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This paper provides a detailed mission analysis and systems design of a pole-sitter mission. It 

considers a spacecraft that is continuously above either the North or South Pole and, as such, can 

provide real-time, continuous and hemispherical coverage of the polar regions. Two different 

propulsion strategies are proposed, which result in a near-term pole-sitter mission using solar 

electric propulsion and a far-term pole-sitter mission where the electric thruster is hybridized with 

a solar sail. For both propulsion strategies, minimum propellant pole-sitter orbits are designed. 

Optimal transfers from Earth to the pole-sitter are designed assuming Soyuz and Ariane 5 launch 

options, and a controller is shown to be able to maintain the trajectory under unexpected conditions 

such as injection errors. A detailed mass budget analysis allows for a trade-off between mission 

lifetime and payload mass capacity, and candidate payloads for a range of applications are 

investigated. It results that a payload of about 100 kg can operate for approximately 4 years with 

the solar-electric spacecraft, while the hybrid propulsion technology enables extending the missions 

up to 7 years. Transfers between north and south pole-sitter orbits are also considered to observe 

either pole when illuminated by the Sun. 

Nomenclature 

A  Area, m
2
 

a  Acceleration vector, mm/s
2
 

AU Astronomical Unit, 81.495978707 10  km  

d  Earth to pole-sitter distance, km 

f  Dynamics function 

J  Objective function 

k  Specific performance of SEP, kg/kW 

K  Gain matrix 

m  Mass 

drym  Dry mass, kg 
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gimbalm  Gimbal mass, kg 

otherm  Additional spacecraft subsystems mass, kg 

plm  Payload mass, kg 

propm  Propellant mass, kg 

radm  Radiator mass, kg 

tankm  Propellant tank mass, kg 

thrusterm  SEP thruster mass, kg 

thrustersn  Number of SEP thrusters 

P  Power, W 

dP  Excess power, W 

Q  Weight matrix 

r  Position vector, km 

R  Weight matrix 

t  Time, days or years 

t  Given instant of time 

missiont  Mission lifetime, days or years 

u  Control vector 

v  Velocity vector, m/s 

w  Objective weight factor 

W  Energy flux density of the Sun at 1 AU, 1367 W/m
2
 

x  State vector 

  Cone angle, deg 

  Solar sail lightness number 

eq  Obliquity of the ecliptic, deg 

xr  Error on position in x-direction, km 

u  Feedback control 

zv  Error on velocity in z-direction, m/s 

x  State error 

new  Margin for new technologies 

old  Margin for well-proven technologies 

  Efficiency 

gimbal  Proportionality constant for gimbal mass 

  Areal density, g/m
2
 

   Critical sail loading, g/m
2
 

ω  Angular velocity vector, rad/year 

Subscripts 

0  At initial time, i.e. injection into pole-sitter orbit 

f  At final time 

max  Maximum value 

r  Reference  

s  Solar sail 

SA  Solar array 

SEP  Solar electric propulsion 

TF  Thin film solar cells 

Other notation 

 Differentiation with respect to time 
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I. Introduction 

Spacecraft in geostationary orbit (GEO) have demonstrated the significant benefits offered by continuous coverage of a 

particular region. However, GEO platforms can only provide their services in the equatorial and temperate zones, where 

elevation angles are sufficiently high. 

At higher latitudes, similar services are provided at present by mainly two types of conventional platforms: highly-

eccentric, inclined orbits, or low or medium polar orbits. 

The first class includes the well-known Molniya-type orbits: they exploit the oblateness of the Earth (effect of the J2 

term in the geopotential) to maintain the argument of the pericentre constant in time [1]. In order to achieve this condition, 

their inclination must be fixed at the critical value of 63.4°. This value is still relatively low to obtain a satisfactory coverage 

not only of the polar caps, but also of the high-latitude regions [2]. Due to their high eccentricity, the orbit apocentre is 

usually at a distance that is comparable to GEO, and therefore offers a hemispheric view of the Earth, albeit not centered in 

the pole. However, an intrinsic limitation is the impossibility of providing continuous coverage over time: despite that the 

spacecraft spends a significant fraction of its orbital period around the orbit apocentre, the viewing conditions of the poles 

change continuously, and there is an interval of time in which the spacecraft is at the pericentre and coverage is not 

available. With an orbital period of approximately 12 hours, it has been shown that from three to six Molniya spacecraft are 

necessary to provide satisfactory continuous coverage [3]. 

Recent research [4] has considered changing the critical inclination of the Molniya orbit to 90°, using a continuous solar 

electric propulsion (SEP) system for maintaining the orbit. However, continuous and so a constant polar view is still not 

available with a single spacecraft. 

The second class of orbits largely consists of Sun-Synchronous orbits. Spacecraft in these orbits are used due to the high 

spatial resolution that they can provide. However, only a narrow swath is imaged at each polar passage, relying on multiple 

passages (and/or multiple spacecraft) for full coverage. For example, Landsat 7 (altitude of 705 km at 98.2°) completes just 

over 14 orbits per day, covering the entire Earth between 81 degrees north and south latitude every 16 days.
*
 This results in 

a poor temporal resolution for the entire polar region, as different areas are imaged at different times, hence missing the 

opportunity to have a simultaneous and continuous real-time view of the pole. At present, these images are post-processed 

to make a composite image, which can be used, for example, for weather forecasting and wind vector prediction. However, 

the data that can be extracted is neither complete nor accurate [5]. 

                                                           
* Landsat 7 Handbook, http://landsathandbook.gsfc.nasa.gov/ [Cited 12/09/2011] 

http://landsathandbook.gsfc.nasa.gov/
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To overcome these limitations, the ideal platform would be one with a continuous view of the poles for a long duration, 

or even better, one that is constantly above one of the poles, stationary with respect to the Earth, in the same way as a GEO 

spacecraft is stationary above one point on the equator. In this position, the footprint of the spacecraft will be constantly at 

the pole, in the same way as the footprint of a geostationary spacecraft is constantly at some longitude on the equator. 

This spacecraft is known in literature as “pole-sitter”, which uses low-thrust propulsion to maintain a position along the 

polar axis (see Fig. 1). The pole-sitter is the only platform that can offer a truly continuous hemispheric view of one of the 

poles, enabling real-time imaging over the entire disc. The first study of this concept was apparently made by Driver [6] in 

1980, although the author notes that the original idea belongs to the mathematician and writer Kurd Lasswitz from 1897. 

 

a)

June

September

December

March
b  

Fig. 1 Pole-sitter concept in (a) Sun-centered inertial frame and (b) Earth-centered frame. 

 

In order to keep the pole-sitter spacecraft at a fixed position on the polar axis, a continuous acceleration has to be 

provided, to counterbalance mainly the gravitational attraction of the Earth and of the Sun. Driver proposed the use of solar 

electric propulsion (SEP). SEP is now a mature technology, but despite its high efficiency, the thrusting time and hence the 

mission duration is always limited by the mass of propellant on-board. 

In order to avoid this drawback, some authors investigated the use of solar sailing [7] instead of SEP as a means to 

provide the continuous acceleration to continuously observe high-latitude regions. Novel families of non-Keplerian orbits 

(NKOs) [8] and artificial displaced equilibria were introduced, to provide similar services; the Statite [9] is a static solar sail 

spacecraft concept for polar communications, based on the surfaces of equilibrium for a solar sail in the circular restricted 

three-body problem [10]. However, due to the intrinsic limitation of the sail to provide an acceleration away from the Sun 

and limitations in realistic sail area-to-mass ratios, none of these concepts achieve satisfactory conditions for continuous 

coverage of high-latitude regions. This and other issues are discussed in detail in Ref. [2], together with a comparison of 

concepts for high-latitude observation. 
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In order to overcome the limitations of a platform based on a pure sail, hybrid propulsion has been proposed [11]. 

Hybridizing SEP and solar sailing is a comparatively recent idea [11], nevertheless research is flourishing in this field, 

investigating novel, interesting applications: artificial equilibria above L1 in the Sun-Earth system for Earth observation 

[12], optimal interplanetary transfers to Venus and Mars [13, 14], displaced periodic orbits in the Earth-Moon system [15] 

and displaced NKOs for geostationary coverage [16]. 

In the hybrid system, at the cost of increased spacecraft and mission design complexity, the two propulsion systems 

complement each other, cancelling their reciprocal disadvantages and limitations. In principle, SEP can provide thrust in 

almost any direction (as long as the exhaust flow does not interfere with other spacecraft systems), and in particular towards 

the Sun, where the sail cannot. Similarly, the hybrid spacecraft can be seen as an SEP spacecraft, in which an auxiliary solar 

sail provides part of the acceleration, enabling a saving of propellant mass, and lowering the demand on the electric thruster, 

possibly with some intervals in which it could be turned off. In this sense, the hybrid spacecraft can be seen as a way to 

gradually introduce solar sails for space applications, and hence to reduce the advancement degree of difficulty [17] in the 

technology readiness level scale. Therefore, hybrid propulsion can in principle enable missions that are not feasible using 

only a solar sail and can extend the mission lifetime with respect to the pure SEP case. 

Regardless the type of propulsion, the acceleration required by a pole-sitter spacecraft increases dramatically as the 

spacecraft is stationed closer to the Earth, and reasonable values of acceleration are obtained only if the Earth-spacecraft 

distance is of the order of millions of kilometers [6, 18]. Nevertheless, the advantage of having a static or quasi-static 

platform is such that these concepts are worth considering and investigating [19]. Although high-bandwidth 

telecommunications and high-resolution imagery are difficult due to the large Earth-spacecraft distance, a number of novel 

potential applications are enabled, both in the fields of observation and telecommunications, which will be described later in 

the paper. 

Due to these potential benefits, and with the aim of increasing mission lifetime, the authors have undertaken an 

extensive investigation focused on the concept of a hybrid-propulsion pole-sitter. Recent publications detailed different 

parts of the mission: the generation of optimal hybrid pole-sitter orbits [18], the hybrid system mass budget [20], the design 

of optimal transfers to the pole-sitter orbit from LEO [21], and the design of optimal north-to-south transfers [22]. These 

papers presented in detail the trajectory optimization process for each one of the mission phases. However, a complete end-

to-end mission design, including the trajectory integration, the payload selection and consequently the spacecraft sizing, has 

not been presented. 

The intent of this paper is to build upon the methodologies used in the previous works, and by using the trajectory 

optimization tools developed previously, to design a complete mission for a realistic pole-sitter spacecraft, covering one 
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pole continuously or either pole seasonally. We will consider two launcher options (Ariane and Soyuz) and for each one, 

compare two spacecraft propulsion options (SEP or hybrid sail-SEP), thus creating four different mission scenarios. In 

addition, suitable payloads will be identified for the mission, and through a detailed and conservative systems design and 

mass budget, the mass and the lifetime of the spacecraft, for the different scenarios, will be determined. Finally, a controller 

is designed and simulated to quantify the effects of the orbital perturbations and possible launcher injection errors. 

II. Mission Description 

A. Mission Phases 

The complete pole-sitter mission is split into different phases, which will be described in detail and designed in the 

following sections. The phases are schematically represented in Fig. 2. 

The mission starts with a launch and transfer phase. This phase begins with the spacecraft injected into a low Earth orbit 

(LEO) by the launcher; the type and size of the LEO depends on the launcher used. The launcher upper stage provides 

number of impulsive maneuvers, before jettisoned; the spacecraft continues the transfer using its own low-thrust propulsion 

system, up to the injection point into the pole-sitter orbit. 

At this point, the operational phase begins. The operational phase is the one in which the spacecraft is stationed along 

the polar axis of the Earth, maintaining its nominal pole-sitter orbit. This is obviously the most important phase of the 

mission, and its duration shall be maximized. 

Since each pole is lit only 6 months per year, it is an option, especially for observations in the visible part of the 

spectrum, to transfer the spacecraft from a North Pole operational orbit to a symmetric orbit below the South Pole, and vice-

versa, according to their lighting conditions. Therefore, an additional north-to-south transfer phase is designed. This phase 

can be inserted at appropriate points along the nominal orbit to enable the transfer to the other pole, where a symmetric 

operational orbit can be followed. 

These three phases will be described and designed sequentially, starting from the operational phase, which defines the 

optimal nominal orbit. Then, the transfer from Earth to this orbit will be designed. The optimization of the transfer allows 

the determination of the maximum mass at the pole-sitter orbit injection, and therefore the spacecraft can be sized and the 

lifetime assessed. Finally, the north-to-south transfers will be designed, between optimal pole-sitter orbits. 

The design of the three phases requires the solution of optimal control problems, which are solved numerically using a 

direct method based on pseudospectral transcription, implemented in the tool PSOPT [23], and the non-linear programming  

problem is solved through IPOPT (interior point optimizer, [24]). 
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Fig. 2. Representation of the mission phases. 

 

1. Trajectory models 

For the transfer and operational phases we consider a three-body problem in which the spacecraft is subject to the 

gravitational attraction of both the Earth and the Sun. This choice is made since the gravity of the Earth and the Sun are both 

important for a practical pole-sitter. In particular, we use the well-known circular restricted three-body problem (CR3BP), 

which describes the motion of the spacecraft, of negligible mass, under the influence of the Sun and Earth (the primaries) 

that rotate in circular motion around each other (at a constant distance of 1 Astronomical Unit, AU). The reference frame is 

synodic, with its origin at the center-of-mass of the system, the x-axis passing through the Sun and the Earth, and oriented 

towards the latter, and the z-axis perpendicular to the ecliptic plane, see Fig. 3. The equations of motion for the spacecraft 

can be found in Ref. [18]. 

Note that the launch phase, which occurs close to the Earth, will be modeled using a two-body approach. Details of this 

model will be given in Section III.B. 

 

 
Fig. 3 Synodic reference frame of the restricted three-body problem and pole-sitter reference. 
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(South pole-sitter orbit) 
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B. Spacecraft Propulsion Options 

We consider two different spacecraft architectures. The first is a pure SEP spacecraft, in which solar electric propulsion 

is used to provide the acceleration required throughout the mission. The spacecraft complexity is relatively low in this case, 

due to the high TRL of this type of propulsion system. The second is a more advanced, long-term spacecraft that exploits 

both solar sail and solar electric propulsion on the same bus. 

1. Pure SEP 

The pure SEP spacecraft can be considered as a conventional spacecraft with deployable solar arrays to power the 

propulsion system. Usually, the solar panels can be rotated along their longitudinal axis, so as to modulate the power 

delivered according to the instantaneous need of the spacecraft. The thruster is assumed to be rigidly connected to the 

spacecraft bus, and the thrust vector is steered by changing the attitude of the spacecraft (the instruments can be mounted on 

a gimbal). 

The key technology parameters of an SEP thruster are the maximum thrust that it can provide, usually in the order of a 

fraction of a Newton, and its specific impulse. In this paper, we assume that the maximum thrust is used to size the SEP 

system, as will be explained later, and a fixed specific impulse of 3200 s is conservatively assumed, based on current ion 

engine technology (existing NSTAR/DS1 [25] or EADS/Astrium RIT-XT [26]). It is foreseen that this specific impulse 

allows levels of thrust suitable for the spacecraft and mission under consideration. 

Since the fuel mass consumption is directly related to the magnitude of the thrust, in general we will try to find 

trajectories that minimize propellant consumption, in order to maximize the mission lifetime, or alternatively, to maximize 

the payload mass for a given lifetime. 

2. Hybrid Sail and SEP 

In this scenario, we envisage the use of a spacecraft that combines solar sailing and SEP. As noted earlier, this adds 

system complexity, but it can be advantageous in terms of mission lifetime, as it will be shown in this paper. 

The hybrid spacecraft has a bus from which the sail is deployed, and thus the sail is rigidly connected to it (see Fig. 4). 

We assume that the sail can be steered, with relatively modest angular acceleration, by using the attitude control system of 

the spacecraft. The SEP thruster is mounted on a gimbal system, because it is required that the SEP thrust vector can steer 

independently of the sail orientation, for control purposes. Furthermore, the SEP system requires electrical power in order to 

operate. In conventional spacecraft, this is collected through solar arrays that are hinged on the spacecraft bus and can be 
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oriented towards the Sun when power is needed. This type of architecture would be difficult to implement due to the 

presence of the sail. We instead envisage a layer of thin film solar cells (TFSC) which partly occupy the sail surface, 

similarly to the IKAROS spacecraft [27]. 

 

Highly reflective surface

TFSC

 
Fig. 4 Hybrid spacecraft with sail, thin film solar cells and steerable thruster. 

 

We assume a partially reflective, partially absorbing solar sail (optical sail model) of total area As, such that the solar 

radiation pressure generates an acceleration with a component perpendicular to the sail and one parallel to it  [11, 12]. The 

sail acceleration is proportional to the parameter  , the system lightness number, which is a function of the sail loading 

m A   of the spacecraft (spacecraft mass over total sail area): 

     (1) 

with 3 21.53 10  kg m     the critical sail loading. However,   can also be defined as the ratio of the maximum solar 

radiation pressure acceleration at 1 A.U. (sail characteristic acceleration) to the gravitational acceleration. Note that   

varies during the mission, because of the decrease in spacecraft mass m due to SEP propellant consumption. We therefore 

introduce the value 0

0

m

m
  , constant, in which the subscript “0” refers to the parameters at the injection into the pole-

sitter operational orbit, when the time is 
0t . Note that the pure SEP spacecraft can be considered as a particular hybrid 

system with 0 0   . Values of β up to 0.05 can be assumed for a near-term hybrid system [28]. Recent solar sail 

demonstrators, however, had considerably lower lightness numbers: JAXA’s IKAROS [29] has a 20-m-diagonal square sail 

and weighs 350 kg (β = 0.001), while NASA’s NanoSail-D2 [30] is 4 kg for 10 m
2
 (β = 0.003).  

In the hybrid spacecraft, the TFSCs are assumed to cover an area 0.05TFA A  on the sail. This area ratio is a 

conservative estimation based on previous studies [12] and the IKAROS mission [29], and it is used to compute the optimal 

orbits. The actual value of this area depends on the spacecraft technology parameters, as well as the selected orbit, and will 

be computed in Section V.A. 
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Another important technological parameter of a sailcraft is the areal density of the sail assembly, σs. It measures the 

mass of the sail per unit surface area, and it is expected that technological developments [28] should enable sails of 10 g/m
2
 

in the near future. Ultra-thin (around 2 μm of thickness) sails are expected in the mid- to far-term timeframe [31] and can 

lead, for large sails, to sail loadings of the order of 5 g/m
2
. 

Given these considerations, the value of 
0  for the hybrid scenario can be decided following the study in Ref. [20]. That 

work showed that, if a sail assembly areal density of 10 g/m
2
 is considered, then the hybrid spacecraft is beneficial only if 

very long missions are considered (i.e. lifetime > 7 years). Instead, considerable mass saving (or extended lifetime) is 

expected considering a hybrid system with 25 g ms   (or below). Furthermore, for this value, it is found that that 

0 0.035   represents the lightness number in which the spacecraft initial mass, for a given payload, is lowest over a range 

of mission lifetimes. For these reasons, we select for this scenario: 0 0.035  , 25 g ms  . 

III. Trajectory Design 

A. Pole-Sitter Operational Orbits 

In this section, we design an optimal pole-sitter orbit for each of the two types of spacecraft under consideration. 

A pole-sitter spacecraft is stationed along the polar axis of the Earth. We can consider that the direction of the polar axis 

of the Earth is inertially fixed while the Earth is orbiting the Sun (neglecting the nutation of the polar axis and the 

precession of the equinoxes). In the synodic ecliptic reference frame, the same axis rotates with a motion of apparent 

precession, due to the obliquity of the ecliptic: its angular velocity is 2 year     (see Fig. 3). Therefore, the polar axis 

spans a full conical surface every year, in a clockwise direction (refer again to Fig. 3). The cone half angle is the tilt of the 

axis relative to the ecliptic, i.e. 23.5 degeq  . The position of the spacecraft is to be constrained to follow the clockwise 

apparent precession of the polar axis, and hence maintain the pole-sitter condition. Without loss of generality, we consider 

the time 0 0t   as the winter solstice, and therefore the spacecraft’s position is function of the only free variable  d t , a 

function of time which represents the distance of the spacecraft from the Earth. Fig. 3 represents a particular pole-sitter orbit 

in which  d t  is constant. 

An optimal pole-sitter orbit is defined as the one that minimizes the propellant consumption of the spacecraft, while 

maintaining the pole-sitter condition at any time, and being one-year periodic. The implicit approximation that is made here 

is that the optimal control problem is solved only for the first year (or period) of the mission, and the same trajectory is then 

used for following years. In reality, a fully optimized trajectory would change year by year, due to the change in mass of the 
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spacecraft. In other words, the optimal control problem should be solved not only for one year, but for the entire mission 

lifetime at once. However, the lifetime cannot be determined at this stage, and the full optimization would result in only 

minor differences and therefore it is not used in this paper. 

Details of the optimization process are presented in Ref. [18]. As noted, the optimal control problem is solved with 

PSOPT, and the first guess is found through an inverse approach, in which a trajectory satisfying the constraints is assumed 

(although non-optimal) and the controls for this trajectory are derived through a semi-analytical procedure. 

The mass of the spacecraft appears in the equations of motion. In Ref. [18] the initial mass was set arbitrarily to 1000 kg, 

but in this work the initial mass is not known: it depends on the launcher capability and the transfer phase, which in turn 

depend on the operational orbit. However, it can be shown that if the SEP system can provide the acceleration required by 

the optimal trajectory at any time (i.e. the constraint on the maximum thrust is not active), then the problem is fully scalable 

on the initial mass, and it can be solved in terms of mass fraction of an arbitrary initial mass. This consideration allows to 

find optimal pole-sitter orbits (with no thrust limit) independently of the initial spacecraft mass. 

In the optimization process, the maximum distance from the Earth is limited to 0.01831AUmaxd  , i.e. 2.74 million km, 

in order to prevent the trajectory from going too far away from the Earth, thereby excessively decreasing the spatial 

resolution for instruments or the data bandwidth of the platform. In fact, it was found (see Ref. [18]) that optimal, 

unconstrained trajectories move further away from the Earth in summer, which is the period in which observations in optical 

wavelength can be better performed due to the North Pole being lit. 

The result of the optimization, for the two scenarios, is presented in Fig. 5. Note that all the figures showing the orbits 

(or later on in the paper, the transfers) employ a Sun-Earth synodic reference frame centered at the Earth rather than at the 

Sun-Earth barycenter for interpretation purposes. As Fig. 5 (a) and (b) show, the optimal SEP-only path is essentially 

symmetric around spring and autumn, and the spacecraft is closest to the Earth at the summer and winter solstices. Instead, 

in the hybrid case, the spacecraft is closest to the Earth in winter and farthest in summer: the constraint on the maximum 

distance is active across the summer solstice for approximately 150 days. Fig. 5 (b) also highlights that the SEP spacecraft 

distance to Earth varies between 2.3457 and 2.7391 million km, while for the hybrid case it varies between 2.0480 and 

2.7391 million km. Fig. 5 (c) instead plots the modulus of the SEP acceleration as function of time in the two scenarios, 

which shows that the hybrid case needs less acceleration due to the contribution of the sail. 
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a) b)  

c)  

Fig. 5 Fuel-optimal pole-sitter orbits for the pure SEP case and the hybrid case. (a) Optimal trajectories in the 

synodic reference frame. (b) Distance from the Earth. (c) SEP acceleration (magnitude) required. 

 

Since we stated that the problem is scalable with initial mass, we can then say that the thrust needed can be found 

multiplying the SEP acceleration in Fig. 5 (c) with the mass, once the mass at injection is known. Due to the periodicity of 

the orbit, the maximum thrust is achieved in the first period, when the spacecraft mass is highest; observing the acceleration 

over one period in Fig. 5 (c), we can also infer that the maximum thrust is required at the winter solstice, which coincides 

with pole-sitter injection, as will be shown in the next section. 

This value of the maximum thrust is the one that the SEP system shall provide for maintaining the orbit, and is also used 

to size the propulsion subsystem itself. For example, for a spacecraft of mass 1000 kg at injection, the maximum SEP thrust 

would be 170 mN for the pure SEP system, and 144 mN for the hybrid system. 

B. Launch and Transfer Phase 

In order to find the maximum mass that can be inserted into the operational orbit, this section investigates optimum 

transfers from LEO up to insertion into the pole-sitter orbit. The transfer is modeled by distinguishing between a launch 
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phase and a transfer phase, as shown in Fig. 2. The launch phase is designed as an impulsive, two-body Soyuz or Ariane 5 

upper-stage transfer from a fixed inclination low-Earth parking orbit up to insertion into the transfer phase. This transfer 

phase is modeled in the Earth-Sun three-body problem and either pure SEP or hybrid propulsion is used in the transfer, 

depending on the system architecture. The overall objective is to maximize the mass upon insertion into the pole-sitter orbit, 

assuming the full launch vehicle capacity to LEO is used. To this end, PSOPT solves the optimal control problem in the 

transfer phase and patches the launch phase to the transfer phase in an end-point constraint. More details on this approach as 

well as the generation of suitable initial guesses can be found in Ref. [21]. However, note that in that work the optimization 

considers a fixed mass upon injection into the pole-sitter orbit (1000 kg) and minimizes the mass required in LEO, while the 

approach considered in this paper fixes the mass in LEO, while maximizing the mass upon insertion. 

Hereafter some details of the Soyuz and Ariane 5 launch phases will be given, followed by a short description of the 

optimal control problem to be solved and the results obtained. 

1. Soyuz Launch Vehicle 

In previous work [21], a launch vehicle model was developed that was shown to accurately match the Soyuz launch 

vehicle performance provided by the Soyuz manual in Ref. [32]. The model assumes that the first three stages of the Soyuz 

are launched from Baikonur and are used to reach a LEO with an altitude of 200 km and with one of four reference 

inclinations: 95.4, 70.4, 64.9 and 51.8 deg. Depending on the inclination, the Soyuz launch vehicle can provide payload 

masses of 6275 to 7185 kg respectively. From the parking orbit, any remaining inclination and altitude changes can be 

provided by the Fregat upper-stage through a two-body Hohmann transfer to the final target orbit, where any inclination 

change is distributed over the first (apogee raise) and second (perigee raise) Fregat burns. Hohmann transfer formulas [33] 

and the rocket equation are subsequently used to provide the mass that can be delivered to this final target orbit (or 

equivalently to the start of the transfer phase). A validation of this launch model is given in Ref. [21]. 

In principle, any of the four parking orbit inclinations could be used for the pole-sitter transfer. Because the pole-sitter 

can be viewed as having an inclination of 90 degrees, one could expect that, the closer the inclination of the parking orbit is 

to the inclination of the pole-sitter, the better the performance in terms of mass at pole-sitter injection. However, the smaller 

the parking orbit inclination, the better the Soyuz performance in the parking orbit. Initial results have indeed shown that 

this higher mass in the parking orbit eventually translates into a larger mass at injection than when considering a parking 

orbit with an inclination closer to the inclination of the pole-sitter orbit. Therefore, the remaining analyses in this section 

will assume a parking orbit inclination of 51.8 degrees. 

An overview of the final parking orbit parameters and details of the Soyuz Fregat upper-stage are given in Table 1. 
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2. Ariane 5 Launch Vehicle 

For comparison purposes, and also because less detailed information is available in the literature for the performance of 

the Ariane 5 launch vehicle than for the Soyuz launch vehicle, it is assumed that a similar launch strategy can be adopted for 

the cryogenic upper-stage (ESC-A) of the Ariane 5. However, the parking orbit is assumed  to have an altitude of 400 km 

and an inclination of 51.6 deg inclination, for which it is known that Ariane 5 can deliver 19 t [34]. Other details of the 

Ariane 5 upper-stage are provided in Table 1. 

 

Table 1 Soyuz and Ariane 5 parking orbit and launch vehicle specifications 

Launcher 

Parking orbit Upper stage Adapter 

Altitude, 

km 

Inclination, 

deg 

Performance, 

kg 

Mass, 

kg 

Specific 

impulse, s 

Mass, 

kg 

Soyuz 200 51.8 7185 1000 330 100 

Ariane 5 400 51.6 19000 4540 446 160 

 

3. Results 

Fig. 6 shows the transfers for both SEP and hybrid cases. The figure shows that the optimal transfers inject the 

spacecraft at winter solstice, i.e. at the point closest to the Earth along the pole-sitter orbit. Note that, due to the symmetry of 

the SEP pole-sitter orbit with respect to an imaginary y-z plane, a similar, equally optimal transfer that injects at summer 

solstice can be found. More details on the optimal transfers, including the maximum thrust magnitude and mass injected 

into the pole-sitter orbit can be found in Table 2. 

Comparing the performances of the SEP case using the Soyuz and Ariane 5 launch vehicles shows an increase in the 

mass injected into the pole-sitter orbit by a factor 2.9 for an Ariane 5 launch: 1535 kg versus 4432 kg. A similar increase 

can be observed for the maximum thrust magnitude. Because the maximum thrust magnitude is allowed to scale with the 

increase in the injected mass that the Ariane 5 launch can establish, the results in Fig. 6 show a very clear scalability of the 

transfer. Any differences between the two transfers can be attributed to the slightly different parking orbits from which the 

transfer is initiated. 

The results for the SEP case are used as initial guess for the hybrid transfer. Since the SEP and hybrid pole-sitter orbits 

are not the same, a direct comparison of the performances of the transfers using the two propulsion techniques cannot be 

made. However, the mass injected into the hybrid pole-sitter orbit is larger than for the SEP case: an increase of 58 kg for a 

Soyuz launch and an additional 160 kg for an Ariane 5 launch. Part of this better performance is due to the smaller Earth to 

pole-sitter distance at winter solstice (i.e. upon injection) for the hybrid pole-sitter orbit. However, part is also due to the 

smaller propellant consumption in the transfer. This becomes clear from comparing the thrust profiles in Fig. 6 (b). Due to 



 15 

the contribution of the sail, the hybrid case allows for a significantly shorter thrust arc. This comes however at the cost of a 

much longer time of flight than the optimal SEP transfer, see also Table 2. The reason for this is the fact that, during the 

optimal SEP transfer, the SEP thruster mainly provides a thrust in the direction of the Sun, which the sail is unable to 

generate. The result for the hybrid case is therefore the alternative, longer path. Note that during this longer path, the sail is 

optimally used by mainly providing a force directed radially away from the Sun. The same trajectory performed with only 

an SEP thruster would therefore require a much longer thrust arc than the optimal short SEP transfer presented in Fig. 6 (b) 

and would be suboptimal. 

 

a)  b)  

Fig. 6 Optimal transfers for SEP and hybrid propulsion with Soyuz and Ariane 5 launches. (a) Transfer in synodic 

reference frame. (b) Thrust profile. 

 

Table 2 Results for the optimization of transfer to SEP and hybrid low-thrust pole-sitter orbits including the 

maximum SEP thrust magnitude and the mass injected into the pole-sitter orbits. 

Architecture Launcher maxT , N 0m , kg 
Time in transfer 

phase, days 

SEP Soyuz 0.269 1537 79.5 

SEP Ariane 5 0.775 4439 79.1 

Hybrid Soyuz 0.231 1595 161.4 

Hybrid Ariane 5 0.667 4599 162.2 

 

C. Transfers between North and South Poles 

Due to the tilt of the Earth’s polar axis with respect to the ecliptic plane, the North and South Poles are alternately 

situated in darkness for 6 months per year. For observations performed in the visible part of the spectrum (e.g. using the 

SSI, HRI or EPIC instruments of Table 5), this significantly constrains the mission scientific return. Therefore, an additional 

transfer phase is introduced that allows the pole-sitter spacecraft to change between pole-sitter orbits above the North and 

South Poles before the start of the Arctic and Antarctic winters, see Fig. 2. For that, the SEP and hybrid pole-sitter orbits 
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shown in Fig. 5 are mirrored in the ecliptic plane. Viewed in the synodic frame, the Poles are illuminated when the 

spacecraft is in the Sun-ward part of the pole-sitter orbit, see Fig. 7. Ideally, this means that the pole-sitter spacecraft would 

follow the north pole-sitter orbit from March to September and the south pole-sitter orbit from September to March. Clearly 

in reality this is not feasible since some time needs to be allowed for the spacecraft to transfer from north to south and vice-

versa. 

Transfers between north and south pole-sitter orbits are applied in this section to the optimal SEP and hybrid pole-sitter 

orbits of Fig. 5. Also, for both propulsion strategies, both the Soyuz and Ariane 5 launch cases will be considered together 

with the corresponding values for the maximum thrust magnitude as provided in Table 2. 

The work in Ref. [22], in which more details can be found, showed that two types of transfers can be considered: a short 

transfer that takes less than half a year and a long transfer that takes between half a year and one year. In order to maximize 

the observation time during the mission, this work will only consider the short transfer, which means that the departure and 

arrival windows for a north-to-south transfer are as indicated in Fig. 7. Departure thus takes place between summer and 

autumn (June – September), while arrival takes place between autumn and winter (September – December), where this 

paper conventionally refers to the seasons in the northern hemisphere. 

Note that due to the symmetry of the problem, the optimal transfers from north to south can also be used to transfer from 

south to north. For that, it is assumed that the lower mass at the start of the south-to-north transfer (or any subsequent 

transfer) does not influence the trajectory to great extent. 

 
Fig. 7 Schematic of dark (black line) and light (yellow line) conditions on the North and South Poles during the year 

and departure and arrival window (dotted) for a north-to-south transfer. 

 

The transfers are optimized to minimize a weighed sum of the propellant consumption and the time of flight through the 

objective function:  

Dec. 

March 

March 

June 

June 

Sep. 
Departure 

window 

Arrival window 

x̂  

Sep. 

Dec. 
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with the subscripts ‘ ,0t ’ and ‘ ,t f ’ indicating the start and end of the transfer. Clearly, for 0w   the minimum propellant 

case is considered. 

The optimal control problem is once again solved with PSOPT, with initial guesses provided by a shape-based approach. 

End-point constraints are included to ensure that the initial and final conditions coincide with the north and south pole-sitter 

orbits in the departure and arrival windows indicated in Fig. 7, including the mass at the start of the transfer. This mass is 

computed by considering that the north-to-south transfer takes place in the first year of the mission and after injection of the 

masses provided in Table 2 at winter solstice. 

1. Results 

The results for the pure SEP case are shown in Fig. 8, where the following values for the weight factor are used: 

 0 0.25 0.5 1.0 1.5w  . The figure clearly shows a resemblance between the Soyuz and Ariane 5 cases, once again 

indicating the scalability of the transfer with the mass. As indicated before, this is a result of the fact that the maximum SEP 

thrust magnitude scales proportionally with the increase in the injected mass that the Ariane 5 launch can establish, see 

Table 2. 

Fig. 8b furthermore shows the gain in observation time per pole that can be achieved by increasing the weight factor. 

For the values considered here, observation times of up to 94 days per Pole can be achieved. This comes, however, at the 

cost of an increase in the propellant consumption as shown in Fig. 8c. This figure also includes the propellant consumption 

in the pole-sitter orbit itself and can therefore provide insights into how demanding the north-to-south pole-sitter transfers 

are. It becomes clear that, depending on the value for the weight, the transfer can provide a saving in propellant 

consumption, which can be used to significantly extend the mission lifetime of the pure SEP mission. Analogous results as 

those in Fig. 8 can be obtained for the hybrid case, see Fig. 9. The only clear difference is the better performance of the 

minimum propellant case (i.e. 0w  ) in terms of propellant consumption. However, as a consequence, the observation time 

per pole is poor. 

This is shown in Fig. 10, which provides the mass profile throughout the pole-sitter mission (SEP and hybrid, Soyuz 

launch) when the north-to-south transfers are taken into account seasonally and when they are not. The figure clearly shows 

the gain in propellant consumption that the transfers can establish. For example, for the SEP case and 0w   the gain is 

279.6 kg after 5 years. Increasing the weight factor leads to smaller gains and for 1.5w   even a small loss of 45.3 kg can 

be observed after 5 years. 
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Finally, note that the transfers pass in front of the Sun-lit side of the Earth (close to the Lagrange point L1). Potentially, 

this enables the payload on the spacecraft to perform some additional science, even during the transfers, in a similar way as 

the NASA DSCOVR mission, a stationary Earth observer designed to be located at L1. 

 

a)  b)  

c)  

Fig. 8 Optimized, pure SEP north-to-south pole-sitter transfers for different values of the objective weight. (a) 

Transfers in the synodic reference frame. (b) Observation time per Pole as a function of the weight factor. (c) Ratio 

of current mass and mass at start of mission as a function of the mission time. 
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a) b)  

Fig. 9 Optimized, hybrid north-to-south pole-sitter transfers for different values of the objective weight. (a) 

Observation time per Pole as a function of the weight. (b) Ratio of current mass and mass at start of mission as a 

function of the mission time. 

 

a)  b)  

Fig. 10 Mass profile throughout the pole-sitter mission (Soyuz launch) for SEP (a) and hybrid propulsion (b), 

including the north-to-south pole-sitter transfer for different values of the objective weight. Shaded areas highlight 

the half of the year when the North Pole is lit. 

 

D. Overall Trajectory 

Finally, to illustrate the full mission profile, Fig. 11 and Fig. 12 represent the trajectory of the pole-sitter spacecraft, 

including the launch phase, operational phases and north-to-south transfers. Fig. 11 refers to the pure SEP mission, Fig. 12 

to the hybrid propulsion one. Both figures represent the Ariane 5 option; the trajectory followed by the Soyuz option is very 

similar. In each figure, the plot (a) is in an Earth-centered synodic reference frame (Earth and Lagrange points L1 and L2 are 

represented with dots), while the plot (b) is in an inertial, Sun-centered reference frame (the Sun represented with a dot, and 

the orbit of the Earth with a solid black line). Note that in plots (b) the z-direction is not to scale with x and y, in order to 
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appreciate the out-of-plane displacement of the pole-sitter, which would otherwise be too small with respect to the orbit of 

the Earth. 

 

a) b)  

Fig. 11 Pure SEP mission trajectory (Ariane 5 launch) in synodic reference frame (a) and inertial Sun-centered 

reference frame (b). 

 

a) b)  

Fig. 12 Hybrid propulsion mission trajectory (Ariane 5 launch) in synodic reference frame (a) and inertial Sun-

centered reference frame (b). 

IV. Orbit Control 

The mission trajectories presented before are unstable, i.e. an arbitrary small perturbation in the state leads to an 

exponential divergence from the nominal orbit. Therefore, it is particularly important to devise a control strategy to keep the 

spacecraft on-track, to quantify the control effort (in terms of thrust and additional propellant mass) needed and to determine 

the stability margin of the controlled system. 
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Moreover, as a representative of the different perturbations that may act on the real system, here we replace the CR3BP 

by a model that considers the real ephemerides of the Earth by taking into account the eccentricity of its orbit around the 

Sun. Hence, an additional control component is also necessary to compensate for such effects. 

The control loop used here is based on a linear quadratic regulator (LQR) [37], applied in a similar way as in Ref. [38]. 

As a result of the trajectory design in the previous sections, we obtained the reference state (position, velocity) and control 

(thrust) histories    ,r rt tx u  respectively. In an ideal condition, the real state coincides with the reference one. However, 

due to the instability of the trajectory, the different dynamical model (real ephemerides of the Earth), or other sources of 

error, the real state may differ from the reference one, and therefore the state error can be defined as: 
r  x x x . The 

objective of the controller is to find the additional component of control, u  (defined as the feedback control) such that the 

total control 
r  u u u  brings the spacecraft states back to the reference states after some time. 

As actuator for the control loop, we only use the SEP thruster. This means that the SEP thrust is varied with respect to 

the reference, while the sail attitude is kept unchanged. Despite that this can result in a higher propellant consumption, 

because in general the sail is not tilted optimally following a perturbation, we can assume that there is no time delay in the 

actuator. Tilting a large solar sail can in fact require a relatively long duration, due to the large moments of inertia, whi le 

activating the thrusters can be considered instantaneous, compared to the dynamics of the orbit. Also, we assume that the 

spacecraft has perfect knowledge of its state vector at any time. Note that u  is subject to saturation according to the 

maximum thrust values presented in Table 2. The resulting thrust is then fed into the integration of the full equations of 

motion, modified to include the real ephemerides of the Earth and the Sun, computed through an analytic approximation of 

the JPL/NAIF/SPICE ephemerides de405.bps. Note that the control effort can be reduced by re-optimizing the trajectory 

using ephemeris data, but the intention is to demonstrate the robustness of the control. 

The results presented in the following refer to the launch with Ariane 5. The control performs in a very similar way 

when the Soyuz reference trajectories are used, after re-scaling the mass and the maximum thrust according to Table 2. 

These test cases are not meant to be exhaustive, but rather to give an indication of the performance and the fuel requirement 

of the controller. In all time-history plots in this section, the two shaded areas represent the transfer phases, from Earth to 

pole-sitter and north to south, respectively. 

A. Results: nominal conditions 

Firstly, we evaluated the performance of the feedback controller when the spacecraft is injected into the transfer 

trajectory within nominal conditions. Fig. 13 shows a comparison between the reference solution and the solution with real 
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ephemerides and feedback control, for the SEP spacecraft. The first plot (a) represents the three components of the error 

with respect to the reference in position (
1,2,3x  ): it can be seen that the feedback controller maintains the spacecraft within 

50,000 km from the reference, along each axis. It resulted that the velocity error is limited to and 15 m/s. These values are 

relatively small compared to the reference pole-sitter orbit and transfer. Nevertheless, the controller could be designed with 

tighter requirements, at the cost of additional propellant consumption and actuator effort. Fig. 13 (b) shows the magnitude of 

the thrust in the reference solution (dashed line) and in the feedback-controlled solution (solid line). The contribution to the 

thrust added by the feedback controller is evident. Note that the transfer phases, Earth to pole-sitter and north-to-south, 

contain ballistic arcs in the reference solution, while in the same arcs the feedback controller provides a continuous, albeit 

small thrust, with a high-frequency component to compensate for instabilities. Moreover, along the thrust arcs, the 

feedback-controlled trajectory requires either less or more thrust than the reference one, and this is mainly due to the effect 

of the eccentricity of the Earth. It resulted that 12 kg of additional fuel are required by the feedback controller, over the part 

of the mission considered. 

 

a) b)  

Fig. 13 Comparison between reference solution and feedback-controlled solution. SEP, Ariane 5 case. (a) Position  

error with respect to the reference; (b) SEP thrust magnitude. Shaded areas are transfer phases. 

 

In the case of the hybrid propulsion spacecraft, similar performances are obtained in terms of displacement from the 

reference orbit. The propellant consumption is higher than for the SEP spacecraft: 40 kg of additional fuel are required for 

controlling the trajectory. The higher fuel consumption is due to the fact that the distance from the Sun varies, due to the 

eccentricity of the Earth’s orbit, and this is affecting not only the gravitational acceleration, but also the acceleration 

produced by the solar sail. Again, we note that ephemeris data is used to demonstrate robustness of the controller. In 
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addition, the Earth to pole-sitter transfer is considerably longer for the hybrid spacecraft, and despite this phase is nearly 

ballistic in the reference solution, it requires a non-negligible amount of SEP thrust from the controller. 

B. Results: launcher injection error 

In this second scenario, we assume the spacecraft is injected into the transfer trajectory (i.e. at the end of the launch 

phase) with a given error in position and velocity. In this test, we consider again the Ariane 5 launch with an SEP-only 

spacecraft, however we introduce a change in the initial states (in the synodic reference frame) of 

100,000 km 100 s; m/x zr v     . 

Fig. 14 (a) shows again the errors with respect to the reference for each position component of the state vector. It can be 

seen that the correction of the initial position and velocity errors leads to overshooting in other components of the state 

(including velocity, not shown). The large initial error in position can be appreciated from the plot of the reference and 

feedback trajectory in the Earth-centered synodic frame in Fig. 14 (b). Fig. 14 (c) show the SEP thrust, and the additional 

thrust required during the transfer and immediately after, to correct the injection error, is evident; it results that 22 kg of 

additional propellant mass are required. This is to be compared with the 12 kg needed in the case where no injection error 

was present. It is worth underlining that without feedback controller, injection errors much smaller than those considered are 

enough to prevent the spacecraft from reaching the pole-sitter orbit. 
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a) b)  

c)  

Fig. 14 Comparison between reference solution and feedback-controlled solution. SEP, Ariane 5 case with injection 

error. (a) Position error with respect to the reference; (b) Trajectory in Earth-centered synodic frame; (c) SEP 

thrust magnitude. Shaded areas are transfer phases. 

 

The effect of injection errors was tested also on the hybrid propulsion spacecraft injected by the Ariane 5 upper-stage, 

this time with an error of: 10,000 km; 100 m/sz yr v   . In this case, the control brings back the states to the proximity 

of the reference states during the transfer itself, thanks also to the longer transfer time, and the total additional mass of the 

controlled solution with injection error is approximately 60 kg. 

As a final remark to conclude this section on feedback control: again, the controlled solution would require less 

propellant mass if the reference solutions were re-optimized considering the real ephemerides of the Earth, rather than the 

CR3BP model. In this case, the feedback control would cope only with instabilities and contingencies. 
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V. Spacecraft Design 

A. Spacecraft Subsystems Sizing 

Now that the mass that can be injected into the operational orbit of the pole-sitter is known, a systems design provides 

the mission lifetime that can be achieved into this orbit, or alternatively the payload mass that can be carried for a given 

lifetime of the spacecraft. This estimation is the subject of this section. 

The total mass of the pure SEP spacecraft (carrying a payload mass 
plm , to be determined) can be defined as: 

  0 1prop tank thrusters thruster SA other old plm m m n m m m m          (3) 

and for the hybrid propulsion spacecraft: 
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



        
 

   
 (4) 

Formulas defining all the terms in these equations are grouped in Table 3 for convenience. Here we provide only a 

description of each term in Eqs. (3) and (4). 

propm  is the propellant mass required for a certain mission lifetime. The mass of the propellant tanks 
tankm  is computed 

as a fraction of this mass. 

The mass of each SEP thruster, thrusterm , is proportional to its power, and takes into account the control units and cabling 

related to the SEP subsystem. The sizing is done based on the maximum power ,SEP maxP  required by the SEP subsystem, 

which is in turn a function of the maximum thrust maxT  required during the mission. 

In the hybrid spacecraft, the sail, fixed to the spacecraft bus, determines the attitude of the bus itself. Therefore, a gimbal 

system is required to point the thrust vector independently from the attitude of the spacecraft (within limits due to the 

system configuration). gimbalm  is the SEP thruster gimbal mass, and it is assumed to be proportional to the thruster mass. 

Instead, for the pure SEP spacecraft, no gimbal is used, as the attitude of the three-axis stabilized spacecraft can be changed 

to orientate the thrust vector in the required direction. Note that the mass of the SEP subsystem does not depend on the 

number of thrusters, provided that all of them contribute equally to the thrust. 

For the pure SEP spacecraft, the mass of the solar array SAm  is proportional to its area SAA . The area of the solar array 

can be estimated as a function of the maximum power, considering that the solar panels are usually kept perpendicular to the 

Sun vector, and their efficiency SA . The energy flux density of the Sun 21367 W mW   is considered constant at 1 AU. 
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As noted, for the hybrid spacecraft we foresee the use of TFSC covering part of the sail assembly to generate power for the 

SEP thruster. Analogously to the solar array, the mass is proportional to the area. In addition, they have a pitch angle with 

respect to the Sun vector equivalent to that of the sail, and this is taken into account when computing the effective area. The 

efficiency of the solar array is higher than that of the TFSC, but their mass per unit area is also higher. 

The solar arrays and TFSC are sized on the maximum power needed, assuming that they can be maintained 

perpendicular to the Sun in the pure SEP spacecraft, and at the sail attitude for the hybrid spacecraft. However, the thrust, 

and hence the power required during the whole mission is variable. It was found that for some configurations, the full SEP 

thrust is not needed for long durations during the orbit (around summer). In these cases, while the solar panels of the SEP 

spacecraft can be tilted, such that they generate only the power needed at each instant in time, this is not possible for the 

hybrid spacecraft. The attitude of the TFSC is once again constrained to that of the sail, and therefore they will produce 

power. Radiators can be employed to dissipate the excess power. Such radiator mass 
radm  is sized considering the minimum 

SEP thrust throughout the mission, and calculating the excess of power ,d maxP  generated by the panels at that instant of time, 

and so the power that is to be dissipated. Radiators are assumed to have a specific power of 350 W/m
2
 (value achievable in 

deep space [1] (p. 440)), and a specific mass of 3 kg/m
2
, considering that they can be mounted on the back side of the 

TFSC, sharing the structure; from these values, the coefficient in Table 3 can be found. The pure SEP spacecraft does not 

need radiators for the reasons stated above. 

The total sail area (highly reflective surface plus TFSC), A , can be computed starting from the assumed value of 
0  

and the optimized value for 
0m . The area of the reflective part of the solar sail is simply 

s TFA A A  , and its mass is 

proportional to the mass per unit area of the sail s , as discussed in Section II.B. 

The mass of all the other subsystems 
otherm  (ADCS, thermal, structure, OBDH, TT&C) is estimated as a fraction of the 

spacecraft dry mass drym . 

Margins are taken into account for each subsystem [1]. In particular, the sail and the thin film solar cells are considered 

new technologies, and therefore a margin of 0.20new   is used. Conversely, the other subsystems are considered to be 

well-proven technologies, and its margin is set to 0.05old  . Note that the same margin is added to the propellant mass for 

contingency maneuvers. Table 3 and Fig. 15 summarize the formulas and subsystems used for each configuration, 

highlighting the differences between the pure SEP and the hybrid spacecraft. 

Note that the systems mass budget proposed here differs to the one in Ref. [20] in several ways: it considers multiple 

SEP thrusters, but working in parallel to achieve the necessary thrust, rather than being redundant; the mass of the other 
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subsystems is now taken into account, and not considered as “payload” mass; the pure SEP spacecraft does not employ thin 

film solar cells, but solar arrays mounted on panels (higher efficiency and areal mass); the pure SEP spacecraft does not 

employ a gimbal system, as it is assumed that attitude maneuvers can be used to steer the thrust vector; lastly, margins are 

taken into account. 

 

Table 3 Formulas for the subsystem mass budget in Eqs. (3) and (4) for the pure SEP and the hybrid spacecraft. 

 Pure SEP Hybrid 

Tank mass 0.1tank propm m  

Maximum SEP power 
, 0 2SEP max max sp SEPP T I g   

0.7SEP   [35] 

SEP thruster (each) 
,thruster SEP SEP max thrustersm k P n  

20kg kWSEPk   [25] 

SEP thruster gimbal N/A 
gimbal gimbal thrusterm m  

0.3gimbal   [36] 

Solar arrays 

(thin film solar cells or solar 

panels) 

,SA SEP max SAA P W  

0.10SA   

, cos
maxTF SEP max TF TA P W   

0.05TF   

SA SA SAm A  
TF TF TFm A  

25.468 kg mSA   [1] 2100 g mTF   [11] 

Solar sail N/A 
s TFA A A   

s s sm A  

Radiators N/A ,0.0086 kg/Wrad d maxm P   [1] 

Dry mass 0dry propm m m   

Other subsystems 0.3other drym m  [1] 

 

 
Fig. 15 Mass break-up model for the pure SEP spacecraft and the hybrid spacecraft. 

 

Given the initial mass of the spacecraft in the pole-sitter orbit (as found in Table 2 for a given mission scenario), the 

optimal 1-year trajectory is used to compute the propellant mass propm  needed for a given lifetime missiont . Despite that the 

same trajectory is flown year after year, the controls are re-optimized locally, step by step, such that the SEP thrust is 
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minimized point-wise, and hence the propellant consumption is minimum, on that trajectory. Once the propellant mass is 

found, Equations in Table 2 followed by Eq. (3) or (4) can be used to compute the payload mass 
plm . This is plotted, as a 

function of the lifetime, in Fig. 16. Each plot refers to one spacecraft architecture (pure SEP, hybrid). 

It can be noted that the maximum mission lifetime (i.e. no payload carried on-board) does not depend on the injection 

total mass 
0m , but only on the technology that is used to build the spacecraft. The lifetime for the pure SEP system is 

limited to approximately 4.5 years, while this value extends to about 7 years for the hybrid architecture. This result itself 

should be sufficient to justify the interest in the hybrid propulsion technology for this type of mission, and in general for all 

those missions which require a continuous acceleration [20]. Furthermore, for nearly equal injected masses, the hybrid 

spacecraft can carry the same payload mass for a longer mission lifetime. Finally, for a particular spacecraft architecture and 

a given lifetime, the payload mass scales with the injected mass 
0m . 

 

a) b)  

Fig. 16 Payload mass (mpl) as a function of the mission lifetime, for the pure SEP spacecraft (a) and the hybrid 

spacecraft (b). 

 

By fixing a payload mass, e.g. 100 kg, the design points for the four scenarios can be computed, and they are described 

in Table 4. The value of 100 kg will be justified in the following Section B. The design points are computed assuming that 

the entire capacity of the launcher is used for the pole-sitter spacecraft; however, it is possible to scale down any of the four 

scenarios (at the cost of a reduction in mission lifetime). 

Launching with Soyuz, the lifetime is 3.6 years if the spacecraft is using pure SEP technology, or 5.6 years if using 

hybrid propulsion. These lifetimes extend to 4.2 and 6.6 years when launching with Ariane 5 for the two architectures 

respectively. 
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The subsystem design also allows the computation of the mass of the other subsystems, some of which are reported in 

Table 4. The size of the total sail assembly (reflective surface and thin film solar cells) of the hybrid spacecraft, assuming a 

square assembly, is 191 × 191 m
2
 for the Soyuz launch, and 324 × 324 m

2
 for the Ariane launch. 

The hybrid configuration furthermore allows a lower power budget, by reducing the thrust needed per unit mass of the 

spacecraft from the SEP thruster. For the pure SEP spacecraft, the maximum power required by the SEP thruster is 6 kW 

(Soyuz) and 17.4 kW (Ariane 5). For the hybrid, instead, the power is 5.2 kW (Soyuz) and 15 kW (Ariane 5), despite the 

fact that the total injected mass of the spacecraft, 
0m , is slightly larger than in the SEP case. 

 

Table 4 Design points for 100 kg payload mass. Masses are without margins. 

Architecture Pure SEP Hybrid 

Launcher Soyuz Ariane 5 Soyuz Ariane 5 

Lifetime, 
missiont , yrs 3.6 4.2 5.6 6.6 

Payload mass, 
plm , kg 100 100 100 100 

Pole-sitter injected mass, 
0m , kg 1537 4439 1595 4599 

SEP mass, 
thrusters thrustern m , kg 121 348 104 299 

Propellant mass, propm , kg 675 2192 698 2242 

Other subsystems mass, 
otherm , kg 259 674 269 707 

Solar array or TFSC area, 
SAA  or 

TFA , m
2
 44 127 121 349 

Solar sail mass (reflective), 
sm , kg - - 182 524 

Total sail area (reflective + TFSC), A , m
2
 - - 191 × 191 324 × 324 

Maximum SEP thrust, maxT , mN 269 776 231 667 

Maximum SEP power, ,SEP maxP , kW 6 17.4 5.2 15.0 

 

B. Payload Selection and Sizing 

We now wish to investigate possible payloads that could be used on the pole-sitter spacecraft. The pole-sitter spacecraft 

could serve as a platform for Earth observation and science, and a data relay for telecommunications. Concerning the 

former, taking into account the considerable distance of the spacecraft from the Earth, high-resolution imaging is limited to 

the near-visible part of the spectrum (from infrared to ultra-violet). Spatial resolution in the visible wavelength in the range 

10-40 km should be available, which enables real-time, continuous views of dynamic phenomena and large-scale polar 

weather systems [19]. The creation of atmospheric motion vectors (AMV) would also make use of the stationary location of 

the platform, avoiding gap problems related to geolocation and intercalibration that composite images introduce [5]. 

Glaciology and ice-pack monitoring would also benefit from continuous, but low resolution polar observation [5]. 

Ultraviolet imagery of the polar night regions at 100 km resolution or better would enable real-time monitoring of rapidly-
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changing hot spots in the aurora that can affect high frequency communications and radar [19]. As the resolution degrades 

with increasing wavelength, it is unlikely that sensing in the microwave band could provide some useful information. 

However, radio science can detect the total flux of radiation reflected and emitted by the Earth at the poles. 

Candidate instruments for continuous polar observations are found in the literature for deep space missions. In fact, 

optics for deep space mission typically have long focal lengths and narrow field of views (FOVs), and they are therefore 

ideal for the pole-sitter. Table 5 collects a number of instruments that were designed for three past missions. In particular, 

the NASA mission Galileo, launched in 1989 towards Jupiter and its satellites, was designed to perform observations of 

Jupiter’s atmospheric composition, weather phenomena and auroras. Despite that the instruments used on this spacecraft are 

now outdated, they provide an indication of the data, mass and resolution of the instruments suitable for pole-sitter distances 

(Fig. 17). The NASA Deep Space Climate Observatory (DSCOVR) mission was designed for Earth observation and science 

from the L1 Lagrange point, which is located approximately 1.5 million km from the Earth, of the same order as the distance 

of the pole-sitter mission (where angular size of the Earth disc is approximately 0.5 deg). Unfortunately, this mission was 

canceled before launch; nevertheless, its payload would be similar to what could be used on a pole-sitter spacecraft. Finally, 

a compact, modern instrument for imaging in the visible and infrared range was successfully flown on the Deep Impact 

mission. A complete discussion on potential applications enabled by such instrumentation is found in Ref. [2]. 

Table 5 shows the resolution, wavelength, aperture (to provide an estimate of the size of the instrument), mass and 

power of each instrument, as well as the main objectives of the instrument within their original mission. The table is 

interesting as it shows that for all the instruments, the total mass is of the order 50 kg. Therefore, based on Fig. 16, they are 

all suitable for both hybrid and SEP configurations missions, for lifetimes of about 4 years or more. 

From the same table it can be noted that the power needed by any of these instruments is two orders of magnitude lower 

than the power required by the SEP thruster, and therefore should not constitute a strong constraint in the power budget. 
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Fig. 17. Four views of the Earth as taken by Solid-State Imaging instrument on Galileo spacecraft during its first 

Earth fly-by, at six-hour intervals on December 11, 1990, at a range of between 2 and 2.7 million kilometers. Each 

disc is about 500500 pixels. (Credit: NASA, Johns Hopkins University, 

http://photojournal.jpl.nasa.gov/catalog/PIA00728) 



 32 

Table 5 Potential Earth observation instruments that could be used for polar observation. Mass and power are also listed, when data are available. Data 

extracted from the official websites of the programs managing agencies. Notes: 
*
 Spatial resolution at Nadir from 2.74 million km; 

† 
Spacecraft mass: 650 kg; 

‡ 
Total payload power: 92 W 

Instrument Primary objectives 
Pixel matrix size/ 

Field of View/Resolution
*
 

Wavelength 
Aperture/ 

Diameter 
Mass, kg Power 

NASA Galileo 

Primary objective: Study Jupiter and its Moons (1989) 

Solid State Imaging (SSI) 
 Cloud structure 

 Auroral phenomena 

800x800 

FOV = 0.46 deg 

(10.16 μrad/pixel) 

27 km 

Near visible 

404-986 nm 

30 cm 

(f/8.5) 
29.7 kg 23 W 

Near-Infrared Mapping 

Spectrometer (NIMS) 

 Measure reflected sunlight and emitted thermal 

radiation 

 Cloud structure 

1x20 

0.5x10 mrad 

(0.5 mrad/pixel) 

137 km 

Infrared 

0.7-5.2 μm 

22.9 cm 

(f/3.5) 
18 kg 12 W 

Ultraviolet Spectrometer 

(UVS) 
 Composition and structure of upper atmosphere FOV = 0.17 deg 113-432 nm 25 cm 9.7 kg 5.9 W 

Photopolarimeter 

radiometer (PPR) 

 Temperature of atmosphere 

 Distribution of clouds 

 Distribution of reflected and emitted thermal 

radiation 

FOV = 2.5 mrad 410-892 nm 10 cm 5 kg 11 W 

NASA Deep Impact 

Study the composition of the comet interior of 9P/Tempel (2005) 

High Resolution Instrument 

(HRI) CCD 
 Observe comet nucleus and impact 

1008x1008 

FOV = 0.118 deg 

(2 μrad/pixel) 

5.4 km 

Visible 
30 cm 

(f/35) 
N/F

†
 N/F

‡
 

High Resolution Instrument 

(HRI) IR spectrometer 
 Spectral reflectivity and thermal emission of the 

nucleus and dust 
2.53 mrad x 10 μrad 

Infrared 

1.05-4.8 μm 
f/12 N/F

†
 N/F

‡
 

NASA Deep Space Climate Observatory (DSCOVR) (formerly Triana) 

Observation of Sun-lit side of the Earth’s disc from L1 (proposed in 1998) 

Earth Polychromatic 

Imaging Spectrometer 

(EPIC) 

 Ozone 

 Aerosols 

 Cloud fraction, thickness, optical depth, and height 

 Sulfur dioxide 

 Precipitable water vapor 

 Volcanic ash 

 UV irradiance 

2048x2048 

FOV = 0.62 deg 

(5.3 μrad/pixel) 

14.5 km 

Near visible 
30.5 cm 

aperture 

39 kg 

(65 kg with 

computer) 

62 W 

with 

computer 

Active cavity radiometer 

(NISTAR) 
 Emitted and reflected Earth radiation FOV = 1 deg 0.2-200 μm N/A 23.5 kg N/F 
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Concerning the use of the pole-sitter for telecommunications, the main application would be its use as a low-bandwidth 

data relay with polar regions, and may be particularly useful in the southern hemisphere, where there are key Antarctic 

research activities ongoing and communication capabilities are limited. McInnes and Mulligan [5] envisaged possible 

applications including data links for scientific experiments, links to automated weather stations, emergency airfields and 

telemedicine. In the same work, the authors proposed the use of polar stationary spacecraft as data relay for future NOAA 

polar orbiting satellites, such as the NPOESS system. Lastly, a polar-sitter type platform could also be used for high latitude 

ship tracking and telecommunications, and to support future high-latitude oil and gas exploration, especially if northern sea 

routes open due to climate change.
*
 Again, a complete discussion of possible applications is presented in Ref. [2]. 

In these cases, the telecommunication subsystem would be the main payload of the spacecraft. However, even for Earth 

science, there will be a need to download a relatively large volume of data from the spacecraft to the Earth real-time (high 

resolution imaging, for example). Considering the distance of the pole-sitter from the Earth, a high-gain steerable antenna 

will be required for either or both of these tasks. Table 6, taken from Ref. [1], shows the mass of some parabolic dishes 

which were used on telecommunication satellites, together with their mass. 

 

Table 6 Examples of high-gain antennas of telecommunication spacecraft. 

Satellite Type Band, Frequency 
Gain, 

dBi 

Mass, 

kg 

Diameter, 

m 

Intelsat-V Parabola with Feed Array C, 4 GHz 21-25 29.4 2.44 

Intelsat-V Parabola with Feed Array C, 6 GHz 21-25 15.2 1.56 

Intelsat-V Parabola-Steerable Ku, 11 GHz 36 5.8 1.1 

SUPERBIRD Parabola with Feed Array Ka, 20/30 GHz 45-52 47.1 1.7 

 

An accurate determination of the mass of the telecommunication subsystem and the observation payload would require the 

definition of precise mission objectives, temporal and spatial resolution of the images, and an estimation of the required 

data-rate. However, according to what is shown in this section, we can conclude that the value (previously estimated) of 100 

kg for both observation and telecommunication payloads is reasonable. 

VI. Conclusions 

In this paper a full, preliminary mission analysis and systems design of a near-term and far-term pole-sitter mission is 

provided, where the distinction comes from the use of either existing, solar electric propulsion or more far-term hybrid 

solar-electric and solar sail propulsion. The platform would provide a vantage view point on either pole of the Earth, with 

essentially unlimited temporal resolution (real-time observations) by means of one spacecraft only. Optimal transfers from 

                                                           
* http://www.esa.int/esaEO/SEMT7TRTJRG_index_0.html [cited 12/09/2011]. 

http://www.esa.int/esaEO/SEMT7TRTJRG_index_0.html
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north to south and vice-versa have been shown to be feasible and allow observation of the pole that is lit, at no extra cost in 

terms of propellant consumption. Moreover, in some particular cases propellant savings were achieved through the use of 

these transfers, allowing for an extension of the mission lifetime or alternatively an increase in the payload mass. 

Despite the considerable distance of the spacecraft from Earth, a set of instruments used on the Galileo mission and 

others designed for the Deep Space Climate Observatory Earth observation mission from Lagrange point L1 were shown to 

enable the observation of large-scale, rapidly-changing weather phenomena, aurorae, ice-pack dynamics, and other 

phenomena that require only modest spatial resolution. It was also shown to be feasible to employ a high-gain antenna to 

use the spacecraft as a continuous data-relay with scientific stations in the Antarctic and other high-latitude users. Using the 

full potential of either a Soyuz or Ariane 5 launch vehicle, a systems mass budget demonstrated that it is potentially possible 

to deliver these payloads with a mass of 100 kg for at least 4 years for the short-term solar-electric mission, and 6 years or 

more for the far-term hybrid mission. Any influences of the real ephemeris of the Earth during the mission or errors such as 

launcher injection errors have been shown to be controllable with a linear feedback controller. 
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