the largest observed spin-up seen for any GC
pulsar), so if gravitational wave observations can limit val-
ues to smaller than this, then results could be providing new
information.

In Fig. 12 the values of the gravitational wave spin-down
that the GC pulsars would require to be observed at S/N of
5 are given. For ALV 52 of the 103 observable GC pulsars,
and for ET-B and ET-C 1 of the 107 observable pulsars,
would need spin-downs greater than −5×10−13 Hz s−1, i.e.
values that probably could not be masked by accelerations
and therefore would already be seen as having large spin-
downs from radio observations. For the rest of the pulsars
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Figure 12. Spin-downs that would be needed in currently known
GC pulsars for them to be observed with (from top to bottom)
ALV, ET-B and ET-C at an S/N of 5.

the spin-downs they would need could relatively easily be
masked by accelerations, so they are definitely worthwhile
as targets for gravitational wave searches.

These limits are the smallest values that the spin-down
could have to be observable, but for many of these pulsars
there is a 1–2 orders of magnitude range between these limits
and the (observationally motivated, but slightly arbitrary)

maximum limit of ν̇ ≈ −5×10−13 Hz s−1. So, there is quite
a lot of leeway for these pulsars to be emitting at greater
levels than that producing an S/N of 5. Also, it can be seen
from Fig. 10 that for the majority of these pulsars, both
the maximum and minimum observable quadrupoles are in
ranges allowable by all equations of state.

4.2 Limits on magnetic fields

Deformations of a neutron star can be supported purely by
the strain that the star can sustain7, although the mecha-
nism giving rise to this strain may be unknown. However,
magnetic fields give both a mechanism for producing strains,
and a way of sustaining that strain. The external mag-
netic fields of most pulsars can be estimated by assuming
that all spin-down is due to magnetic dipole radiation, and
these show that for millisecond pulsars the magnetic field
strengths are comparatively small (108 to 109 gauss) and
nowhere near enough to sustain an appreciable deformation
on the star. The young pulsars have external dipole fields
about 1000 times larger at ∼ 1012 gauss, but this is gener-
ally still not enough to give deformations that would produce
observable gravitational waves. However, these stars could
potentially have internal fields far larger than the external
dipole, which would be large enough to give rise to gravita-
tional wave producing distortions. As done in Abbott et al
(2010a) we can use gravitational wave observations, or up-
per limits, to place limits on this internal field strength for
all the currently known pulsars. Cutler (2002) predicts that
in normal neutron stars toroidal magnetic fields could give
rise to prolate stars with ellipticities of order

ε = 1.6×10−6 ×

{

〈B15〉G, B < 1015 G,

〈B2
15〉/G

2, B > 1015 G,
(10)

where 〈B15〉 is the volume averaged magnetic field in units
of 1015 G. Haskell et al (2008) also study the role of internal
magnetic fields, both entirely poloidal and toroidal, and how
this would effect the star’s ellipticity (in particular for a star
with an EoS described by an n = 1 polytrope). They give

ε ≈ R4
10M

−2
1.4 〈B

2
15〉 ×

{

2×10−4, poloidal,

−1×10−6, toroidal,
(11)

which for the toroidal case is similar to that of Cutler (2002).
Very similar limits for toroidal fields in superconducting
stars are given by Akgün & Wasserman (2008). These equa-
tions can be re-arranged to give limits on the magnetic fields
given gravitational wave observations of the quadrupole (see
§3) and an assumed moment of inertia, which here we will
take as 1038 kgm2 (as noted above this is probably a lower
limit and could differ by up to a factor of ∼ 3). Potential
measurements of the field strength for both the poloidal and
toroidal cases if signals were observed at an S/N of 5 for the
ALV, ET-B and ET-C set ups are given in Fig. 13.

7 How long such a deformation could be sustained due to visco-
elastic creep smoothing it out is something that needs fur-
ther study, e.g. Chugunov & Horowitz (2010) who suggest short
timescales of a few years for hot stars, but far longer for cooler
stars (although they note extrapolations to lower temperatures
and longer timescales must be treated with care).
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Table 3. Summary of the quadrupole moment limits given in Figs. 10 and 11. For comparison the total number
of non-GC pulsars with angle averaged quadrupoles below the spin-down limit and observable with an S/N
> 5 are 59, 295 and 624 for ALV, ET-B and ET-C respectively. The total number of GC pulsars potentially
observable with S/N > 5 and a spin-down limit smaller than −5×10−13 Hz s−1 is 51 and 106 for ALV, and
ET-B/C respectively.

Number of pulsars below limit

Qmax CCS Qmax SSS Qmax NNS Qmax HS

ALV

spin-down limit 59 17 3 3
S/N=5 59 42 11 9
GC spin-down limit (ν̇ = −5×10−13 Hz s−1) 51 51 51 50
GC S/N=5 51 51 51 50

ET-B

spin-down limit 286 90 53 51
S/N=5 292 175 103 85
GC spin-down limit (ν̇ = −5×10−13 Hz s−1) 106 101 99 97
GC S/N=5 106 103 101 101

ET-C

spin-down limit 605 131 43 41
S/N=5 618 421 152 93
GC spin-down limit (ν̇ = −5×10−13 Hz s−1) 106 101 99 97
GC S/N=5 106 104 102 101

We can see that for the young pulsars (with frequen-
cies . 40Hz) internal magnetic fields of greater than 1014 G
would be required to observe them, which is of a similar
strength to the external fields of a magnetars at 1014 −
1015 G. For the millisecond pulsars, in particular the non-GC
pulsars, internal poloidal fields of a few 1012 G could provide
observable signals, although if there are only toroidal fields
then a couple of orders of magnitude higher would be nec-
essary. Of course the field geometry could be complex and
a combination of toroidal and poloidal components, and the
calculations above rely on a specific EoS.

5 DISCUSSION

We have looked at our ability to detect and estimate param-
eters from gravitational wave observations for known (non-
accreting) pulsars. Using Bayesian hypothesis testing, we es-
timate that signals with an S/N of 5 could be detected with
95 per cent efficiency. This assumes that the data is Gaus-
sian, and experience of real detector data shows that this
assumption can be reasonable on short time scales and with
effectively cleaned data, although there will still probably
be some small degrading of detection ability.

Once detected, we have shown how estimates of vari-
ous parameters will be affected as signals increase in S/N,
and also how the pulsar’s orientation affects this. We see
that for strong signals in the case where the orientation is
most favourable and gives a larger S/N (i.e. the gravita-
tional waves are circularly polarised) the uncertainty on the
gravitational wave amplitude will actually be larger than an
equivalent amplitude source with a worse orientation. So,
when detections become regular the best parameter con-
straints will actually be made for the linearly polarised
sources. However, we also see that unless the distance to
these pulsars can be measured to better than ∼10 per cent
then the fractional error on the quadrupole calculated from
the gravitational wave amplitude will be relatively insensi-

tive to the orientation, because the uncertainty is dominated
by the distance uncertainty.

We have seen the sorts of mass quadrupoles that would
be necessary to observe the set of currently known pul-
sars with future gravitational wave observatories, and com-
pared these to maximum theoretical predictions for a va-
riety of EoS. As has previously been noted many times
(e.g. Abbott et al 2007a) for the majority of millisecond
pulsars, if we are able to beat their spin-down limits and
observe them, the quadrupoles (or ellipticities) they would
have are sustainable by all EoS and would therefore not
be able to constrain the type of matter in the star. How-
ever, with observations of many pulsars useful population
statistics could be obtained and potential differences be-
tween different populations explored (e.g. GC pulsar and
non-GC pulsars). To be observed with ALV, ET-B or ET-
C the majority of young pulsars (with frequencies . 40Hz)
would have to have quadrupoles greater than ≈ 1033 kgm2,
which would only be sustainable for highly strained crys-
talline colour-superconducting stars or solid strange quark
stars. Therefore if such stars were observed it would provide
a great deal of insight into neutron star matter. The number
of pulsars potentially observable at an S/N of 5, and consis-
tent with being a normal neutron star is 11 for ALV, 103 for
ET-B and 152 for ET-C. It is important to note that this
does not mean that they will have these quadrupoles and
they could all be smoother than our limits are able to set.

In Andersson et al (2011), which studies the prospects
of observing gravitational waves from neutron stars with
ET (in particular the ET-B configuration), they take the
assumption that realistic stars would optimistically have el-
lipticities < 10−7 and conclude that only some of the 100s
of millisecond pulsars currently known would be potentially
observable. From this work we can look at the number of
known pulsars we might expect to be observable at an S/N
greater than 5 given that they are losing less than a spe-
cific percentage of their spin-down power through gravita-
tional wave emission, and have quadrupoles below specific
levels (this is shown in Table 4). We find that for ALV if we
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Figure 13. Potential internal magnetic field strengths that would
be needed in currently known pulsars to observed them with an
S/N of 5 with (from top to bottom) ALV, ET-B and ET-C.

take pulsars that would only need to be emitting less than
50 per cent of their spin-down luminosity via gravitational
waves to be observable at S/N of greater than 5, and had
quadrupoles less than Q22 < 1030–1031 kgm2 (or ellipticities
of . 10−8–10−7), then only three of the currently known pul-
sars would be observable. We find that none are observable
if requiring these quadrupole levels and also emitting less

Table 4. The number of pulsars potentially observable given
gravitational wave emission consuming less than various percent-
ages of the total spin-down power, and requiring quadrupoles less
than the given values.

Number of pulsars

Q22 kgm2 < 1033 1032 1031 1030

ε . 10−5 10−6 10−7 10−8

Per cent of spin-down power < 100 per cent

ALV 8 5 4 1
ET-B 51 45 37 27
ET-C 40 38 33 25

Per cent of spin-down power < 50 per cent

ALV 5 3 3 1
ET-B 37 32 27 19
ET-C 28 26 23 15

Per cent of spin-down power < 10 per cent

ALV * * * *
ET-B 15 13 11 6
ET-C 12 10 9 6

Per cent of spin-down power < 1 per cent

ALV * * * *
ET-B 2 2 1 1
ET-C 1 1 1 1

than 10 per cent of the spin-down power via gravitational
waves. For ET (in either ET-B or ET-C configurations) if
we take pulsars which would only need to be emitting less
than 10 per cent of their spin-down luminosity, and with
quadrupoles < 1030–1031 kgm2, then 6–11 currently known
pulsars would be observable respectively. For the one pul-
sar that we can currently calculate a limit on the spin-down
power we see that less than 2 per cent of the spin-down lu-
minosity is emitted via gravitational waves, so using this as
a guide and taking only pulsars that could emit less than
1 per cent of their spin-down power in gravitational waves
and still be observable (and with the above quadrupoles)
we find only one pulsar. These numbers are based on cur-
rently known pulsars and use only the non-GC pulsars; for
the millisecond pulsars that these results represent (due to
the small quadrupole requirements) approximately half are
within GCs, so assuming there is no difference in spin-downs
between GC and non-GC populations of pulsars then the
number of observable pulsars could double. Also, as stated
in §2, future radio telescopes such as the SKA could observe
≈ 1000 millisecond pulsars increasing the current number
by a factor of 5. This could give 10s of observable pulsars
for ET.

We see that for many millisecond pulsars, if they have
internal poloidal magnetic fields similar in strength to the
external fields of young pulsars, or toroidal field similar in
strength to the external field of magnetars, then they may
sustain ellipticities that make them observable. In reality
the internal field will probably consist of both poloidal and
toroidal components. Young pulsar would require far higher
magnetic fields for them to sustain ellipticities that would
allow them to be observable.

The above estimates have all assumed a year of obser-
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vation. However, the future detectors could run over several
years, and the third generation detectors may even be the
premier gravitational wave observatories spanning decades.
There could also be other similarly sensitive detectors added
to the network (e.g. the LCGT). All of these would increase
the ability to make observations of, and hopefully refine pa-
rameter estimation for, known pulsars, although the scaling
of these improvements (for equivalent detectors) will only
be the square root of the observation time. Better prospects
could come from a far larger selection of pulsar targets from
future radio/X-ray/γ-ray surveys.

One of the main points to note here is that all the above
calculations have significant uncertainties to them. The the-
oretical study of neutron star EoS is still an area of study
with large uncertainties. Neutron star mass measurements
currently seem to favour fairly conventional EoS, and our
upper limits for these may be a fair representation of reality.
However, the current crop of known pulsars may harbour a
variety of stellar types and our observations may be the only
way to differentiate between them. More theoretical under-
standing through simulations of maximum breaking strains
of quark matter and hybrid star matter would be of great
help in making these constraints. In addition to determin-
ing whether a star is physically capable of supporting an
observably large strain it is of great importance for future
studies to find mechanisms of producing and sustaining such
strains.

The study here has also assumed emission from a triax-
ial neutron star emitting at precisely twice the observed elec-
tromagnetic frequency via the Q22 mass quadrupole. Poten-
tially more interesting physics could be extracted if the grav-
itational wave signal and electromagnetic signal were not so
closely aligned (e.g. if pulsar timing noise is only present
in the electromagnetic signal Jones 2004; Pitkin & Woan
2007). Deviations between the two could uncover informa-
tion about the coupling of the gravitational wave producing
component and electromagnetic-producing component, and
emission may occur at the rotation rate (Jones 2010). Also,
gravitational waves from other vibrational modes, such as
long-lived r-modes (Arras et al 2003; Owen 2010), or funda-
mental modes (possibly excited by glitches), may be able to
tell us far more about the neutron star EoS.
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