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ABSTRACT

Context. The presence of energetic X-ray sources in the solar corona indicates there are additional transport effects in the acceleration
region. A prime method of investigation is to add collisions into models of particle behaviour at the reconnection region.
Aims. We investigate electron test particle acceleration in a simple model of an X-type reconnection region. In particular, we explore
the possibility that collisions will cause electrons to re-enter the acceleration more frequently, in turn causing particles to be acceler-
ated to high energies.
Methods. The deterministic (Lorentz) description of particle gyration and acceleration has been coupled to a model for the effects of
collisions. The resulting equations are solved numerically using Honeycutt’s extension of the RK4 method to stochastic differential
equations. This approach ensures a correct description of collisional energy loss and pitch-angle scattering combined with a suffi-
ciently precise description of gyro-motion and acceleration.
Results. Even with initially mono-energetic electrons, the competition between collisions and acceleration results in a distribution
of electron energies. When realistic model parameters are used, electrons achieve X-ray energies. A possible model for coronal hard
X-ray sources is indicated.
Conclusions. Even in competition with energy losses, pitch-angle scattering results in a small proportion of electrons reaching higher
energies than they would in a collisionless situation.
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1. Introduction

A solar flare is believed to occur via the release of energy stored
in the Sun’s magnetic field when a magnetic reconnection event
occurs in the solar corona. Some of this energy is released in
the form of accelerated particles that transport energy through-
out the solar atmosphere and produce X- and gamma-radiation
(Aschwanden 2002). The exact mechanism of particle acceler-
ation is still debated but some particles will certainly be accel-
erated by the electric field in the reconnection region. Martens
(1988) suggested that electric field acceleration in a collisionless
current sheet could release the majority of the flare energy in the
form of fast particles, primarily ions (see Speiser 1965). Since
then many authors have studied such a situation by calculat-
ing test particle trajectories in model electromagnetic fields (as a
random sample: Petkaki & MacKinnon 1997; Wood & Neukirch
2005; Hamilton et al. 2005; Hannah & Fletcher 2006; Browning
& Gordovskyy 2010; Petkaki & MacKinnon 2011; Burge et al.
2012; see also the review of Zharkova et al. 2011).

An unexpectedly bright, coronal hard X-ray (HXR) source
was first discovered using the HXT instrument on Yohkoh
(Masuda et al. 1994) and several more examples have been found
in RHESSI data (Krucker et al. 2008a). These sources have at-
tracted great interest particularly because they may represent
the location of the electron acceleration region (Krucker et al.
2008a). In at least one case the number of accelerated electrons
appears to be comparable to the total present in the emitting

volume, adding weight to such an interpretation (Krucker et al.
2010). Fletcher & Martens (1998) point out that electrons accel-
erated in a reconnection region, where very low magnetic fields
would be expected, would mostly be trapped in the corona by
magnetic mirroring (see also Petkaki 1996). A localised, coro-
nal hard X-ray source would result.

Masuda et al. (1994) suggested that a coronal HXR source
could be created by a very high-temperature plasma at the top of
a flaring loop. However, as Fletcher (1995) pointed out, a HXR
source created by heating should be seen to increase in size as the
plasma expands. That this is not seen would then require some
kind of plasma confinement at the top of the loop. If instead the
loop top source results from non-thermal particles contained by
transport effects, no source of thermal emission is required.

Direct, imaging localisation of the acceleration region would
be an exciting step forward, opening up new possibilities for
probing the physical processes that dominate there. It also
places new demands on modelling, however. In particular, we
know that electrons must undergo collisions in order to emit
bremsstrahlung HXRs. Therefore self-consistent models for
coronal HXR sources must include collisional energy loss and
scattering alongside the accelerating agent. Most test particle
modelling is collisionless, but HXR radiation would not be de-
tectable if collisions were truly negligible.

Hamilton et al. (2003) developed a method of includ-
ing collisions when following particle trajectories, but their
method includes only energy change, not pitch angle scattering.
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Accompanying energy loss and occurring on the same timescale
(e.g. Spitzer 1962; Trubnikov 1965), pitch angle scattering via
collisions must be expected to change the outcomes for test par-
ticles. It will lead at least some electrons to re-encounter the dis-
sipation region more often, possibly offsetting collisional energy
losses. The idea that scattering in angle, even if accompanied by
energy loss, can lead to enhanced acceleration was suggested in
a different, ionospheric context by Gurevich et al. (1985). Any
such scattering effects here would be compounded with mirror-
ing, because particles encounter greater magnetic field strengths
away from the null. Thus the net effect of collisions on particle
acceleration needs more detailed consideration.

Gordovskyy et al. (2012) studied test particle evolution in a
detailed, MHD model of a twisted lop undergoing reconnection,
but the guiding centre approximation was appropriate in their
work. Here the chaotic character of particle orbits near the null
point (Martin 1986; Chen 1992) rules out a guiding centre de-
scription, as well as implying that small collisional effects may
have substantial consequences for particle evolution.

In this paper we describe work aimed at including the ef-
fects of binary collisions in reconnection test particle calcula-
tions. In Sect. 2 we write down the model equations includ-
ing both Lorentz force terms from large-scale electromagnetic
fields, and the stochastic (Wiener process) terms that describe
collisional energy loss and scattering. We also briefly describe
the simple electromagnetic fields we invoke to model a recon-
nection region. In Sect. 3 we describe the numerical method
used to follow test particle trajectories, based on Honeycutt’s
(1992) extension of the RK4 method to stochastic differential
equations. In an Appendix we test this method on the 1D prob-
lem described by MacKinnon & Craig (1991), thereby verifying
that it reproduces analytical results for the distribution function,
at least as well as simpler numerical methods. Section 4 looks
at the changes in single particle behaviour resulting from col-
lisions, while Sect. 5 studies the distributions that emerge. In
Sect. 4 we study the modifications to electron acceleration near
null points that result from binary collisions. Section 7 discusses
the implications of our results, and in particular their possible
application interpretation of coronal HXR sources.

2. Model for test particle evolution

2.1. Governing equations

Test particle calculations start from the equations of motion in
prescribed electric and magnetic fields:

du
dt
=

q
m

(
E +

1
c
u × B

)
, (1)

dr
dt
= u. (2)

Here E and B are the electric and magnetic field vectors, u is
the test particle velocity, q and m are the particle charge and
mass respectively, and c is the speed of light. We use c.g.s. units.
External considerations lead to forms of E and B that describe
the (comparatively) large-scale fields met in the reconnection re-
gion. As in previous work (Petkaki & MacKinnon 1997, 2007,
2011) we consider a 2D system with translational invariance in
the third (z) direction, and concentrate on particles near a 2D
X-type neutral point, where strong electric fields can develop
and particles may be freely accelerated. As noted in the introduc-
tion, the presence of a null rules out a guiding centre description.

To focus attention on effects due to collisions we make the sim-
plest possible assumption, that steady reconnection results in a
static, uniform electric field. Then we have

E = E0 ẑ (3)

B =
B0

d
(yx̂ + xŷ) , (4)

where hats denote unit vectors, and d is the size of our accelera-
tion region.

Along with the macroscopic fields represented by E and B,
electrons feel a continually fluctuating electric field due to
all the other discrete charges in the plasma. These result in
both systematic slowing down and diffusion in velocity space
(Chandrasekhar 1943; Trubnikov 1965). The evolution of the
particle distribution function f (r, u, t) is then governed by a
Fokker-Planck equation with drift and diffusion matrices A
and D:

D f
Dt
= Ai.

∂ f
∂vi
+

1
2

Di j
∂ f

∂vi∂v j
, (5)

where we use the summation convention for indices. The calcu-
lation of A and D for test particles undergoing binary collisions
is detailed in Trubnikov (1965) or Rosenbluth et al. (1957).

The distribution function f governed by Eq. (5) gives the
envelope of the trajectories followed by test particles, each of
which evolves according to a Langevin equation:

du = Adt + D1/2.dW. (6)

Here W(t) is a vector of independent Wiener processes, i.e. ran-
dom quantities with mean 0 and variance equal to t. Also D1/2

denotes the matrix whose square is equal to D: D1/2.D1/2 = D.
As long as D is diagonalizable, D1/2 may clearly be constructed
thus:

D1/2 = VQV−1, (7)

where V is a matrix whose columns are the unit eigenvectors of
D, and V−1 is its inverse. Q is the diagonal matrix whose diag-
onal values are the square roots of the eigenvalues of D. Below,
however, we adopt a coordinate system in which D is diagonal
so we only need take the square roots of the individual diffusion
coefficients to construct D1/2.

The two descriptions (5) and (6) are equivalent (e.g. Gardiner
1985; MacKinnon & Craig 1991): the distribution function f
may be generated via solution of (5), or by solving the Eqs. (6)
and (2) for very many test particles. Electron collisional evolu-
tion is dominated by the myriad slightly fluctuating electrostatic
fields from the most distant particles within the Debye sphere.
Thus we may include the effects of collisions in test particle cal-
culations by straightforwardly combining the right hand sides
of (1) and (6):

du =

[
q
m

(
E +

1
c
u × B

)
+ A

]
dt + D1/2.dW. (8)

2.2. Drift and diffusion coefficients; coordinate system

Above we wrote the test particle governing equations quite gen-
erally, with only the fields (4) specified in a particular coordinate
system. In what follows we assume that test particle energies
are�thermal energies (although this may not necessarily be the
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case in the corona). Then diffusion in speed is negligible and we
have (Spitzer 1962; Trubnikov 1965; Emslie 1978)

A = −4πe4Λne

m2
e

u

v3
, (9)

where Λ is the Coulomb logarithm, usually taken to be 25 in the
solar corona. There are significant simplifications if we write u
in spherical polar coordinates, using specifically (v, φ, θ) where

cosφ =
u. ẑ
v
,

and the angle θ is measured in the x-y plane, anticlockwise
from x̂. Then the diagonal elements of D become

Dvv = 0 (10)

Dφφ = −4πe4Λne

m2
e

(
1 − cos2 φ

)
v3

(11)

Dθθ = −4πe4Λne

m2
e

1

v3 sin2 φ
(12)

and all off-diagonal elements are identically 0.
The equations of motion are made dimensionless in the same

manner as the equations of motion in Petkaki & MacKinnon
(1997, 2007). Distances are normalised to a scale de and times
to te, the electron gyroperiod at distance de from the null). Since
we are interested in >keV energy electrons, speeds are nor-
malised to c (and thus particle kinetic energies to rest mass
energies). We avoid the appearance of any further dimension-
less number in the problem if distances are normalised to de =(

c2me
eB0

)1/2
, where B0 is the magnetic field strength gradient, a

constant across the whole system. de is the radial distance at
which the local electron gyroradius equals the light travel time
to the null. If we take B = 100G and L to be a typical coro-
nal length scale of 109cm then de = 1.3 × 105cm. The nor-
malising timescale te then follows from these two quantities:
te = de/c = 4.33 × 10−6 s. The electric field and the magnetic
field are both normalised to B0de. Throughout the rest of this
paper we use dimensionless units unless explicitly stated other-
wise, and assume the values of de and te quoted here in convert-
ing results to dimensional units.

The full, dimensionless equations of motion (1) and (2) now
become

dx = v sinφ cos θdt (13)

dy = v sinφ sin θdt (14)

dz = v cosφdt (15)

dv =

(
q

me
E cosφ − K̃

v2

)
dt (16)

dθ =
q

me
(cotφ cos θBx + sin θBy)dt +

(
K̃

v3 sin2 φ

)1/2

dWθ (17)

dφ =

[
E sinφ
v
+ (By cos θ − Bx sin θ) − 2K̃ cosφ

v3

]
dt

+

(
K̃(sin2 φ)

v3

)1/2

dWφ (18)

where Wφ and Wθ are Wiener processes (given subscripts φ and θ
only to emphasise their independence). The dimensionless pa-
rameter K̃ controls the importance of collisions and is given in a

fully ionised hydrogen plasma by

K̃ =
Λne

4π

(
4πe2

me

)2
te
c3
= 10−21B−1/2

0 ne, (19)

where ne is the electron number density, Λ is the Coulomb
logarithm and te is our normalising time for electrons. Taking
Λ = 25,

K̃ = 3.2 × 10−8 n10

B1/2
07

,

where n10 = ne/1010 and B07 = 107B0. The smallness of K̃
does not mean that collisions are unimportant. First, since the
(non-adiabatic) particle orbits near the null are chaotic (Martin
1986; Chen 1992), extra terms that are small in magnitude may
nonetheless have a strong influence on test particle outcomes.
Second, in the 2D configuration studied here particles can easily
be trapped near the null for times comparable to their total col-
lisional lifetimes so collisions become cumulatively important.
We return to these points below.

2.3. Electric field

A variety of observational techniques have yielded estimates of
peak electric field strengths in flares and erupting prominences
(Somov et al. 2008; Foukal et al. 1987; Qiu et al. 2002). These
have ranged from a few tens of V/m to more than 1 kV/m, i.e.
roughly 0.005−0.3 in our dimensionless units (assuming the typ-
ical coronal parameters mentioned above).

A check on our adopted values is provided by estimating the
associated inflow velocity vin,

vin = c
E
B
·

In what follows we will mostly adopt E = 0.001 or smaller val-
ues (equivalent to 3.9 Vm−1). With a 100 G strength field on
the boundary of our system, this implies an inflow velocity of
0.39 km s−1, slightly lower than the values observed in flares
which are typically on the order of a few kilometers per second
(see e.g. Yokoyama et al. 2001).

3. Numerical integration method

We wish to generate a numerical approximation to the solu-
tion of the stochastic differential Eqs. (13)−(18). In the absence
of the stochastic, collisional terms, we have the same sort of
test particle problem already discussed by previous authors us-
ing a variety of numerical methods to integrate the equations
of motion. Here we prefer the fourth-order Runge-Kutta (RK4)
numerical method (e.g. Press et al. 1992). With a numerical
timestep of Δt, RK4 generates a numerical estimate of the so-
lution to a precision of (Δt)5. We see below that our RK4 in-
tegrations yield distributions with the same properties as more
sophisticated methods (Hannah & Fletcher 2006; Petkaki &
MacKinnon 2011) − even if individual particle trajectories are
less precisely described. For our purposes RK4 is the obvious
choice because there is a rigorously founded extension which
deals with stochastic force terms (Honeycutt 1992). As is well
known, trajectories of particles subject to stochastic forces, e.g.
Brownian motion particles, are continuous everywhere but dif-
ferentiable nowhere, so that methods for numerical integration
must be reconsidered carefully. Stochastic differential equations
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are often solved numerically using the Euler method or vari-
ants (MacKinnon & Craig 1991; Higham 2001). These methods
would give a poor description of the Lorentz force terms in
(13)−(18), however.

Honeycutt (1992) developed an extension of Runge-Kutta
methods to stochastic differential equations. We adopt this ex-
tended RK4 method here to retain a suitably precise description
of gyro-motion while including stochastic effects of binary colli-
sions. Then we can compare results with and without collisions,
confident that the comparison has not been contaminated by arte-
facts resulting from two different numerical methods.

We used a fixed step size, selected by calculating the energy
distribution of electrons at a fixed time for a variety of step sizes,
and noting the largest step size below which the electron energy
distribution does not change. Since we were able to find such
a timestep a shadowing theorem presumably applies. After sev-
eral initial experiments of this sort we mostly adopted a step size
Δt = 0.03, probably too large for useful calculation of individual
particle outcomes, but yielding robust distributions with accept-
able running times.

For illustration, consider the 1D equation

dx
dt
= F(x) (20)

With a timestep Δt the RK4 method generates a solution to (20)
via repeated use of the algorithm

xn+1 = xn +
Δt
6

(k1 + 2k2 + 2k3 + k4), (21)

where

k1 = F(xn)

k2 = F(xn +
Δt
2

k1)

k3 = F(xn +
Δt
2

k2)

k4 = F(xn + Δtk3).

Now, following Honeycutt (1992), consider the one-variable ad-
ditive noise equation

dx = F(x(t))dt + 2DdW(t), (22)

which adds a stochastic forcing term to (20). The factor of 2
is included so that the corresponding diffusion term in the as-
sociated Fokker-Planck equation is just D ∂2

∂t2 . Honeycutt shows
that a numerically generated solution will reproduce the 4th or-
der accuracy of RK4 and reproduce the statistical properties of
the exact solution to the corresponding order in the Taylor ex-
pansion if it is calculated using (21) but with extra Wiener type
terms added to each of the iterates for the next timestep:

x(Δt) = x0 +
Δt
6

(F1 + 2F2 + 2F3 + F4) + (2DΔt)
1
2ψ, (23)

where

F1 = f (x0),

F2 = f (x0 +
Δt
2

F1 + (2DΔt)
1
2ψ),

F3 = f (x0 +
Δt
2

F2 + (2DΔt)
1
2ψ),

F4 = f (x0 + ΔtF3 + (2DΔt)
1
2ψ).

Note that precise reproduction of the statistical properties of the
solution requires all of the numerical noise terms to have the
same form; the terms in F2 and F3 may no longer be thought of
as estimates of the solution at half a timestep, Δt/2, as they are
in conventional RK4.

3.1. The test problem
In order to develop and test the stochastic RK4 algorithm, we
consider a problem which already has a known solution. The
problem used was the problem considered in MacKinnon &
Craig (1991), which dealt with pitch-angle scattering of parti-
cles in a non-magnetised medium. The spatially integrated FP
equation for this problem also has a known analytical solution
(for the spatially homogeneous case) which is given in terms of
the Legendre polynomials. Stochastic RK4 treatment of many
test particles yields a distribution in very good agreement with
this analytical solution, discussed in more detail in the appendix.

4. Effect of collisions on single particle behaviour

4.1. Magnitude of collisional terms

From (16), the distance over which collisions will make a signif-
icant difference to particle energy and direction is of order

v

|dv/dx| =
v4

K̃
, (24)

whereas the size of the non-adiabatic region around the null
within which particles can be energised is of order (Petkaki &
MacKinnon 2007)

rAD = v1/2. (25)

Collisional energy loss will have an important influence on the
energy gained in the reconnection region if

rAD >
v

|dd/dx| ,

i.e.

v < K̃2/7 = 0.0072

⎛⎜⎜⎜⎜⎝ n2
10

B07

⎞⎟⎟⎟⎟⎠
1/7

· (26)

Equation (26) will be satisfied only for electron energies well be-
low even coronal thermal energies, depending only very weakly
on ne and B0. However we see next that even small levels
of pitch-angle scattering can make a big difference to particle
evolution.

4.2. Single particle trajectories

Figure 1 shows two trajectories followed by electrons near the
null. Both particles start with identical initial conditions (see
figure caption) and encounter the same electromagnetic fields
(E = 0.001 in our dimensionless units, equivalent to 3.9 V/m;
2D X-type B as above, K̃ = 3.2×10−8) but one trajectory is for a
vacuum while the other experiences collisions in a medium such
that K = (equivalent to an ambient density of 1010 cm−3 with the
typical coronal parameters mentioned above). These trajectories
have not been chosen randomly but to illustrate how pronounced
the consequences of collisions can be.

The general character of particle orbits in this configuration
is well understood (e.g. Bulanov & Sasorov 1976; Burkhart et al.
1990). Near the null, particles are not closely tied to field lines
and their trajectories become chaotic (Martin 1986; Chen 1992).
Beyond a distance given roughly by rAD above, their gyroradii
become smaller than the field strength variation length scale and
they behave in the usual adiabatic way, conserving magnetic mo-
ment p2⊥/B,showing curvature, gradient and E × B drifts, etc.
In this 2D configuration E is perpendicular to B everywhere so
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Fig. 1. Trajectory of one electron, integrated with and without the ad-
dition of pitch angle scattering. Both electrons had identical starting
conditions. All electrons start with an energy of 1.3 keV. The electric
field has magnitude 0.001 in our dimensionless units, which is 3.9 V/m
for our typical, coronal parameters. The particle started at x = −0.079,
y = 0.046 and z = 0, and with angles φ = 1.57 and θ = 2.61.

particle energy gains can only be significant in the non-adiabatic
region. The energy gained by a particle depends primarily on the
length of time it spends in the dissipation region, which in turn
will depend on its initial position (as is seen in the approximate,
analytical discussion of Bulanov & Sasorov 1976).

The trajectory shown in black in Fig. 1 is for an electron
in vacuum. It starts close to the null, where it can gain energy,
moving away until it starts to move adiabatically. It mirrors at a
fairly small value of r, returns to cross the vicinity of the null and
gain energy again, and finally moves away beyond the bound-
ary of the figure. The pitch angle it attains as it starts to move
adiabatically is a consequence of its chaotic motion nearer the
null, not predictable in any simple way except by this sort of nu-
merical calculation. In this instance it finds itself moving with a
small pitch angle so it is able to travel far from the null and does
not mirror again within the time of the simulation (equivalent to
0.015 s, i.e. its stopping time in the absence of an electric field).

The trajectory shown in red is for the electron experiencing
collisional scattering. Initially it closely resembles the vacuum
case but slight differences have more and more pronounced con-
sequences as the integration proceeds. Its movement as it travels
back towards the null is more complex, it spends more time in
the region where it can gain energy and it subsequently attains a
large pitch angle and so moves adiabatically at a smaller distance
from the null. For the remainder of the integration it bounces
left to right along field lines, at the same time E× B drifting up-
wards, in a manner often seen for such test particles (e.g. Hannah
& Fletcher 2006) but with added irregularities that result from
continual, small, stochastic changes in pitch angle. Its energy is
close to constant during this final period. The outcome for the
particle is completely different from the vacuum case because of
the sensitivity of the orbit near the null to even slight changes
in velocity. In this particular case the particle experiencing colli-
sions actually gains more energy than the vacuum case.

4.3. The Dreicer field

Resulting from the velocity-dependence of collisional scatter-
ing, the idea of the critical field (Dreicer 1959) is also impor-
tant for understanding what happens to individual particles. If

electrons have speed less than the thermal velocity, collisions
happen with almost constant frequency, increasing in number
as the thermal velocity is approached. If an electron is moving
faster than the thermal velocity, the collision frequency scales as
1/v2 (cf. Eq. (16)), so collisions become less frequent as the elec-
tron’s speed increases (see e.g. Rozelot et al. 2000; Trubnikov
1965).

Since electron energy loss rate decreases with energy, there
is a critical electron energy for which energy gain from electric
field is greater than energy loss from collisions. Electrons above
this critical energy can be freely accelerated out of the thermal
distribution by the electric field. The Dreicer field is the strength
of electric field for which this critical energy equals the thermal
energy, i.e. all electrons in the plasma can be freely accelerated.
The speed at which collisions become less important as known
as the runaway speed and is given by (e.g. Holman 1985):

vr = vTe

(ED

E

)1/2

, (27)

vTe is the thermal speed of the electrons, which is given by:

vTe =

(
kBT
me

)1/2

· (28)

The electric field strength ED is the Dreicer field, given in
statvolt cm−1 by (e.g. Holman 1985) :

ED =
eΛ

λ2
D

= 2.33 × 10−8
( n
109 cm−3

) ( T
107 K

)−1 (
Λ

23.2

)
, (29)

where Λ is the Coulomb logarithm, λD is the Debye length, and
T is the plasma temperature. For the plasma we will consider
(T = 1.4 × 107 K, n = 1010 cm−3,Λ = 25, the Dreicer field
is 1.8 × 10−7 statvolt cm−1, which is 5.4 × 10−3 V/m. The elec-
tric field we apply in our simulations is generally 10−3 in our
dimensionless units, equivalent to 3.9 Vm−1 for the typical coro-
nal parameters mentioned above.

For the plasma we will consider, vTe is 1.5×109 cm s−1. This
gives a runaway speed of 5.6× 107 cm s−1 for E = 0.001, which
in our units is a speed of 1.9 × 10−3. This means that all of the
electrons in our distribution are “runaway” electrons, and can be
accelerated out of a thermal distribution.

5. Effect of collisions on accelerated electron
distributions

5.1. Reference case, K̃ = 3.2 × 10−8

We now concentrate on the effects of collisions on electron en-
ergy distributions, starting by comparing the distributions that
result in the presence of an electric field E = 0.001 in vacuum,
and in a medium with K̃ = 3.2×10−8 i.e., with B0 = 10−7, a den-
sity of 1010 cm−3, reasonable for the corona. Figure 2 presents
the distributions assembled from the final states of 104 test elec-
trons, followed up to a time equivalent to 0.015 s, their colli-
sional stopping time in a medium of this density. All particles
start with an energy of 1.3 keV, randomly chosen directions, and
positions distributed randomly within r < 1 . For these simula-
tions, a particle is considered to have stopped if its energy is less
than 5.11 × 10−2 eV. This value was chosen as the simulation
was found to become unstable if the particle energy fell below
10−7 in dimensionless units; in any case this is far below coronal
thermal energies. 8298 of the original 10 000 electrons stayed
above this energy until the end of the run and their distribution
is shown in Fig. 2. The number of surviving electrons at the end
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Table 1. Summary of results of simulations, showing decrease in the number of particles left in the simulation at t = 0.015 s for decreasing
super-Dreicer fields.

E field strength (dimensionless units) Sub/super-Dreicer? Number of particles left in simulation at t = 0.015 s

1 × 10−3 Super 61.9%
1 × 10−4 Super 55.0%
1 × 10−5 Super 45.9%
1 × 10−7 Sub 57.3%

Notes. The Table also shows the increase in the number of particles left in the simulation for a sub-Dreicer Field.

Fig. 2. Energies at t = 0.015 s for 10 000 electrons whose trajecto-
ries have been integrated in a vacuum (black), and in a medium with
ne = 1010 cm−3 (red). All electrons start with an energy of 1.3 keV. The
electric field has magnitude 0.001 in our dimensionless units, which is
3.9 V/m for our typical, coronal parameters.

of the simulation is always quoted in the box at upper left of the
energy distribution figures.

The energy distribution in the vacuum case reproduces re-
sults seen in Petkaki & MacKinnon (2007), who used the more
sophisticated Bulirsch-Stoer integration method, reassuring us
that our RK4 results correctly describe particle distributions. The
code used is also capable of reproducing the results of other
X-type neutral point simulations seen in e.g. Hannah & Fletcher
(2006).

In the vacuum case, particles are accelerated by the elec-
tric field but to varying degrees depending on their initial con-
ditions. In the denser medium acceleration by the electric field
now acts in competition with collisional slowing down. Particles
that would have been less accelerated anyway by the electric
field are less able to withstand collisional energy loss. The
maximum energy achieved is the same in both cases but more
particles achieve this energy in the absence of collisions. The
dense medium distribution develops a long tail to low energies
and 17% of the particles stop completely. Of course, in the ab-
sence of the electric field all of them would have stopped by the
end of the calculation.

We also investigated the energy distributions for electrons
if E = 0.0001 and E = 10−5 (two smaller, but still super-
Dreicer fields). As the electric field decreases, lower energies
are achieved, both with and without collisions. However, once
again, the electrons undergoing collisions should have lost all
of their energy in this time. We do not plot the distributions for
E = 0.0001 and E = 10−5, but the results are summarised in
Table 1.

Fig. 3. Energies at t = 0.015 s for 10 000 electrons whose trajectories
have been integrated in a vacuum (black) and with collisions (red; with
K̃ = 3.2 × 10−8). All electrons start with an energy of 1.3 keV. The
electric field has magnitude 10−7 in our dimensionless units, which
is 0.00039 V/m for our typical, coronal parameters.

It can be seen that the fraction of particles left after one
stopping time decreases with decreasing (super-Dreicer) electric
field. What happens if a sub-Dreicer field is applied to the elec-
trons? The Dreicer field for an electron density of 1010 cm−3 and
temperature 1.4× 107 K is 5.4× 10−3 V/m. We imposed an elec-
tric field E = 10−7, equivalent to 3.9 × 10−4 V/m. Electrons in a
field of this magnitude have a runaway speed of 5.7× 107 m s−1,
which is 0.18 in dimensionless units, meaning our electrons are
initially travelling below the runaway speed, and collisions will
be more important. The effect of the sub-Dreicer field on elec-
trons which both do and do not experience collisions can be seen
in Fig. 3.

In the absence of collisions, the energy of electrons in such
a low field effectively does not change over the time of the inte-
gration. Once again, 80% of the particles experiencing collisions
do not stop completely, even in a stopping time, although their
energies are not interesting from the point of view of X-radiation
and a complete description would need to take account of diffu-
sion in energy close to the ambient thermal speed (cf. Galloway
et al. 2005). In fact, fewer particles stop completely with this
sub-Dreicer field after the expected stopping time than are found
for a small but super-Dreicer field. Again they display a spread
in energy reflecting the variety of histories near the null. A sim-
ilar spread of energies actually occurs in the vacuum case but is
not discernible compared to the particles’ initial energies.

5.2. Role of pitch-angle scattering

In Sect. 1 we speculated that pitch-angle scattering might help
some particles to retain high energies for longer, via more
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Fig. 4. Energies at t = 0.015 s for 10 000 electrons whose trajectories
have been integrated considering only collisional energy loss (black)
and with pitch angle scattering included (red). All electrons start with an
energy of 1.3 keV. The dimensionless electric field has magnitude 10−3.

Fig. 5. Energies at t = 0.015 s for 10 000 electrons whose trajectories
have been integrated considering only collisional energy loss (black)
and with pitch angle scattering included (red). All electrons start with an
energy of 1.3 keV. The dimensionless electric field has magnitude 10−7.

frequent returns to the dissipation region. We studied this possi-
bility by artificially suppressing the collisional terms in the angu-
lar rates of change, Eqs. (17) and (18), while retaining a nonzero
(K̃) energy loss term in (16). Figures 4 and 5 show the energy
distributions at t = 0.015 s for electrons which have undergone
pitch angle scattering and collisional energy loss, as well as en-
ergy loss unaccompanied by scattering, for two values of the
electric field. The results of these simulations are summarised
in Table 2.

We see that pitch-angle scattering does indeed have the effect
of allowing some particles to spend more time near the null and
thus gain higher energies − in spite of collisional energy loss.
These particles are few in number, however, only about 1% of
the total, so this does not appear to be a strong effect, at least for
the parameter range of these initial simulations.

Figure 6 investigates this question further by showing the
distance (r) of 100 electrons from the central null, whose po-
sitions were recorded every 100 timesteps. We show the ex-
ample where E = 0.001. It can be seen that adding collisions
causes particles to travel much less far from the neutral point (the
maximum values of r is approximately halved), and that more

Fig. 6. Distance from the neutral point (r) for each particle at each saved
timestep, considering only collisional energy loss (top) and with pitch
angle scattering included (bottom). The electric field has magnitude
0.001 in our dimensionless units, which is 3.9 V/m for electrons. This
simulation was done for a sample of 100 electrons, and their positions
were recorded every 100 timesteps.

timesteps (approximately 10% more) are spent at very small r
(r < 1).

5.3. Effects of varying density

We further investigate the combined effects of collisions and ac-
celeration near the null by following sets of test particles for
a range of densities and electric field strengths. In the refer-
ence case of Sect. 5.1, the plasma density was set to ne =
1 × 1010 cm−3 (i.e. K̃ = 3.2 × 10−8). We now simulate par-
ticle behaviour for a variety of different densities: ne = 5 ×
1010, 1011, 5 × 1111 and 1012 cm−3. Four different electric field
strengths were used: E = 10−3, 10−4, 10−5 and 10−7, spanning
both sub- and super-Dreicer fields. The results can be seen in
Figs. 7 to 10. Particles were followed up until their stopping
times so we grouped them by K̃ and each set of four figures
is drawn for the same physical time.

Clear trends, mostly unsurprising, are evident. For fixed elec-
tric field strength E, increasing density causes lower particle en-
ergies to be attained. The spread of energies also decreases. We
can also see a trend in the number of particles which remain
energised at the end of the simulation. This trend is plotted in
Fig. 11, which shows that there appears to be an optimum density
at which more particles are able to remain energised at the end
of the simulation. This could be due to the fact that we see an in-
creased energy loss rate for denser plasmas, but denser plasmas
will also scatter particles more in angle leading them to spend
more time near the null where they may be energised, either via
mirroring or via greater complexity of orbit, as seen in Fig. 1,
causing them to return to the region of the magnetic field where
they can be energised by the electric field. The competition be-
tween these two effects means that there is an optimum density
at which the energy lost by particles is less than the energy they
gain from the electric field. The value of this optimum density
changes depending upon the electric field strength.

For sub-Dreicer fields, the number of particles which remain
energised simply increases until all particles remain energised
at the end of the simulation. This could be due to the fact that
for sub-Dreicer fields particles collisions are more important;
therefore as collisions (which may send particles back to regions
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Table 2. Summary of results of simulations.

E field strength Sub/super-Dreicer? Energy loss included? Scattering Number of particles
(dimensionless included with energy above
units) 1 keV at t = 0.015 s

1 × 10−3 Super Yes Yes 51.7%
1 × 10−3 Super Yes No 50.7%
1 × 10−7 Sub Yes Yes 19.3%
1 × 10−7 Sub Yes No 18.3%

Fig. 7. Energies at t = 0.003 s for
10 000 electrons which have been mov-
ing in a plasma of density ne = 5 ×
1010 cm−3, for a variety of electric
fields. All electrons start with an en-
ergy of 1.3 keV. The initial positions of
the particles were randomly distributed
within the region r < 1, and the initial
particle pitch angles were randomly
chosen to be between 0 and 2π. For this
simulation, K̃ = 1.6 × 10−7.

Fig. 8. Energies at t = 0.0015 s for
10 000 electrons which have been mov-
ing in a plasma of density ne =
1011 cm−3, for a variety of electric
fields. All electrons start with an en-
ergy of 1.3 keV. The initial positions of
the particles were randomly distributed
within the region r < 1, and the initial
particle pitch angles were randomly
chosen to be between 0 and 2π. For this
simulation, K̃ = 3.2 × 10−7.
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Fig. 9. Energies at t = 0.0003 s for
10 000 electrons which have been mov-
ing in a plasma of density ne = 5 ×
1011 cm−3, for a variety of electric
fields. All electrons start with an en-
ergy of 1.3 keV. The initial positions of
the particles were randomly distributed
within the region r < 1, and the initial
particle pitch angles were randomly
chosen to be between 0 and 2π. For this
simulation, K̃ = 1.6 × 10−6.

Fig. 10. Energies at t = 0.00015 s
for 10 000 electrons which have been
moving in a plasma of density ne =
1012 cm−3, for a variety of electric
fields. All electrons start with an en-
ergy of 1.3 keV. The initial positions of
the particles were randomly distributed
within the region r < 1, and the initial
particle pitch angles were randomly
chosen to be between 0 and 2π. For this
simulation, K̃ = 3.2 × 10−6.

where they can gain energy) increase in frequency, the number
of particles which remain in the simulation also increases. Recall
that the pitch-angle scattering rate in (17) and (18) increases as
particle energy decreases.

5.4. Long times

Can the imposed electric field maintain particles at high ener-
gies for times much longer than a stopping time (as might help
with interpreting coronal HXR sources Krucker et al. 2008b)?
To test this, we ran a simulation with ne = 1010 cm−3, E = 0.001
(i.e. 1.8 V/m), for a running time equivalent to 0.15 s, which is

10 times the collisional stopping time for this density. The re-
sults can be seen in Fig. 12.

Figure 12 shows that particles are unable to achieve an en-
ergy greater than around 50 keV for this electric field strength
and simulation time. This is because particles are also losing en-
ergy due to collisions. In the ne = 1010 cm−3, case, about 80%
of the particles stop altogether, and the rest form a population
which have energies of around a few tens of kev. The particles in
the less dense plasma do not achieve higher energies, but there
are more of them (almost all of the initial population), and there
is also a low energy tail.
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Fig. 11. Variation in number of particles remaining in the X-type neu-
tral point simulations discussed in Sects. 4 and 5. Measurements were
taken after one stopping time for a variety of different values of electric
field, E.

Crucially, for the higher density, we see a narrower distribu-
tion of “surviving” particles with energies of a few tens of keV,
energies in the HXR range (see e.g. Holman et al. 2003). We also
attempted to run the simulation for longer times for E = 0.001
for chromospheric densities (ne = 1012 cm−3), but no particles
survived for significantly longer than their collisional stopping
times.

6. Effect of guide field

In all simulations previously discussed in this paper, we have
considered a magnetic field configuration with Bz = 0. We now
study the effects of collisions when the magnetic field has a small
z-component, Bz. We take Bz = 1 in dimensionless units. This
value of Bz was chosen so that it would be important for particle
trajectories near the null but negligible at the system boundary.
Such a guide field may keep particles near the dissipation region
for longer, enabling them to gain higher energies (Litvinenko
1996; Hamilton et al. 2005).

The equations of motion in the presence of nonzero Bz are
unchanged, with the exception of the rate of change of θ, whose
deterministic part now becomes

dθ
dt
=

q
m

[
cotφ(Bx cos θ + By sin θ) − Bz

]
. (30)

We repeated our previous variation of system parameters (E
and ne) and explored the same parameter space as we did for
Bz = 0. A sample of the results can be seen in Figs. 13 and 14.
In Fig. 13 we see that adding a guide field leads to more efficient
acceleration and narrower final energy distributions, with no low
energy “tail”. In the presence of a guide field, electron distribu-
tions with and without collisions look much more similar than
they do when Bz = 0.

Illustrative particle trajectories give further insight. The top
two panels of Fig. 14 show the trajectory and energy gain of a
single sample particle with the same initial conditions in each
case. It can be seen that the addition of a guide field substan-
tially alters the particle’s trajectory and energy gain profile. With
the addition of a guide field, particles no longer gain energy rel-
atively smoothly, but instead gain and lose energy repeatedly
as they travel in the direction of the electric field and then in
the opposing direction, although most particles end with a net

Fig. 12. Final energies of particles at t = 0.15 s for E = 0.001 and
two different densities. The simulation time was ten times the stopping
time for ne = 1010 cm−3, and equivalent to the stopping time for ne =
109 cm−3.

increase in energy. This was true for all densities and electric
fields studied.

The third panel of Fig. 14 shows the variation in the cosine
of the particle’s pitch angle with time. It can be seen that adding
collisions has a strong effect on particle pitch angle if there is no
guide field present. There are many changes in pitch angle, cor-
responding with the many changes in particle direction as it is
scattered back and forth. If there is a guide field present, adding
collisions does have a small effect in terms of when the particle
pitch angle varies, but does not substantially change the charac-
ter of that variation. The guide field means that all particles move
adiabatically. In the corona, with K̃ = 3.2×10−8, collisions away
from nulls result in only small perturbations to particle orbits.

The bottom panel of Fig. 14 shows the x-locations at every
100th timestep for 100 particles with an identical set of starting
conditions in the presence and absence of a guide field, and with
and without collisions. It can be seen that the single factor which
most affects the amount of time particles spend near the null is
the presence or absence of a guide field. The addition of a guide
field causes particles to spend more time near the null, mean-
ing that they can be accelerated to higher energies. The addition
of collisions reduces this effect somewhat, as particles may be
scattered away from this region, and may also lose energy due to
collisions.

Gordovskyy et al. (2012) studied test particle evolution in
an MHD model for energy release in twisted flux tube. Electric
fields in their model develop parallel to B and effects near null
points play a minor role. Collisions in the corona play a minor
role in their results, as they do here when the guide field is added.

7. Conclusion and discussion

In this paper, we have developed a method for including col-
lisional scattering and energy loss in the calculation of test
particle trajectories. This method was developed by extend-
ing the stochastic RK2 method of Honeycutt (1992) to an
RK4 method, which was then tested using the problem of
pitch angle scattering in an unmagnetised plasma, as studied in
MacKinnon & Craig (1991).

The stochastic integrator was used to add collisions to par-
ticle trajectories at an X-type neutral point. The addition of
collisions causes the particles to lose energy, but because the
particles are scattered in pitch angle, some of them may return to
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Fig. 13. Final energies of 10 000 elec-
trons at t = 0.015 s, with and without
collisions, and with and without a guide
field. For each panel, E = 0.001 and
ne = 1010 cm−3.

the neutral point to be repeatedly energised by the electric field
(although, as we have seen, the effect is small).

To gain understanding we have studied a highly idealised
system so we note some of the limitations in our calculations.
First, we neglected the diffusion in speed that becomes impor-
tant as particles approach the thermal speed (e.g. Galloway et al.
2005). They would be correct for low temperature plasma and
are instructive nonetheless. Our results in respect of acceleration
to X-ray emitting energies are not affected by this omission.

We considered an initial value problem. In reality new, un-
accelerated particles would continually advect into the diffusion
region and the distributions attained would result from a con-
volution of the results given here with the time profile for the
arrival of new material into the reconnection region (this point is
also discussed by Hannah & Fletcher 2006).

We have chosen to concentrate on position and angle-
integrated energy distributions, the most important quantity for
calculating HXR emission. Test particle calculations of this sort
can in principle yield more detailed information on the spatial
and angular distributions of fast electrons. Spatial distribution in
particular could be compared with spatially resolved HXR ob-
servations, e.g. from RHESSI although our highly simplified,
2D geometry will limit the value of such an exercise. Also much
larger numbers of test particles would be necessary to give sta-
tistically useful results with phase space broken into smaller and
smaller bins.

The proportion of particles left with nonzero energy de-
creases with decreasing electric field. However, if the electric
field is less than the Dreicer field, collisions become more im-
portant, and more particles survive for a stopping time − though
not necessarily with HXR-emitting energies− than are found for
a small super-Dreicer field. Increasing the plasma density causes
the acceleration process to become more efficient, up to a crit-
ical value at which the efficiency of the energisation decreases
due to collisional energy losses. This critical density changes
depending upon the electric field strength used in the simulation.
A more detailed discussion of this finding would need to include

the diffusion in velocity space that becomes more important as
particles approach thermal energies (Galloway et al. 2005).

We also investigated the effect of adding a small guide field.
It was found that adding a guide field caused more efficient ac-
celeration of particles as the guide field caused particles to re-
main closer to the null. When collisions were also added, this
additional energy gain was reduced as particles were scattered
away from the null and also lost energy due to collisions.

Except for the case with guide field, collisions play a more
important role in our results than in the work of Gordovskyy
et al. (2012). There are two reasons for this. As already dis-
cussed, the presence of a null and the resulting non-adiabatic
behaviour allow collisions to have a disproportionate influence
on particle evolution. Also our accelerated particles are trapped
near the null for times long enough for collisions to become cu-
mulatively important. The geometry of Gordovskyy et al. (2012)
does not allow such long-term trapping to happen.

Of course, in a more realistic model, the electric field is
unlikely to be constant. Likewise, the plasma density will also
change with position within the corona and may also be subject
to temporal fluctuations. The variations in both electric field and
density will cause changes in the efficiency of particle energi-
sation. Whether collisional slowing down or energisation from
the electric field is the dominant effect depends upon the exact
values of the electric field and density.

The calculations here may be relevant to understanding coro-
nal hard X-ray sources. As noted by Zharkova et al. (2011), how-
ever, the small volume associated with the reconnection region
means that too few electrons would be accelerated to account
for typical flare HXR fluxes, and a single region of the sort
studied here can only be one ingredient of a model for these
sources. More complex situations involving many nulls (see
Parnell et al. 2010) would have to be involved. We note that such
a model would add the coronal hard X-ray sources to the class of
“Continuous Reacceleration Thick Target Models” described in
a general way by Brown et al. (2009), in which a comparatively
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Fig. 14. Top panel: trajectory in x-y plane of a particle with identical starting conditions in the presence and absence of a guide field, and with
and without collisions. In each case, the particle started the simulation at x = −0.079, y = 0.046, z = 0. and with an initial energy of 1.26 keV.
These are the same initial conditions as for the particle whose trajectory is plotted in Fig. 1. Second panel: energy gain vs time for a particle with
identical starting conditions in the presence and absence of a guide field, and with and without collisions. Third panel: cosine of particle pitch
angle vs. time for a particle with identical starting conditions in the presence and absence of a guide field, and with and without collisions. Bottom
panel: x position at every 100th timestep for 100 particles with an identical set of starting conditions in the presence and absence of a guide field,
and with and without collisions. For each panel, E = 0.001 and ne = 1010 cm−3, i.e. K̃ = 3.2× 10−8. The legend shown in the bottom panel applies
to all panels.

small number of electrons produces a large HXR fluence because
the accelerator continues to act on them while they radiate.
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Appendix A

In order to develop and test an RK4 algorithm, we considered
a problem which already has a known solution. The problem
used was that considered in MacKinnon & Craig (1991), which
dealt with pitch-angle scattering of particles in a non-magnetised
medium. The Fokker-Planck (FP) equation for this problem also

has a known analytical solution (for the spatially homogeneous
case) which is given in terms of the Legendre polynomials,
which acts as a further check for the stochastic RK4 solution.
MacKinnon & Craig (1991) developed a stochastic system for
calculating the variation in particle pitch angle that makes use
of the Ito form of a stochastic differential equation (s.d.e.). The
FP equation can be replaced by a system of stochastic differ-
ential equations. As shown by MacKinnon & Craig (1991) this
general equivalence in this particular case means that μ evolves
according to the s.d.e.

dμ = − 2μ
v(t)3

dt +

[
(1 − μ2)
v(t)3

]1/2

r(t)dt, (A.1)

where r(t) is a Gaussian random noise process. The initial dis-
tribution is monoenergetic. Speeds are normalised to the ini-
tial speed (v0), distances are normalised to (v4

0nm2
e)/(4πe4Λ) and

times are normalised to (v3
0nem2

e)/(4πe4Λ), where ne is the elec-
tron density of the plasma and Λ is the Coulomb logarithm. It
should be noted here that v is also evolving with time; the par-
ticles are slowing down monotonically. This can be integrated
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Fig. A.1. Comparison of stochastic RK4, Euler integration, and the ex-
act solution evaluated using Legendre polynomials, t = 0.06.

using the Euler method or by using stochastic RK4 with a noise
term

D =

⎡⎢⎢⎢⎢⎢⎢⎣
(
1 − μ2

)
v3

⎤⎥⎥⎥⎥⎥⎥⎦ · (A.2)

We carried out a comparison of the 2 methods. A particular ex-
ample is shown in Fig. A.1, at t = 0.06 (the stopping time for
these particles is t = 1/3). This shows that all three solutions
are in close agreement. Similarly good agreement is found for
later times. This apparently simple process, of adding a Wiener
noise term to each of the RK4 iterates, is justified in detail by
Honeycutt (1992).
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