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Comment on “Trouble with the Lorentz law of
force: Incompatibility with special relativity and
momentum conservation.”

The recent claim that the Lorentz law of force is in-
compatible with the requirements of special relativity [1],
essentially that the Lorentz force law is incompatible with
the Lorentz transformations, was based on treating only
the spatial part of the Lorentz force. Including the rates
of change for both the energy and the momentum re-
stores compatibility. We work throughout in the natural
system of units: e, po and c are all set equal to unity.

We first review, briefly, the argument given in [1]. The
Lorentz force law describes the force exerted by the elec-
tric and magnetic fields on charges and currents. Ex-
pressed as a force density it becomes

F=pE+JxB. (1)

The objection under consideration deals with the action
of a charge on a magnetic dipole. We were asked to re-
strict our attention to bound charges so as to rewrite the
force density in terms of the polarization and magnetisa-
tion:

F=—(V-PE+(P+VxM)xB. (2)

Consider a charge ¢ at the origin of a primed coordinate
system and a magnetic dipole oriented in the x’ direction
placed a distance d from the charge along the z’ axis.
Naturally, the charge exerts neither a force nor a torque
on the dipole in this frame, as may readily be verified
using the magnetization

M = mox'6(z")d(y')0(z" — d) (3)

and the force density (1). Consider now the situation as
viewed from an unprimed frame in which the charge and
the dipole are moving at speed V in the positive z direc-
tion. In this frame the charge is moving and so produces
a magnetic field. The moving magnetic dipole, more-
over, acquires some electric dipole character by virtue
of its motion. It follows, therefore, that the force given
in Eq. (2) will include electric and magnetic fields and
also both a magnetization and a polarization centered
on the magnetic dipole. The net force exerted by the
charge on the dipole remains zero but there is a torque,
T = (Vgmo/4nd?)X, suggesting that the charge coerces
the dipole to spin about its axis and, moreover, that the
torque inducing this is proportional to the velocity at
which the charge and the dipole are seen to be moving.
Were this to induce a rotation of the dipole then there
would indeed be a conflict between the Lorentz force law
and special relativity.

The problem with this analysis is that the Lorentz force
law is not a three-vector but a four-vector [2]. The time-
component of this is J - E, which gives the rate of change

of the dipole’s energy. The integral of J - E over space is
zero and there is no net transfer of energy just as there is
no net force. If we consider the torque, however, then the
J - E term produces a change to the moment of inertia
of the dipole, just as the force density (1) contributes to
the torque. When combined, these two effects result in
an angular acceleration:
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where I is the moment of inertia of the dipole. For the
situation just described, this angular acceleration is zero
as expected.

The —V(J - E) term in (4) is reminiscent of that
found when calculating the acceleration of a particle with
charge ) and rest-mass m, moving with velocity v [3]:

azi[E—i—va—v(v-E)], (5)

mry

where v = (1 — v?)~/2 is the usual Lorentz factor. We
can associate the additional, v - E, term with the change
in energy of the particle caused by its change in speed. In
Mansuripur’s magnetic-dipole thought experiment there
is no change in the velocity of the dipole because there
is no net force acting on it, but there is a change in the
moment of inertia and this balances exactly the torque
derived from (1). This effect is simply the angular analog
of Mansuripur’s own argument for resolving the apparent
conflict with relativity for the force on a current carrying
wire [1].

Finally, we note that there are related treatments in
the literature [4].
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