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ABSTRACT

Metastasis is a complex,multistep process involved in the progression of cancer from a localized primary tissue to distant sites, often
characteristic of themore aggressive forms of this disease. Despite being studied in great detail in recent years, themechanisms that
govern this process remain poorly understood. In this study, we identify a novel role for miR-139-5p in the inhibition of breast
cancer progression. We highlight its clinical relevance by reviewing miR-139-5p expression across a wide variety of breast
cancer subtypes using in-house generated and online data sets to show that it is most frequently lost in invasive tumors. A biotin
pull-down approach was then used to identify the mRNA targets of miR-139-5p in the breast cancer cell line MCF7. Functional
enrichment analysis of the pulled-down targets showed significant enrichment of genes in pathways previously implicated in
breast cancer metastasis (P < 0.05). Further bioinformatic analysis revealed a predicted disruption to the TGFβ, Wnt, Rho, and
MAPK/PI3K signaling cascades, implying a potential role for miR-139-5p in regulating the ability of cells to invade and migrate.
To corroborate this finding, using the MDA-MB-231 breast cancer cell line, we show that overexpression of miR-139-5p results
in suppression of these cellular phenotypes. Furthermore, we validate the interaction between miR-139-5p and predicted
targets involved in these pathways. Collectively, these results suggest a significant functional role for miR-139-5p in breast
cancer cell motility and invasion and its potential to be used as a prognostic marker for the aggressive forms of breast cancer.
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INTRODUCTION

Breast cancer is the most commonly diagnosed cancer in
women and a leading cause of cancer mortality. One of the
major determinants of breast cancer mortality is the stage
of disease at diagnosis; patients who present with metastatic
disease have a 5-year survival rate of 21% (Cardoso and
Castiglione 2009). The progression of primary tumors to
metastatic disease is known to involve (1) invasion of extra-
cellular matrix and stromal layers by the tumor cells, (2)
intravasation into the bloodstream to travel to a distant or-

gan, (3) extravasation into the parenchyma of distant tissues,
and (4) colonization and outgrowth of tumors in the distant
site (for review, see Fidler 2003). The molecular mechanisms
underlying metastatic migration and invasion are only par-
tially understood, despite several signaling pathways being
implicated (Blanco and Kang 2011). Interaction between car-
cinoma cells and their neighboring stroma has also been
shown to play a critical role (Bhowmick et al. 2004).
Recently,miRNAs have also been found to play a key role in

metastases (Ma et al. 2007; Valastyan et al. 2009). miRNAs are
short noncoding RNAs that suppress target gene activity pre-
dominantly through binding to target mRNAs and inhibiting
their translation. miRNAs have also been shown to promote
target gene degradation (for review, see Fabian et al. 2010;
Huntzinger and Izaurralde 2011). Several miRNAs have
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causative or correlative links with metastasis. In the case of
breast cancer, miR-21 overexpression has been shown to pro-
mote metastasis (Asangani et al. 2008; Zhu et al. 2008). miR-
31 regulates the expression of the key metastatic genes integ-
rin-α5, radixin, and RhoA (Valastyan et al. 2009). miR-200
has also been shown to increase metastatic potential of mam-
mary carcinoma cell lines (Korpal et al. 2011), while other
studies have observed an inverse correlation between miR-
200 expression and tumor invasion and metastasis (Gregory
et al. 2008; Korpal et al. 2008). Overexpression of miR-139-
5pwas recently shown to correlatewith reducedmetastatic ac-
tivity in hepatocellular carcinoma and gastric cancer cells
(Bao et al. 2011; Wong et al. 2011; Li et al. 2013) and down-
regulated in glioblastoma (Li et al. 2013). Furthermore, in pa-
tients with invasive squamous cell carcinoma, loss of miR-
139-5p expression is associated with increased metastatic dis-
ease (Mascaux et al. 2009).

Although a strong association between miR-139-5p and
metastasis exists, there is little knowledge of the mechanisms
by which it contributes to this process or of the gene networks
it regulates; the specific pathways that are disrupted are still
poorly understood. Only five targets of miR-139-5p have
been identified and validated so far: FoxO1 (Hasseine et al.
2009), Rho-kinase2 (Wong et al. 2011), CXCR4 (Bao et al.
2011), RAP1B (Guo et al. 2012), and Type I Insulin-like GF
(Shen et al. 2012). However, its role in breast cancer has not
been studied so far.

miRNAs have the potential to be oncogenes or tumor sup-
pressors in a given cellular context. Depending on the specific
tissues or cancer type they are expressed in, miRNAs achieve
functional specificity by targeting a core network of genes
that belong to the same pathway. This interaction is highly
dependent on the relative abundance of multiple mRNA tar-
gets. For instance, miR-17-5p is oncogenic in hepatocellular
and colorectal carcinomas (Ma et al. 2012; Shan et al. 2013)
and, in contrast, has been shown to have tumor-suppressive
properties in cervical cancer cells (Wei et al. 2012). Similarly,
miR-182-5p was shown to have oncogenic properties in blad-
der, ovarian, and breast cancers (Hirata et al. 2012; Liu et al.
2012; Krishnan et al. 2013), whereas it acts as a tumor sup-
pressor in lung cancer (Sun et al. 2010). Given this molecular
and context specificity of miRNAs, we wished to explore
whether miR-139-5p was a potential oncomir of breast can-
cer and what the output of its functional repression was, and
identify the network of genes possibly regulating its functions
in the context of breast cancer.

RESULTS

miR-139-5p is de-regulated in human triple negative
breast cancer samples

To assess the clinical relevance of miR-139-5p in human
breast cancer, wemeasured its expression in a cohort of breast
cancer patient samples (n = 40) that included the following

molecular subtypes of invasive ductal carcinomas–no special
type (IDC-NST): triple negative (n = 18), Her2+ (n = 4), ER+/
PR+ (n = 9); invasive lobular carcinomas (ILC) (n = 3);
and normal breast tissue (n = 6) (Supplemental Table 1).
The expression levels of miR-139-5p were assayed by qRT-
PCR relative to an endogenous control RNU6B (Fig. 1A).
We observe an increase in the levels of miR-139-5p in normal
mammary tissue and several subtypes, but the triple negative
subtype showed a marked variable pattern where 38% of the
samples had lower expression compared to the normal con-
trols. Since this subtype is heterogeneous at clinical, morpho-
logical, and molecular levels, it is possible that the low miR-
139-5p expressing subgroup is one with a very different prog-
nosis (Cheang et al. 2008), and further studies are warranted
to try to validate this. Although the difference in the popula-
tion average did not reach statistical significance, the loss of
miR-139-5p expression may help to identify a new molecular
subtype important for the biological understanding of disease
and for clinical management within this invasive subgroup
of breast cancer.

miR-139-5p is frequently down-regulated in invasive
breast carcinoma

Next, we reviewed miR-139-5p expression in previously pub-
lished data using TaqMan Low-Density Arrays to analyze 29
breast tumors and 21 normal adjacent controls (Romero-
Cordoba et al. 2012). This sample cohort included inva-
sive ductal carcinomas (n = 26), invasive lobular carcinomas
(n = 1), invasive mucinous carcinomas (IMC) (n = 1), and
ductal carcinoma in situ (DCIS) (n = 1). Of the IDCs, only
five samples were triple negative. As shown in Figure 1B,
miR-139-5p is significantly (P value < 0.0001) down-regulat-
ed in the tumor cohort compared to normal controls. To
strengthen the validity of this expression profile, we also
looked for changes in expression of knownmetastasis-associ-
ated miRNAs in breast cancer. Importantly, miR-139-5p ex-
pression positively correlates with miR-31 (r = 0.44) and
miR-200b (r = 0.36), which are well-characterized anti-meta-
static miRNAs in breast cancer (Korpal et al. 2008; Valastyan
et al. 2009). This result suggested that miR-139-5p could be
another marker for metastatic breast cancer besides the asso-
ciation with triple negative tumors.
To further investigate the expression of miR-139-5p across

a larger cohort of patient samples, we chose to analyze a
miRNA-seq data set (Farazi et al. 2011) consisting of normal
breast tissue (n = 16) and various types of breast cancer in-
cluding: adenoid cystic carcinoma ((n = 2), apocrine carcino-
ma (n = 4), atypical medullary carcinoma (n = 9), metaplastic
carcinoma (n = 11), mucinous carcinoma (n = 1), ductal car-
cinoma in situ (n = 21), and invasive ductal carcinoma (n =
174). Although the adenoid cystic carcinoma, a proportion
of apocrine carcinomas, atypical medullary, and metaplastic
carcinomas can be classified as basal-like molecular subtypes,
they differ in theirmorphology, aggressiveness, and prognosis
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(Yerushalmi et al. 2009; Marchio et al. 2010; Park et al. 2010).
Metaplastic carcinomas are a heterogeneous group of tumors
characterized by the presence of epithelial cells (spindle,
squamous) with or without metaplastic elements such as
bone, cartilage, and muscle. They are aggressive tumors with
a poor prognosis (Park et al. 2010). Medullary carcinoma is a
controversial entity defined by Ridolfi and, despite the high
grade, is said to have a good prognosis. In contrast, tumors
that do not fulfill the criteria for typical medullary carcinomas
have been designated as atypical medullary carcinomas
(Ridolfi et al. 1977). These are more aggressive and have mor-
phological features and prognosis that overlapwith high grade
IDC (Ridolfi et al. 1977). Adenoid cystic carcinoma, despite
falling into the basal-like category, is an indolent tumor in
the breast compared to its salivary gland counterpart.
Carcinomas with apocrine differentiation are heterogeneous,
and the behavior is dependent on grade and stage (Yerushalmi
et al. 2009; Marchio et al. 2010). Interestingly, as shown in
Figure 1C, the subtypes that have the worst prognosis and
the highest propensity to form distantmetastases (metaplastic
carcinomas, atypical medullary, and the high grade TN IDCs)
exhibit the lowest levels ofmiR-139-5p expression.Within the
IDCs, those patients with a triple negative phenotype show
a more significant (P < 0.001) down-regulation compared
to those that express either ER/PR or Her2 (P∼ 0.007).
However, not all triple negative patient samples show a
down-regulation of miR-139-5p expression as seen in Figure
1A and in some subtypes in Figure 1C, but the common fea-
ture among these results is that miR-139-5p is frequently
lost in the most aggressive subtypes of breast cancer, suggest-
ing that itmayplay a key role in themetastatic cascade of breast
cancer.

Identification of direct targets of miR-139-5p using a
biotinylated miRNA duplex

It is well established that the function of microRNAs depends
on the expression of their targets (Sood et al. 2006) and that
the differing expression of these targets in different cellular
states can lead to opposing phenotypic outcomes—for exam-
ple, overexpression of miR-17-5p acts as either an oncogene
or a tumor suppressor depending on what tissue it is ex-
pressed in (Cloonan et al. 2008). Therefore, it is critical to ro-
bustly identify the direct targets of miR-139-5p in breast
cancer cells. Given that target prediction programs are noisy
and have high false-positive rates (Bentwich 2005; Sood et al.
2006), we resorted to an experimental identification of tar-
gets. We used the recently reported miRNA pull-down ap-
proach (Cloonan et al. 2011) that involves transfecting
synthetic biotinylated miR-139-5p duplexes (Fig. 2A) into
cells (in our case, MCF7 cells) and surveying the captured
target mRNAs using microarrays. Figure 2B shows sample
clustering of cells transfected with biotinylated miR-139-5p
and the total lysates where total distance between samples in-
dicates similarity, highlighting the reproducibility of the pull-
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FIGURE 1. Expression analysis of miR-139-5p across tumor subtypes
and normal tissue from human breast cancer patient samples. (A)
Lines represent the mean of miR-139-5p expression (normalized to
RNU6B) across sample subtypes: triple negative (n = 18), Her2+ (n = 4),
ER+/PR+ (n = 9), invasive lobular carcinomas (n = 3), normal breast
tissue (n = 6). Triangles represent the expression levels for individual pa-
tients. (B) Expression of miRNAs in breast cancer as assessed by
TaqMan Low Density Arrays (Romero-Cordoba et al. 2012). Lines rep-
resent the mean expression of miR-139-5p, alongside well-characterized
anti-metastatic miRNAs like miR-31 and miR-200b (normalized to
RNU6B) across the sample cohort (comparing tumor versus normal
along the x-axis). Triangles represent the expression levels for individual
patients. Asterisks indicate significant difference between the expression
of miR-139-5p in the tumour compared to the adjacent normal tissue
([∗] P < 0.0001, Student’s t-test). (C) miR-139-5p expression as assessed
using miRNA-sequencing from Farazi et al. (2011) across normal breast
tissue (n = 16) and a panel of breast cancer patient samples of various
subtypes, including adenoid cystic carcinoma (n = 2), apocrine carcino-
ma (n = 4), atypical medullary carcinoma (n = 9), metaplastic carcino-
ma (n = 11), mucinous carcinoma (n = 1), ductal carcinoma in situ
(DCIS) (n = 21), and invasive ductal carcinoma (IDC) (n = 174).
Lines and scatter plot represent the mean across a subtype and the tran-
scripts per million (tpm) of miR-139-5p in each sequenced sample, re-
spectively. Asterisks indicate significant difference between the
expression of miR-139-5p in the specific tumor subtype compared to
the normal tissue. (∗∗) P < 0.0001, (∗) P∼ 0.007, Student’s t-test.
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down approach between biological replicates. We identified
mRNAs significantly enriched in the biotin fraction com-
pared to the input RNA at a 5% false discovery rate (FDR)
threshold, with a fold-change > 2 (Fig. 2C). Using this ap-
proach, 884 probes (targeting 879 genes) were found to be sig-
nificantly enriched in the pull-down fractions (Supplemental
Table 2).

Next, we compared the miR-139-5p pull-down targets to
TargetScan predicted targets and saw an overlap between
the experimentally determined and the predicted targets
which was significantly more than expected by chance (P≈
5.5 × 10−7) (Fig. 2D), supporting the notion that we are en-
riching for biologically relevant targets of miR-139-5p. As ex-
pected, some targets identified in other pathologies are either
not expressed in MCF7 cells (2/5) or do not meet our strin-
gent threshold for target identification (Fig. 2C). Figure 2C
highlights (in green) the significantly enriched genes that

are associated with the metastatic cascade, specifically in the
context of breast cancer. miRNAs regulate cellular processes
by concomitant suppression of a network of genes, so we in-
cluded genes which do not pass our stringent threshold cutoff
for target identification, since they belong to closely connect-
ed pathways associatedwith the invasive ability of cancer cells.
Together, these results demonstrate that the pull-down has
enriched for miR-139-5p’s biological targets.

miR-139-5p targets genes involved in pathways
associated with metastasis

A gene set enrichment analysis (GSEA) was performed using
ingenuity pathway analysis (IPA) on the miR-139-5p targets
significantly enriched in the biotin pull-down. The list of
pull-down-enriched 879 genes (Supplemental Table 2) was
compared to 10 other random gene lists of the same size to
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confirm specificity. A functional ontology was only consid-
ered significant if its −log(P-value) was at least four standard
deviations away from the mean −log(P-value) of the 10 ran-
dom gene lists. Supplemental Table 3 lists all canonical path-
ways (IPA) showing significant enrichment (P-value < 0.05)
for miR-139-5p pull-down targets. As predicted, several sig-
nificantly enriched pathways have been previously implicated
in metastatic biology (Table 1), with confirmed roles for all
but one in breast cancer.
Functional enrichment analysis identified several canonical

pathways previously implicated in the metastatic cascade, but
the specific mechanism by which miR-139-5p modulates key
signaling pathways underlying these processes is still un-
known. To explore this, we analyzed the list of significantly
enriched targets from the pull-down approach and explored
the literature for their known role specifically in cellular pro-
cesses underlying metastasis, including cell proliferation, mi-
gration, and invasion. Shown in Figure 3 are key signaling
cascades underlying these processes, with targets of miR-
139-5p highlighted in dark gray (log2 FC > 1) and light gray
(log2 FC > 0.5) and targets previously validated in other stud-
ies. The signaling molecules identified from this analysis were
found to be part of three major pathways: (1) Wnt signaling
which consists of canonical and noncanonical arms, depend-
ing on the ligand; canonical Wnt signaling occurs upon re-
cruitment of β-catenin to the nucleus (Clevers and Nusse
2012), whereas the noncanonical streams work through
downstream activation of molecules such as PRKC and
RHO (Schlessinger et al. 2009), both of which are known
players in breast cancer progression (Scheel et al. 2011); (2)
receptor tyrosine kinases (RTK) signal through several path-
ways including RAS–MAPK and PI3 kinase, activating several
downstream signal transducers, such as RAF1 and RAC1, and
transcription factors such as MAPK3/1 (ERK1/2), NFKB,
CEBPB, and TWIST1, all of which play important roles in
breast cancer progression (Chaudhary et al. 2000; Bundy
and Sealy 2003; Buchholz et al. 2005; Kim et al. 2008; Hong
et al. 2011); (3) TGFB signaling which plays an important
role in breast cancer (Buck and Knabbe 2006), epithelial

to mesenchymal transition (EMT) (Zavadil and Bottinger
2005), and breast cancer metastasis (Padua et al. 2008).
Interestingly, TGFB also cross-talks with several other path-
ways, including estrogen receptor signaling (Matsuda et al.
2001), which have also been identified as miR-139-5p targets
from our analyses. Also interestingly, proteins underlying this
pathway were identified to be potentially regulated by miR-
139-5p using target prediction software (Lee et al. 2013).
This analysis outlines the complex set of targets that ap-

pear to be regulated by miR-139-5p, a major proportion of
them being involved in tumor progression and metastasis.
It suggests possible mechanistic targets of miR-139-5p in
the regulation of metastasis, warranting further functional
characterization of its role in suppressing these functional
phenotypes.

miR-139-5p does not alter proliferation or DNA profile
in MDA-MB-231 cells

The pathways analysis suggested a role formiR-139-5p in pro-
moting breast cancer metastasis. To confirm its relevance in
processes underlying malignancy of tumor cells, we under-
took a series of cell-based assays. Previous studies have report-
ed a prognostic role for cell proliferation in the metastatic
ability of tumors (Maeda et al. 1996; Panizo-Santos et al.
2000).Moreover, cell proliferation has been reported to be al-
tered bymiR-139-5p in human colorectal carcinoma through
regulating the expression of RAP1B (Guo et al. 2012).
To test whether this phenotype was relevant in breast

cancer, we generated four stable cell lines with inducible
expressionofmiR-139-5p inMDA-MB-231 cells, awell-char-
acterized invasive breast cancer cell line.Doxycycline-induced
expression ofmiR-139-5p for each cell line was confirmed us-
ing TaqMan real time PCR (Fig. 4A). The four stable cell lines
showbetween20- and200-foldhigher expressionofmiR-139-
5p in the presence of 1000 ng/mL doxycycline, which is also
comparable to the difference in expression seen between nor-
mal breast tissues relative to tumor patient samples (Fig. 1C).
Sequencing the small RNA population of the MDA-MB-231

TABLE 1. miR-139-5p target enriched canonical pathways and their association with tumor progression

Pathway P-value
Associated with

metastasis? Cancer type References

Protein ubiquitination pathway 1.00 × 10−5 Yes Breast Kim et al. (2011)
ERK5 signaling 2.95 × 10−5 Yes Breast, prostate Cronan et al. (2011); Ramsay et al. (2011)
Aminoacyl-tRNA biosynthesis 1.95 × 10−4 Maybe (tumorigenesis) Lung, colon Kim et al. (2011)
N-Glycan biosynthesis 2.90 × 10−4 Yes Breast Lau and Dennis (2008)
Glucocorticoid receptor
signaling

3.55 × 10−4 Maybe (tumorigenesis) Breast Moutsatsou and Papavassiliou (2008)

NGF signaling 3.90 × 10−4 Yes Breast Adriaenssens et al. (2008)
Xenobiotic metabolism
signaling

5.80 × 10−4 Maybe (tumorigenesis) Breast Aust et al. (2005); Naushad et al. (2011)

HGF signaling 6.50 × 10−4 Yes Breast, melanoma Maroni et al. (2007); Previdi et al. (2010)
PI3K/AKT signaling 1.15 × 10−3 Yes Breast, lung, thyroid Smirnova et al. (2012); Xue et al. (2012)
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cells (Supplemental Table 4) shows miR-139-5p to be ex-
pressed at ∼300 transcripts per million (tpm), where the top
10% of miRNAs are expressed (miRNAs with <100 tpm ex-
cluded) with >1000 tpm. The highest expressed miRNA in
the cell line had ∼74,000 tpm (a difference of ∼240-fold be-
tween miR-139-5p and the highest expressed miRNA). This
suggestedour stableoverexpressionofmiR-139-5pwaswithin
physiologically relevant levels. Additionally, an analysis of the
data downloaded from The Cancer Genome Atlas (TCGA)
that contains data from 893 breast invasive carcinomas and
normal patient samples show expression of miRNAs in nor-
mal breast tissue to be between 100 tpm and 300,000 tpm
with the top 10% of miRNAs with >10,000 tpm. These find-
ings suggest our levels of expression are within the realms of
normal copy numbers per cell. At this low level of overexpres-
sion, we did not observe any gross morphological changes or
changes in cellular integrity.

All four cell lines were used in the subsequent cell-based
assays. We performed MTT assays to measure the rate of pro-
liferation over a time course of four days. Figure 4B shows no

significant difference in the proliferation rates of the parental
(uninduced) cell lines versus the induced cell lines overex-
pressing miR-139-5p. We also performed FACS analysis of
the PI-stained cells to measure any change in the DNA profile
of MDA-MB-231 cells in response to miR-139-5p expres-
sion. As shown in Figure 4C, there was no statistically signifi-
cant change in DNA profile. Together, these results suggest
that overexpression of miR-139-5p has no effect on cell pro-
liferation or progression through the cell cycle in MDA-MB-
231 cells. This result also suggests that miR-139-5p may tar-
get different gene networks in other cancer types where alter-
ations in proliferation rates have been shown to result from
miR-139-5p overexpression.

miR-139-5p suppresses both invasion and migration
in MDA-MB-231 cells

Cellular migration and invasion are key processes under-
lying metastasis. To test the hypothesis that miR-139-5p
overexpression can suppress these phenotypes in breast
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cancer cells, we used the stable cell lineswith inducible expres-
sion of miR-139-5p in MDA-MB-231 cells. The migratory
ability of the stable cell lines was tested by quantifying their
ability to traverse a transwell membrane in the presence
(1000 ng/mL) or absence of doxycycline. The parent cell
line stably expressing an empty vector without the miR-
139-5p construct was included in the assay to identify poten-
tial side effects of the doxycycline treatment. Cells were plated

on the top of a transwell insert containing 8-μMpores in basal
medium and placed in a well containing medium enriched
with EGF. After 6 h, cells that migrated to the bottom of the
insert were stained with crystal violet and counted.
Induction of miR-139-5p expression, upon addition of doxy-
cycline, significantly decreased the migratory ability of the
MDA-MD-231 cells to between 40% and 70% (P < 0.05)
(Fig. 5A,B) of their original levels in the four stable cell lines
tested.
The invasive ability of the cells was tested using a similar

procedure as outlined above using transwells that contained
a layer of matrigel to mimic the basement membrane. Cells
were plated on top of the matrigel and invading cells were
stained and counted 24 h after plating. Overexpression of
miR-139-5p decreased the ability of the MBA-MB-231 cells
to invade to 40%–70% (Fig. 5C,D) of the original levels in
all four stable cell lines (reached significance in two of them
[P < 0.05]). These assays reveal a novel role for miR-139-5p
in the inhibition of properties that account for the metastatic
potential of breast cancer cells. Similar effects of anti-invasive
and anti-migratory roles for miR-139-5p have also been
shown in other cancer types, like human hepatocellular carci-
noma (Wong et al. 2011; Fan et al. 2012) and colorectal cancer
cells (Shen et al. 2012).

Validation of miR-139-5p target-binding sites and
change in protein expression in MDA-MB-231 cells

The initial pull-down analysis was performed in MCF7 cells,
which is a breast cancer cell line, albeit less invasive than the
MDA-MB-231 cells. Since these cellswereused in all function-
al assays, we sought to validate the interaction between miR-
139-5p and some of the genes enriched in the biotin pull-
down using MDA-MB-231 breast cancer cells. The predicted
binding sites (and ∼60 nt of surrounding sequence) were
cloned into the 3′ UTRof the pMIR-REPORTLuciferase con-
struct and transiently transfected into cells. Luciferase activity,
indicative of translation from the plasmid, was measured in
the presence of amiR-139-5pmimic or negative controlmim-
ic and normalized using β-galactosidase activity. Using this
approach, we were able to validate five of seven genes selected
(Fig. 6A), including HRAS, NFKB1, PIK3CA, RAF, and
RHOT1. These genes are keymodulators of the pathways pre-
viously discussed (Fig. 3). These data further strengthen our
hypothesis thatmiR-139-5p targets a network of genes under-
lying cellular processes involved in metastasis. The validation
of target binding in the MDA-MB-231 cells also suggests that
these targets are possibly themediators ofmiR-139-5p’s influ-
ence on invasion and migration (Fig. 5). The high rate of val-
idation is further evidence of the ability of the biotin pull-
down approach to enrich for biologically relevant targets of
the miRNA.
We further tested if regulation of these target genes by

miR-139-5p could result in observable changes in their pro-
tein expression. Western blotting carried out with lysates
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stably transfected with miR-139-5p whose expression is induced in re-
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from stably transfectedMDA-MB-231 cells in the presence or
absence of doxycycline showed reduction in the protein levels
of NFKB1/p50 and PIK3CA and a dramatic loss in the levels
of HRAS when miR-139-5p is overexpressed (Fig. 6B,C).
Quantification of the levels of protein expression showed
statistical significance in the reduction of HRAS and
PIK3CA levels across all four stable cell lines, whereas the av-
erage 65% reduction of NFKB1/p50 was not statistically sig-
nificant when including the increase in protein observed in
one cell line. This difference could be attributed to the inher-
ent differences in expression of miR-139-5p across the differ-
ent stable cell lines and the rate of transcription, which might
alter protein levels at different time points. These observa-
tions further substantiate our initial findings, showing that
miR-139-5p does have a substantial effect on the levels of tar-
get genes that are relevant to tumorigenesis, cell migration,
and invasion.

DISCUSSION

In prior studies, miR-139-5p has been shown to have anti-
invasive, anti-migratory, and in some cases, anti-proliferative
effects on cancer cells. However, studies focusing on its target
cohort have been limited to FoxO1 (Hasseine et al. 2009),

Rho-kinase2 (Wong et al. 2011), and
c-Fos (Fan et al. 2012) in hepatocellular
carcinoma, CXCR4 (Bao et al. 2011) in
gastric cancer cells, RAP1B (Guo et al.
2012), and Type I insulin-like growth fac-
tor (Shen et al. 2012) in colorectal cancer.
In this study, we show miR-139-5p to be
associated with human breast cancer,
where its expression is frequently down-
regulated in themore aggressive subtypes.
Using the biotin pull-down method,
followed by GSEA, we experimentally
identified a large cohort of miR-139-5p
targets in breast cancer cells, with known
functions in pathways underlying the
cellular migration and invasion pro-
cesses. Overexpressing miR-139-5p in
MDA-MB-231 cells reduced their inva-
sive and migratory abilities. Together,
these findings support the hypothesis
that miR-139-5p is a potential anti-meta-
static oncomir of solid tumors.
There are certain caveats to be consid-

ered when interpreting our results. For
instance, although we did not observe
gross morphological changes or changes
in the cell cycle (Fig. 4B,C), it is possi-
ble that the introduction of an exogenous
molecule could lead to changes in mRNA
expression affecting our ability to detect
miRNA targets. Reduced or absence of

target expression in the cell line being studied could lead to
false negatives, and thus the targets identified in this study
should not be considered to be a definitive list of all possible
targets in all possible cell types. Similarly, overexpression of
an exogenous miRNA (even at the low levels used in this
study) could also lead to competition for gene targets with
endogenous miRNAs, leading to false positives in our assay.
Although we do not observe major disruption to the tran-
scriptional landscape either here or in previous studies
(Cloonan et al. 2011; Krishnan et al. 2013), this potential
requires that studies of individual miRNA targets will need
to be individually validated (Fig. 6). However, the inclusion
of a small proportion of false positives is unlikely to affect
the functional enrichment analysis performed here (Supple-
mental Table 3). This style of analyses has shown reliable re-
sults with a 0.25 FDR (Subramanian et al. 2005), and for
strong biological signals, even a false-positive rate of 50%
can yield accurate results (Cloonan et al. 2008). The accuracy
of the analyses in this study is highlighted by our recapitula-
tion of known biological functions for miR-139-5p (Wong
et al. 2011; Fan et al. 2012; Shen et al. 2012).
miRNAs achieve specific regulation of cellular processes by

concomitant suppression of a network of genes underlying
the same function and/or pathways (Cloonan et al. 2008,
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2011; Shirdel et al. 2011; Gennarino et al. 2012). In this study,
we have shown miR-139-5p to be able to target several path-
ways underlying the invasive and migratory phenotypes of
cancer cells. The Wnt signaling pathway activation has been
shown in several cancers and more specifically in breast can-
cer (Schlange et al. 2007; Khalil et al. 2012). Schepeler et al.
have shown that disruption of Wnt signaling leads to an in-
crease in the levels of miR-139-5p, among other miRNAs,
in colorectal carcinoma cells (Schepeler et al. 2012). In our
study, we observe components of theWnt pathway being tar-
gets of miR-139-5p. If disruption ofWnt in breast cancer cells
also leads to increase in levels ofmiR-139-5p, it is possible that
this miRNA could be part of a regulatory feedback loop that
could keep theWnt pathway in check in normal cells. The in-
vasive and migratory capacity of cells can also be attributed to
MAPK signaling, which can occur downstream from PRKC
signaling through the Wnt-calcium pathway (Sheldahl et al.

1999) or through RTK-induced downstream Ras and PI3K
signaling (Huang et al. 2004; Du et al. 2010).
Through luciferase assays and Western blotting, we were

able to confirm Ras and PI3Kmembers to be directly regulat-
ed by miR-139-5p, suggesting that the miRNA is likely inhib-
iting the invasive phenotypes through regulation of RTK-
mediated downstream signaling. Additionally, NFkB, which
can also be regulated by PI3K (Romashkova and Makarov
1999), has been shown to be a direct target of miR-139-5p,
which is capable of conferring anti-apoptotic properties on
metastatic cancer cells (Buchholz et al. 2005). Ras activates
the canonical MAPK pathway (RAF → MEK → ERK),
through which they regulate Rho GTPases, which are key
players in cell migration and invasion (Vega and Ridley
2008; Makrodouli et al. 2011). Interaction of PI3K with Rho
GTPase members Rac1 and Cdc42 has also been shown to
regulate downstream actin reorganization (Tolias et al. 1995)
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andcancercellmigration (BarberandWelch2006), suggesting
that both validated targets of miR-139-5p could be mediating
anti-migratory and anti-invasive properties through the same
effectors, the RhoGTPases. These properties are classical hall-
marks of aggressive breast tumors, suggesting miR-139-5p to
be anti-metastatic.

In this study, we show loss of miR-139-5p across the inva-
sive subtypes in three different data sets. However, this loss
does not always correlate with other molecular markers usu-
ally employed to classify breast cancers, e.g., the triple nega-
tive phenotype has been routinely used to classify aggressive
breast cancers. More recently, the heterogeneity underlying
this subgroup has been noted, warranting more detailed
prognostic tools (Metzger-Filho et al. 2012). Consistent
with this view, we observe a wide distribution in the expres-
sion of miR-139-5p in the triple negative breast cancers ana-
lyzed (Fig. 1A). Moreover, analysis of this and the Farazi et al.
data sets (Fig. 1A,C) suggests that loss of miR-139-5p could
help identify an aggressive subgroup of triple negative can-
cers. However, a comprehensive screen of a large number
of patient samples, including those from relatively rare sub-
types, is required to further understand the potential of
miR-139-5p as a biomarker for aggressive breast cancer.
Experimental validations as performed in this study across

other breast cancer cell lines and subtypes would help to
identify its potential as a prognostic marker for the invasive
property.
Being widely implicated in the progression of various can-

cers would indicate a common mode of action by miR-139-
5p, presumably through the inhibition of signaling pathways
underlying the metastatic traits of a wide range of carcinomas
(Fig. 7). Metastatic properties of different carcinoma cells
have been attributed to the pathways described in this study,
among others, suggesting that inhibition of these pathways
would be the initial step in reversing the aggressive nature of
late stage tumors. Our study now shows experimental evi-
dence for regulation of these pathways by a single miRNA.
Future studies in the characterization of these downstream
signaling pathways and the mode of miR-139-5p silencing
in human cancers would provide further information for its
potential use as a therapeutic in the reversal of the metastatic
phenotype of breast and other cancers.

MATERIALS AND METHODS

Cell culture

MDA-MB-231 cells were maintained in DMEM (Life Technologies
Australia) with 10% FBS and 1% Pen-strep and grown in a 5% CO2

atmosphere at 37°C. MCF7 cells were maintained in similar condi-
tions with the exception of 10 μg/mL bovine insulin (SigmaAldrich)
added to the growthmedia. MDA-MB-231 andMCF7 cell lines were
purchased from Cell Bank Australia.

Clinical samples, RNA purification, and qRT-PCR
analyses

Human breast tumors were derived from the Brisbane Breast Bank,
collected from consenting patients and with ethical approval from
the research ethics committees of The Royal Brisbane & Women’s
Hospital andTheUniversity ofQueensland.Histological type, tumor
grade, tumor size, lymph node status, and ER, PR, and HER2 status
were obtained from the pathology reports. ER, PR, and HER2 bio-
markers were used to infer molecular subtype as luminal, HER2,
or triple negative. Total RNA from human tumor samples was ex-
tracted using tumor homogenization followed by TRIzol extraction
(Invitrogen).

Total RNA was purified from cell lines using the miRNeasy Mini
Kit (Qiagen), and RNA integrity was assessed using an Agilent
Bioanalyzer 2100. For mature miRNA, cDNA (5–10 ng total RNA)
was synthesized using a TaqMan MicroRNA RT Kit (Applied
Biosystems), and qRT-PCR was performed using a miR-139-5p
MicroRNA TaqMan Assay (Applied Biosystems). All RT-PCR was
performed on an Applied Biosystems 7000 SequenceDetection
System. For small RNA expression analysis, RNU6B was used as an
endogenous control to normalize the data.

Biotin pull-downs, microarray hybridizations

Pull-downs of miR-139-5p targets were carried out as previously de-
scribed (Cloonan et al. 2011), using biotin-labeled oligonucleotides
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FIGURE 7. Model showing effect of miR-139-5p on tumor progres-
sion. Primary tumors, upon receiving autocrine and paracrine signals,
respond by downstream activation of key signaling pathways such
as TGF-β, Wnt, MAPK, and PI3K that are responsible for promoting
their migratory, invasive, proliferative, and anti-apoptotic properties.
Combined acquisition of these phenotypes enables the cells to become
metastatic and seed distant organs. Shown in the figure is a potential
model where miR-139-5p-mediated inhibition of these pathways can
abrogate the onset of metastatic traits, potentially making them more
susceptible for currently employed chemotherapeutic regimes.
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specific for miR-139-5p (Fig. 2A). Briefly, the 50 pmol of biotin-
labeled oligos (IDT) were transiently transfected into MCF7 cells,
cultured for 24 h, followed by cell lysis and binding of 50 μL
myOne C1 Streptavidin Dynabeads (Invitrogen) to the RNA frac-
tion for enrichment. Fifty nanograms of captured mRNA fractions
(three independent biological replicates) were amplified and labeled
using the Illumina Total Prep RNA Amplification Kit (Ambion) as
per the manufacturer’s instructions. Samples were profiled on
Illumina Human HT-12 chips along with input total RNA from
the same cells as negative controls. Microarray data have been
deposited to the Gene Expression Omnibus and can be accessed
with accession number GSE40411.

Bioinformatic analysis of pulldown
microarray data

Microarray data were normalized using the lumi package (Du et al.
2008) by applying background adjustment, variance-stabilizing
transformation (Lin et al. 2008), and robust spline normalization
(Workman et al. 2002) successively. The lmFit and eBayes functions
in the limma package (Smyth 2004) were used to test differential ex-
pression between the pull-down samples and the controls (Cloonan
et al. 2011). The false discovery rate was calculated to account for
multiple testing (Benjamini and Hochberg 1995). Probes that met
the 5% FDR threshold (for one-sided tests) with a fold-change > 2
were considered significantly enriched in the pull-down. The tran-
scripts (ENSEMBLV62) to which theymatched exactly were consid-
ered putative targets of that miRNA. The targets enriched using the
biotin pull-downs were analyzed using ingenuity pathway analysis as
previously described (Cloonan et al. 2008).

Stable cell line generation

MDA-MB-231 cells stably expressing miR-139-5p were generated
using the Mir-X Inducible miRNA Systems (Clontech). Briefly,
MDA-MB-231 cells were transfected with the pTet-on Advanced
Vector using Lipofectamine 2000 (Life Technologies Australia,
Invitrogen Division), and cells stably expressing the plasmid were
selected using 800 μg/mLG418 (Life Technologies Australia) (main-
tenance concentration: 400 μg/mL G418). Primers (Supplemental
Table 5) were used to amplify the miR-139-5p hairpin from human
genomic DNA and cloned into the pmRI-Zsgreen vector plasmid
supplied and subsequently transfected into the 231-pTet-on parent
line. Cells stably expressing the pmRi-Zsgreen-miR-139-5p were se-
lected using 1 μg/mL puromycin and further maintained in 0.5 μg/
mL puromycin. Stable expression of miR-139-5p was confirmed us-
ing TaqMan MicroRNA Assay (Applied Biosystems) specific for
miR-139-5p (Fig. 4A).

MTT proliferation assays

Stable pmRi-MDA-MB-231 cell lines overexpressing miR-139-5p
(1000 ng/mL dox) and parent stables (with no doxycycline) were
plated at 1 × 104 cells per well. MTT (3-[4,5-dimethylthiazol-2-yl]-
2,5-diphenyl tetrazolium bromide) activity was assayed using a Cell
Growth Determination Kit (SigmaAldrich) according to the manu-
facturer’s instructions and detected on a PowerWave XS spectropho-
tometer (BioTek).

Flow cytometry for cell-cycle analysis

MDA-MB-231 cells stably expressing miR-139-5p were harvested
and fixed in 70% ethanol at −20°C overnight. DNA was stained
using 10 μg/mL propidium iodide (SigmaAldrich), and RNA was
removed using 200 μg/mL RNase A (SigmaAldrich). Cells were fil-
tered through 35-μm cell strainer mesh (BectonDickinson) and an-
alyzed on a Becton Dickinson LSR II flow cytometer fitted with a
488-nm laser. Cell data were gated and analyzed using FlowJo
7.2.2 (Tree Star).

Cell invasion assay

MDA-MB-231 cells stably overexpressing miR-139-5p and parent
stables (in the presence or absence of doxycycline) were counted
and resuspended in serum-free media. Cell were plated at a density
of 2 × 105 cells/well in the upper chamber of a matrigel (200 μg)-
coated transwell filter (8.0-μmpore) fromCorning. To the reservoir,
650 μL of serum-free media with 0.1% BSA, 1% tet-FCS, and 10 ng/
mLEGFwas added. At 24 h, noninvaded cells on the upper side of the
matrigel were removed carefully with a cotton swab. The cells bound
to the lower side of the filter were washed twice with PBS and fixed
with 5% gluteraldehyde at room temperature for 10 min. Fixed cells
were washed twice with PBS and stained using 1% crystal violet.
Excess stain was removed by washing with water, and the filters
were dried overnight. Migrated cells were counted in six random
fields and images obtained using light microscopy and camera.

Cell migration assay

MDA-MB-231 cells stably overexpressing miR-139-5p and parent
stables (in the presence or absence of doxycycline) were counted
and resuspended in serum-free media. Cells were plated at a density
of 2 × 105 cells/well in the upper chamber of a transwell filter (8.0-
μm pore) from Corning. To the reservoir, 650 μL of serum-free me-
dia with 0.1% BSA, 1% tet-FCS, and 10 ng/mL EGF was added. At
6 h, nonmigrated cells on the upper side of the filter were removed
carefully with a cotton swab. The cells bound to the lower side of the
filter were washed twice with PBS and fixed with 5% gluteraldehyde
at room temperature for 10 min. Fixed cells were washed twice with
PBS and stained using 1% crystal violet. Excess stain was removed by
washing with water, and the filters were dried overnight. Migrated
cells were counted in six random fields and images obtained using
light microscopy and camera.

Luciferase assay to validate predicted binding sites

Predicted target sites of miR-139-5p were cloned into the HindIII
and SpeI sites of the pMIR-REPORT Luciferase vector. Synthetic
oligos (Supplemental Table 5) corresponding to 60 nt surround-
ing the target sequence were annealed before ligation into the
pMIR-REPORT Luciferase vector. All constructs were verified by
sequencing. MDA-MB-231 cells were cotransfected with 50 ng of a
pMIR-REPORT Luciferase construct and 50 ng of pMIR-REPORT
β-galactosidase Reporter Control Vector (Ambion) along with
miR-139-5p or a negative mimic (Ambion) to a final concentration
of 20 nM. Post-transfection, cells were incubated for 48 h prior to as-
saying. Luciferase activity was assayed using the Luciferase Assay
System (Promega Corporation) and detected on a Wallac
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1420 luminometer (PerkinElmer). β-galactosidase activity was de-
termined using the β-Galactosidase Enzyme Assay System (Prom-
ega) and detected on a PowerWave XS spectrophotometer
(BioTek). Luciferase activitywasnormalized to β-galactosidase activ-
ity in eachwell. Assayswere conducted in triplicate and independent-
ly repeated at least twice.

Western blotting

MDA-MB-231 cells stably overexpressing miR-139-5p (in the pres-
ence or absence of 1000 ng/mL doxycycline) grown in 10-cm dishes
for 24 h were washed gently in 5 mL of ice cold PBS and then lysed
using 300 μL of ice-cold aqueous lysis buffer (50 mM Tris, pH 7.5,
150 mM NaCl, 10 mM EDTA, pH 8.0, 0.2% sodium azide, 50 mM
NaF, 0.5% NP40) containing protease (Cat.# P8340, SigmaAldrich)
and phosphatase inhibitors (Cat.# P5726 and P0044, SigmaAldrich).
Lysates were spun at 12,000g for 30 min and the supernatants col-
lected and stored at −80°C. Estimation of protein concentration
was performed using Bradford reagent (Cat.# 500-0001, Biorad) us-
ing a standard curve created with known concentrations of BSA.
Optical density measurements were carried out on an Ultrospec
6300 pro (Amersham Biosciences). Thirty micrograms of protein
containing lysate were loaded onto each well of a NuPAGE SDS-
PAGE gel (Invitrogen) and run for 1.5 h at 130V. Protein from
the gel was transferred onto PVDF membrane (Millipore) using
NuPAGE transfer buffer at 20V for 2 h. Following transfer, mem-
branes were blocked in TBS-T containing 5% skim milk powder
for 1 h at room temperature, after which they were incubated
with primary antibody (1:500)-containing solution (in 5% BSA)
overnight rocking at 4°C. Primary antibodies used were: rabbit
anti-p50/p105 antibody (Cat.# 3035P, Cell Signaling), rabbit anti-
HRAS (Cat.# SC520, Santa Cruz Biotechnology), rabbit anti-
PIK3CA p110 antibody (Cat.# 4249S, Cell Signaling), and rabbit
anti-histone H3 (Cat.# 9715, Cell Signaling). Membranes were
then washed in TBS-T three times (30 min each), followed by incu-
bation with anti-rabbit HRP secondary antibody (Cat.# 7074, Cell
Signaling) at 1:5000 in TBS-T containing 5% skim milk powder
for 1 h at room temperature. Membranes were then washed in
TBS-T and developed using the SuperSignal West Dura
Chemiluminescent Substrate (Cat.# 34076, ThermoScientific) on
a Konica Minolta film processor (SRX 201A, Konica Minolta).

DATA DEPOSITION

Microarray data have been deposited to the Gene Expression
Omnibus under accession number GSE40411.
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