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Abstract

Split intein enabled protein trans-splicing (PTS) is a powerful method for the ligation of two protein fragments, thereby
paving the way for various protein modification or protein function control applications. PTS activity is strongly influenced
by the amino acids directly flanking the splice junctions. However, to date no reliable prediction can be made whether or
not a split intein is active in a particular foreign extein context. Here we describe SPLICEFINDER, a PCR-based method,
allowing fast and easy screening for active split intein insertions in any target protein. Furthermore we demonstrate the
applicability of SPLICEFINDER for segmental isotopic labeling as well as for the generation of multi-domain and
enzymatically active proteins.
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Introduction

In recent years protein trans-splicing (PTS) [1,2] has become an

important tool for both the chemical modification of proteins [3,4]

and for the control of protein function [5,6]. PTS relies on the

capability of two split intein fragments to efficiently link their

flanking sequences, known as the exteins, through a native peptide

bond (Figure 1A). The influence of the extein substrates on the

success of the ligation reaction remains poorly understood. In

addition to the C-terminal amino acid at the splice junction (+1

position; can be either Cys, Ser or Thr), which is directly involved

in the protein splicing mechanism and is the only invariant splice

product remnant, the extein amino acids flanking the splice

junction (22, 21, +2 and +3 positions) also contribute to the

ligation efficiency [7–13]. Several efforts have been made to

catalogue these extein dependencies for the Npu and Ssp DnaE split

inteins [8,9] and the influence of the Npu DnaE intein +2 position

was explained in detail on the structural level [14]. Furthermore, a

FRET based assay for the fused Ssp DnaE intein [7] and a genetic

screen for the fused Npu DnaE intein [9] were performed, both

studying the impact of the amino acids immediately flanking the

intein. In addition, structural studies of the Pyrococcus horikoshii

RadA mini cis-intein allowed the engineering of a more

promiscuous intein towards the N-terminal extein junction [15]

and directed evolution approaches were able to directly change or

improve the extein tolerance of the Ssp DnaE and Npu DnaE

inteins [10,16]. Taken together, these studies strengthen the

hypothesis that protein splicing is strongly extein-dependent.

While the use of modelling approaches or computer based

programs can assist in choosing possible split sites in proteins

[17,18], increased success rate relies upon the existence of a 3D

structure of the desired protein, which is often not available.

Despite all the efforts mentioned above, at the moment no

reliable a priori prediction can be made about whether an intein

will be active in a particular non-native extein context or

estimations about the splicing efficiency. One approach to retain

or increase the activity of a split intein is to adjust the splice

junction amino acid composition towards the natural extein

sequence. To bypass the tedious cloning steps required for

generating and testing multiple insertion positions, our group

has recently developed a split intein cassette based integration

approach, utilizing homologous recombination in yeast [6]. This

conditional split intein system depends on the addition of the small

molecule rapamycin and was successfully applied to control the

function of the tobacco etch virus (TEV) protease.

In the work presented here, we have developed SPLICEFIN-

DER, which extends the above method to non-conditional split

inteins, which are often used for protein modification. SPLICE-

FINDER can be used to identify active split intein insertion

positions in any desired target protein. However, it is specifically

designed to facilitate the production of segmental isotopically

labelled proteins for NMR investigations via in vivo PTS. Fully
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labelled proteins may suffer from signal overlap due to a high

number of signals or poorly dispersed spectra. Reduction of NMR

signals can be achieved by incorporating NMR active isotopes

only specific protein parts, therefore enabling the capture of NMR

spectra with reduced signal overlap [4,19,20]. To date a large

number of publications report successful NMR investigations on

segmental isotopically labelled large or multi-domain proteins.

These proteins are either produced via PTS or through other

ligation methods, such as expressed protein ligation (EPL) [21–25].

Even the labelling of central protein domains is possible with the

help of orthogonal intein pairs (in the approach of PTS) or with

kinetically controlled ligation reactions and protected N-terminal

cysteine residues (in the approach of EPL) [26–29]. The

production of segmental isotopically labelled proteins via in vivo

PTS is especially attractive, because it eliminates the need for the

purification of the individual precursor intein fusion proteins. This

can be achieved through selective expression of the two

corresponding intein fusion proteins in E. coli cells in media

containing different isotopes [30–32].

Here, we present the advantage and feasibility of the

SPLICEFINDER method for the in vitro as well as in vivo

production of segmental isotopically labelled proteins for NMR

spectroscopy and demonstrate the successful incorporation of split

inteins in a complex multi-domain protein as well as in a

catalytically active enzyme.

Materials and Methods

All Materials and Methods as well as an extended experimental

procedure section can be found in the Supplementary Information

(File S1).

Results and Discussion

General Concept
A successful PTS reaction between an N- and C-terminal intein

fusion protein leads to the assembly of a ligated splice product (see

Figure 1A). In two steps, the SPLICEFINDER system generates a

bi-inducible plasmid, comprising both intein fusion genes (see

Figure 1B). For our dual induction system we decided to use the

well described IPTG/Arabinose expression systems [30,32,33]

and generated three PTS cassettes based on the naturally split Npu

DnaE [8,34], the artificially split Ssp DnaB [35,36] and Mxe GyrA

inteins [37] (see Figure 1C – a detailed description of the Mxe

GyrA intein cassette can be found in the SI and Figure S4). All

split inteins have different nucleophiles at the +1 position and are

Figure 1. Principle of PTS and SPLICEFINDER. (A) The PTS reaction scheme. B) Schematic representation of the PTS cassette amplification and
insertion procedure. The point of integration into the target gene (gene of interest; GOI) is controlled by the sequence of the PCR primers used for
PTS cassette amplification. The integration of the PTS cassettes can be achieved in two ways: approach 1) uses homologous recombination in S.
cerevisiae and approach 2) is based upon restriction-free (RF) cloning. Notably, in both approaches the amino acids flanking the intein can be
adapted by the primer sequence. C) The PTS cassettes constructed and used in this study. (SP = splice product).
doi:10.1371/journal.pone.0072925.g001
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active at physiological conditions, such that no denaturing and

refolding steps are necessary for splicing activity.

In detail, the PTS cassette plasmids consist of the N-terminal

intein region, a T7 terminator, the HIS3 marker gene and the C-

terminal intein region under the control of the pBAD/ara

promoter/operator (see Figure S1 for sequences). The only

requirement for the target vector is a coding gene of interest

(GOI) under the control of the T7/lac promoter/operator (ideally

fused to 59 and 39affinity tags). After integration into the selected

position, the result is a bi-inducible plasmid, with the N-terminal

fusion protein being under the control of IPTG inducible

expression, and the C-terminal fusion protein being controlled

by arabinose. To genetically integrate the intein cassettes we

utilized two different approaches (1) and 2) in Figure 1B, and see

SI for extended protocols), homologous recombination in S.

cerevisiae [38] and restriction-free cloning [39]. The common step is

the PCR amplification of the PTS intein cassette from the

template. In this reaction primers add 40 bp of homologous

sequence to the gene of interest on each side of the intein cassette,

enabling the site-specific genetic integration via approaches 1) and

2). The advantage of our system is that different insertion positions

with variable amino acid codons at the splice junctions can be

generated in parallel, by simply modulating the primer sequence.

Since the integration process is site-specific and traceless (without

the addition of extra nucleotides in the target gene) the resulting

PTS cassettes are applicable to a wide range of available T7

expression system. As such this process eliminates the need to

clone the intein gene fragments individually. After co-transforma-

tion with a helper plasmid (see SI for construction details) that

codes for the regulatory proteins, LacI and AraC, small-scale E.

coli test expressions and subsequent Western blot analysis will

determine whether a certain insertion position is splice active.

Proof of Concept – Segmental Isotopic Labelling
The first model protein used to test SPLICEFINDER consisted

of two stably folded protein domains, the bacteriophage lambda

head protein D (gpD) and thioredoxin, linked through six glycine

residues. We integrated both the Npu DnaE (see Figure 2 and

Table S2) as well as the Ssp DnaB intein cassette (see Figure S5 and

Table S1) into the linker region. For both inteins we generated

four different combinations of flanking amino acids at the splice

junction. Although both integration approaches were successful,

the restriction-free cloning procedure (approach 2)) is preferred,

because it is more efficient and requires only standard molecular

biology techniques without the need for yeast cultivation (see SI for

protocol and Table S5 for statistical evaluation). In one of our

generated integration variants (npu1), the splice product only

contains the insertion of the +1 nucleophile (GGGCGGG for the

DnaE). In the other three versions the flanking amino acids are

exchanged to the wild type extein sequence (AEYCFNK) of the

intein, either at the N- or C-terminal junction or at both (see

Figure 2B). No splice product was detected in the case of the Npu

DnaE with three glycines at both sites (npu1). Furthermore, the

presence of the N-terminal hydrolysis product in the anti-Strep-

Tag (ST) Western blot indicated that the complex formation as

well as the first N-S acyl occurred (see Figure 2C). However, the

splicing pathway was blocked in subsequent reaction steps with

these ‘‘unnatural’’ extein substrates. Adjusting the N-terminal

splice junction (combination AEYCGGG, npu3) shows N-terminal

hydrolysis as well as generation of the splice product. Recently

another study described a certain level of tolerated sequence

variability for the Npu DnaE intein on both the N- and C-terminal

splice junction [9]. Moreover a bulky side chain at the +2 extein

position seems to be an important factor in the rate determining

step of the splice reaction [14]. Our result, a splice active glycine at

+2 (npu3), is in contrast to the previous findings and therefore

Figure 2. PTS reaction to generate ST-gpD-Trx-His6. A) Schematic representation of the Npu DnaE intein PTS reaction following the integration
into the example protein ST-gpD-Trx-His6. B) Amino acid sequences at the splice junction in the linker region of ST-gpD-Trx-His6. Linker amino acids
that differ from the original sequence (WT AA-sequence) are shown in blue. C) Western blot analysis of the in vivo PTS reaction to assemble ST-gpD-
Trx-His6. The theoretical molecular masses of the proteins are as follows: Splice product (SP) = 26.5–26.9 kDa; N-terminal precursor protein
(N’part) = 25.0–25.2 kDa; C-terminal precursor protein (C9part) = 17.4–17.6 kDa; N-terminal hydrolysis product – ST-gpD (N9hydro) = 13.2–13.4 kDa.
(pos = full length ST-gpD-Trx-His6).

doi:10.1371/journal.pone.0072925.g002

Protein Trans-Splicing Position Determination

PLOS ONE | www.plosone.org 3 September 2013 | Volume 8 | Issue 9 | e72925



support our presumption that it is difficult to predict the activity of

an intein in a foreign extein context and, currently, only an

experimental study can fully answer this question. Both combina-

tions with adjusted C-terminal splice junctions (npu2 and npu4)

were splice active and no hydrolysis by-products could be detected

(Figure 2C). To confirm the observed discrimination between

splice active and inactive combinations via small-scale expression

and Western blot analysis, we recloned the intein fusion genes,

expressed and purified the individual proteins and conducted

in vitro splice assays. The results confirmed our initial observations

in all four cases (data not shown), indicating that Western blot

analysis is a sufficient method for the determination of PTS

activity.

To demonstrate that the SPLICEFINDER system can be used

to obtain segmental isotopically labelled proteins for NMR studies,

we produced an N- and a C-terminal 15N-segmental isotopically

labelled gpD-Trx fusion protein via in vivo and in vitro PTS on a

larger scale and analysed it via NMR spectroscopy. The labeling of

Figure 3. Segmental labelling of the model protein ST-gpD-Trx-His6. 15N-1H HSQC NMR spectra (900 and 700 MHz at 293K) of A) the
uniformly 15N-labelled ST-gpD-Trx-His6 (black), B) C-terminally 15N-labelled ST-gpD-[15N]-Trx-[15N]-His6 (produced via in vitro splicing with the Npu
DnaE intein) (green), and C) N-terminally 15N-labelled [15N]-ST-[15N]-gpD-Trx-His6 (produced via in vivo splicing with the Ssp DnaB intein) (red). D)
Overlay of B) and C).
doi:10.1371/journal.pone.0072925.g003
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the C-terminal Trx-His6 fragment was achieved by in vitro PTS

using the purified Npu DnaE intein proteins (see Figures S6 and

S7). The isotopic enrichment of the N-terminal ST-gpD fragment

was done via in vivo PTS with the Ssp DnaB intein (for details see

SI and Figure S8). The comparison of their 15N-1H HSQC spectra

with that of a completely 15N-labelled model protein confirmed

that the segmental isotopic labelling was successful (Figure 3).

The advantage of an in vivo production of the splice product

compared with an in vitro assembly of the two protein parts is the

reduced number of purification steps. However, in vivo segmental

labelling of proteins via PTS requires highly selective expression of

the protein precursors in the special growth media to avoid

‘‘scrambling effects’’ of the isotopes. To analyse the efficiency of

the isotopic labelling during different expression conditions, we

employed small-scale expressions in 15N-labelled media, followed

by tryptic digest of the SDS-PAGE band corresponding to the

splice product, and subsequently MALDI-TOF MS analysis (for a

detailed analysis and discussion see the SI, Figure S2 & S3). This

procedure allows for rapid determination of the optimal expression

condition, without the need for large scale splice product

purification and consecutive NMR spectra recording.

Application to Large Multi-domain Proteins
Based on the successful application to our model protein and the

use for in vitro or in vivo segmental isotopic labelling, we wanted to

expand SPLICEFINDER to more complex target proteins.

Therefore we next choose a non-ribosomal peptide synthetase

(NRPS) module. Non-ribosomal peptide synthetases (NRPS) are

large, multi-domain proteins that produce a variety of secondary

metabolites in bacteria and fungi [40–42]. For SPLICEFINDER,

we chose the second module of the Gramicidin S biosynthesis

pathway (see Figure S9), which included the first three domains of

Gramicidin S synthetase II (GrsB1). With an additional N-

terminal ST and a C-terminal His6-Tag, the protein consisted of

1071 amino acids corresponding to a molecular weight of

124 kDa.

We chose the linker region between the adenylation (A) domain

and the PCP domain for the position of Ssp DnaB intein cassette

insertion (Figure 4) and tested four different variations of flanking

amino acids (see Figure 4B and Table S3). The four different

combinations were analysed for their splice activity in small-scale

expressions (see Figure S10). Out of these four cases, only in one

the splice product was not detectable (GrsB1 ssp1) due to an

insertion of a single serine residue in the theoretical splice product

without any natively flanking amino acids of the intein. The

presence of bands corresponding to the C-terminal half in the anti-

Figure 4. Integration of the Ssp DnaB intein cassette into the NRPS module Gramicidin S Synthetase B1. A) Schematic representation of
the PTS reaction following the integration of the Ssp DnaB intein into GrsB1. B) Amino acid sequences at the splice junction at position 961.
Deviations after splicing from the original sequence (WT AA-sequence) are shown in blue. C) (left) 2 SDS-PAGE analysis of the individually and dual
induced combination GrsB1 ssp2; (right) SDS-PAGE analysis of purified splice products (SP) (combinations GrsB1 ssp2–4). The theoretical molecular
masses of the proteins are as follows: N-terminal precursor protein (N’part) = 124.9 kDa; Splice product (SP) = 124.2 kDa; C-terminal precursor protein
(C’part) = 16.7 kDa. Impurities (*) are indicated. D) Activity assay for the GrsB1 splice products assembled through in vivo PTS with the Ssp DnaB
intein. Analytical HPLC chromatograms (absorbance at 210 nm) are shown. The trace for the positive control, the full length wild type (WT) GrsB1 is
shown in black. The peak at around 18.5 min was assigned via MS to the cyclic dipeptide D-Phe-L-Pro-diketopiperazine (DKP). When one of the
substrates is omitted (ATP - yellow trace; Pro - grey trace; Phe - red trace) no product formation is detected. All purified GrsB1 splice products show
DKP formation (GrsB1 ssp2–4).
doi:10.1371/journal.pone.0072925.g004
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His and in the N-terminal half in the anti-ST Western, indicated

that this combination is indeed not splice active (Figure S10).

Interestingly, adjusting two amino acids at the +3 and +4 positions

to the native extein residues of the DnaB intein restored intein

activity (GrsB1 ssp2). Similar results were observed for the 23 and

22 positions in the N-terminal part (GrsB1 ssp3) as well as for the

double adjustment combination (GrsB1 ssp4).

The formation of the GrsB1 splice products on a larger scale

was achieved via in vivo PTS with consecutive protein induction

(see Figure 4C and SI for a detailed description). The splice

products were purified via Ni2+-NTA affinity chromatography and

additional gel filtration. To test whether the GrsB1 splice products

were still able to perform nonribosomal peptide assembly we used

the previously described assay for D-Phe-L-Pro-diketopiperazine

(DKP) formation (see Figure S11) [43,44]. Briefly, the incubation

of the first two modules of the Gramicidin S biosynthesis pathway

together with the appropriate substrates yields the D-Phe-Pro

dipeptide tethered as thioester onto the PCP domain of GrsB1.

Spontaneous, uncatalysed cyclization results in the release of D-

Phe-L-Pro-DKP, which can be detected by HPLC analysis.

All three GrsB1 proteins obtained through PTS with the Ssp

DnaB intein were able to catalyse the formation of DKP (see

Figure 4D). Additionally, we confirmed that a recombinantly

generated serine insertion after G961 in the linker region between

the A and the PCP domain of GrsB1, resulting in the sequence of

combination GrsB1 ssp1, yielded an active protein in the DKP

assay (data not shown). This suggests that the linker region

Figure 5. Integration of the Npu DnaE intein cassette into the uroporphyrinogen III methyltransferase CobA. A) Schematic
representation of the PTS reaction after integration of the Npu DnaE PTS cassette into cobA. B) Amino acid sequences at the splice junctions of
position 109 and at position 159. Amino acids differing from the original sequence (WT AA-sequence) are shown in blue. C) Western blot analysis of
the in vivo PTS to assemble ST-CobA-His6. Expressions of the complete proteins, as well as of the individual halves and the co-induced integration
plasmids were done on a small-scale at 20uC for 48 h. The theoretical molecular masses of the proteins are as follows: ST-CobA-His6 = 29.5 kDa;
N’part(109) = 24.6 kDa; C’part(109) = 20.7 kDa; N’part(159) = 29.7 kDa; C’part(159) = 15.7 kDa. (pos = full length ST-CobA-His6). D) Activity test of
ST-CobA-His6 splice products. Fluorescence intensity of the induced (+) and non-induced (-) samples after 48 h (Exc. 357 nm, Em. 605 nm, see SI for
details). As one of the negative controls, the value for E. coli BL21 Gold (DE3) cells without any plasmid is shown. All measurements were performed at
least in duplicate.
doi:10.1371/journal.pone.0072925.g005
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between the A- and the PCP-domains in NRPS tolerates amino

acid insertions and substitutions.

Taken together, we were able to show that the SPLICEFIN-

DER technology is also applicable to large multi-domain proteins

with molecular weights larger than 100 kDa. The obtained splice

products were still enzymatically active, enabling intein mediated

site specific incorporation of biophysical probes, like fluorophores

[37].

Integration into a Folded Domain of a Catalytically Active
Protein

To further explore the application range of the SPLICEFIN-

DER method, we integrated one of the PTS cassettes directly into

the functional domain of an enzyme. In this case the enzymatic

activity should only be restored upon successful protein splicing.

We choose the uroporphyrinogen III methyltransferase (CobA) of

Propionibacterium freudenreichii [45,46]. This class of enzymes is

involved in the tetrapyrrole biosynthesis in diverse organisms

catalysing the conversion of uro(porphyrino)gen III to precorrin-2

[45–47]. S-Adenosylmethionin (SAM) acts as the methyl group

donor for methylation reactions at the tetrapyrrol ring (see Figure

S12A for the reaction scheme). Overproduction of the CobA

enzyme leads to the accumulation of red fluorescent compounds,

either because accumulated precorrin-2 is oxidized to sirohydro-

chlorin or CobA further methylates precorrin-2 to trimethylpyr-

ocorphin or to tetramethylated compounds [46].

Because of these properties, CobA was used as a red fluorescent

transcriptional reporter in E. coli, yeast, and mammalian cells [48],

and also as a whole-cell sensing system in E. coli [49]. Although

CobA does not require the addition of exogenous substrates, the

addition of d-aminolevulinic acid (ALA), a precursor of the

tetrapyrrol biosynthesis, resulted in a more stable and reproducible

readout [49]. We decided to integrate the Npu DnaE PTS cassette

into the cobA gene (see Figure 5A for PTS reaction scheme),

because this intein is superior to the other two in terms of the

reaction velocity [34]. The Npu DnaE possesses a cysteine residue

at the +1 position, so we choose the only native cysteine at position

109 as an integration position (see Figure S12B). Alternatively, we

mutated a serine at position 159, an unconserved region of the

protein, into a cysteine (detailed description in the SI, see Figure

S12B and C).

We conducted the integration of the split intein cassette at both

positions and produced two different combinations of flanking

amino acids at the C-terminal splice junction, respectively (see

Figure 5B and Table S4). The PTS reaction for the split CobA at

residue 109 would result either in a ST-CobA-His6 protein with

the native amino acid composition (CobA npu1) or a version with

residues +2 and +3 adjusted to the native Npu DnaE intein extein

residues (CobA npu2). After the PTS reaction, one combination at

position 159 should yield a CobA variant with 3 amino acid

substitutions (CobA npu3), while the other additionally adjusts the

+3 and +4 residues (CobA npu4).

The small-scale expression experiments showed the formation

of the splice product for all combinations (see Figure 5C).

However, for the combination with the wild type CobA sequence

at the splice junction (CobA npu1), the amount of splice product

was reduced relative to the other combinations. This observation is

consistent with previous results, which indicated, that the

canonical CFN tripeptide at the C-terminal splice junction of

the DnaE inteins is not a strict prerequisite for splicing activity, but

adjusting the +2 and +3 positions to the native extein residues, can

enhance the PTS activity.

Subsequently, we utilized the formation of red fluorescent

compounds as a read-out for CobA activity. Because of insolubility

issues (see SI and Figure S13) the expression was performed for 48

hours at 20uC and samples of the small-scale expressions were

used to determine the fluorescence intensity of the E. coli cells (see

Figure 5D, and SI for experimental details).

The intensity measurements indicated that all PTS assembled

CobA proteins were enzymatically active. CobA npu1 and CobA

npu4 reached approximately half of the intensity produced by the

wild-type ST-CobA-His6. The CobA npu2 and CobA npu3

displayed up to two-thirds of the wild-type activity. The PTS

controls (only the C-terminal and N-terminal intein fusion

proteins) showed a similar background intensity as plasmid-free

BL21-Gold(DE3) cells. The uninduced samples of all PTS

combinations still showed significantly higher fluorescence inten-

sity than the control BL21-Gold(DE3) cells, which might be due to

leakiness of the promoters.

Conclusion

In this report we presented SPLICEFINDER, a method

facilitating the easy screening for active split intein insertions in

any target protein. The steps include the PCR amplification of the

intein cassettes from a donor vector, one round of integration, and

an analysis of the small-scale expression. The entire procedure can

efficiently be accomplished within two weeks. In the future we

expect our approach to be expanded to novel split inteins, that

either possess superior reaction kinetics or are highly promiscuous

with regard to foreign extein sequences [16,50].

Currently the strength of SPLICEFINDER relies upon the

simplicity and the availability of the components necessary to

conduct the insertion procedure. In conclusion we have created a

new tool, which we expect will support the dissemination and

more widespread application of split inteins, especially in the

context of segmental isotopic labelling of proteins for NMR

studies.

Supporting Information

Figure S1 DNA-sequences of the intein cassettes. Sequences are

shown from position 1 of IntN to position +1 of IntC. The plasmid

carrying the Ssp DnaB intein cassette (2386 bp) is pCasDnaB2, the

plasmid of the Npu DnaE intein cassette (2338 bp) is pCasDnaE2,

and the plasmid encoding the Mxe GyrA intein cassette (3329 bp)

is pCasGyrA2.

(TIF)

Figure S2 Labelling efficiency determination. MALDI-TOF MS

analysis of an N-terminal A) and a C-terminal B) peptide fragment

after tryptic digest of the unlabelled (black) and completely (red)
15N-labelled model protein ST-gpD-Trx-His6 (AS denotes amino

acid sequence).

(TIF)

Figure S3 MALDI-TOF MS analysis of two different expression

conditions for segmental isotopic labelling via in vivo PTS of the

model protein ST-gpD-Trx-His6. A) and B) MS spectra for

condition 1 (green); C) and D) MS spectra for condition 2 (blue).

All spectra are shown in comparison with a completely unlabelled

(black) and a completely 15N-labelled (red) sample. A) and C) show

an N-terminal fragment (amino acid sequence 15–41) and B) and

D) show a C-terminal fragment (amino acid sequence 230–242)

(for details on the expression conditions and MS analysis see text).

(TIF)

Figure S4 The Mxe GyrA intein cassette. A) Schematic

representation of the Mxe GyrA intein cassette mediated splice

reaction B) Western blot analysis of small-scale expression of E. coli
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cells containing the intein cassette plasmid, as well as the helper

plasmid pRSFara. The single inductions were done for 4 h at 37uC
(0.2% arabinose or 0.4 mM IPTG). The dual inductions: 0.2%

arabinose for 2 h at 37uC, then media exchange, and subsequent

induction with 0.4 mM IPTG for 4 h, 25uC. The theoretical

molecular masses of the proteins are: SP = 44.7 kDa;

N’Part = 69.3 kDa; C’Part = 22.2 kDa.

(TIF)

Figure S5 Integration of the Ssp DnaB intein cassette into gpD-

Trx. A) Schematic representation of the PTS reaction after the

integration of the Ssp DnaB PTS cassette into ST-gpD-Trx-His6.

B) Amino acid sequences at the splice junctions for the produced

combinations in the linker region of ST-gpD-Trx-His6. Amino

acids deviations after splicing from the original sequence (WT AA-

sequence) are shown in blue. C) Western blot analysis of the four

different flanking amino acids variations at the splice junction. All

four combinations are splice active. The calculated molecular

weights of the proteins are as follows: SP = 26.5–26.8 kDa;

N’Part = 24.9–25.0 kDa; C’Part = 18.8–19.0 kDa; N’Hy-
dro = 13.2 kDa. (pos = full length ST-gpD-Trx-His6).
(TIF)

Figure S6 In vitro PTS to obtain segmental labelled ST-

gpD-15N(Trx-His6) with the Npu DnaE intein. The SDS-PAGE

gel of the PTS reaction and of the purification steps is shown in the

Coomassie-staining. Lane 1: purified N-terminal part ST-gpD-IntN;

lane 2: purified C-terminal part IntC-Trx-His6; lane 3: PTS-reaction

at 0h; lane 4: PTS-reaction at 16 h; lane 5: combined elution

fractions after Ni2+-NTA chromatography; lane 6: combined

elution fractions after Strep-Tactin purification. The theoretical

molecular masses of the proteins are as follows: SP = 26.7 kDa;

Part N = 25.0 kDa; Part C = 17.6 kDa; Cleav N = 13.2 kDa;

Cleav C = 13.5 kDa; Int N = 11.9 kDa; Int C = 4.1 kDa.

(TIF)

Figure S7 MALDI-TOF MS analysis of the segmental labelled

gpD-15N(Trx) splice product. A) Analysis of an N-terminal

fragment AS 15–41, B) Analysis of a C-terminal fragment AS

230–242. Spectra of the unlabelled (black) and complete 15N

labelled references (red) are shown in comparison with the

segmental isotopically labelled gpD-15N(Trx) splice product (green)

obtained through in vitro splicing with the Npu DnaE intein.

(TIF)

Figure S8 MALDI-TOF MS analysis of the segmental labelled
15N(gpD)-Trx splice product. A) Analysis of an N-terminal

fragment AS 15–41, B) Analysis of a C-terminal fragment AS

230–242. Spectra of the unlabelled (black) and complete 15N

labelled references (red) are shown in comparison with the

segmental isotopically labelled 15N(gpD)-Trx splice product (green)

obtained through in vivo splicing with the Ssp DnaB intein.

(TIF)

Figure S9 Biosynthesis of the antibiotic Gramicidin S. Two

NRPS multi-domain proteins are responsible for the formation of

Gramicidin S, namely Gramicidin S Synthetase I (GrsA) and

Gramicidin S Synthetase II (GrsB). In the first round, each module

(one in GrsA and four in GrsB) incorporates one amino acid into

the growing peptide chain tethered as thioesters on the

phosphopantetheinyl group of the peptidyl carrier protein (PCP)

domains. This leads to a pentapeptide (D-Phe-Pro-Val-Orn-Leu)

which is transferred onto the thioesterase (TE) domain. After a

second round of pentapeptide formation, the two peptides are

dimerized and cyclized in a head to tail manner to yield

Gramicidin S.

(TIF)

Figure S10 Integration of the Ssp DnaB intein cassette into ST-

GrsB1-His6. Western blot analysis of the four of flanking amino

acids combinations at the splice junction (GrsB1 ssp1–4,

Figure 4B). Arabinose induction lasted for 2 h; with an additional

3 h for the IPTG double-induction. Purified WT ST-GrsB1-His6

protein is indicated as pos. The theoretical molecular masses of the

proteins are as follows: SP = 124.2 kDa; Part N = 124.9 kDa;

Part C = 16.7 kDa.

(TIF)

Figure S11 Scheme of the formation of D-Phe-L-Pro-DKP with

the first two modules of Gramicidin S biosynthesis, GrsA and

GrsB1.

(TIF)

Figure S12 The uroporphyrinogen III methyltransferase

(CobA). A) Reaction pathway of the uroporphyrinogen III

methyltransferase (CobA). CobA catalyzes the conversion of

uroporphyrinogen III to precorrin-2 through the consumption of

two molecules of SAM. An overproduction of CobA results in an

accumulation of the red fluorescent compounds sirohydrochlorin

and trimethylpyrrocorphin. (A = acetate, P = propionate). B)

Sequence alignment of uroporphyrinogen III methyltransferases

from diverse organisms. Complete invariant residues are coloured

in red, conserved residues with at least 8 out of 13 are shown in

green; the two insertion positions of the Npu DnaE intein are

indicated. C) Crystal structure of the uroporphyrin III methyl-

transferase from Thermus thermophilus (pdb-code 1V9A [51]). After

sequence alignment with the uroporphyrinogen III methyltrans-

ferase of P. freudenreichii, the equivalent insertion positions are

indicated.

(TIF)

Figure S13 SDS-PAGE analysis of the expression and subse-

quent purification of full length and spliced ST-CobA-His6

proteins at different temperatures. A) The mutant protein ST-

CobA110FN-His6. B) CobA splice product formation (identically

to ST-CobA110FN-His6) after co-induction of both fusion genes.

(I = insoluble fraction after cell lysis; S = soluble fraction after cell

lysis; elution = the first three elution fractions of the Ni2+-NTA

affinity chromatography)

(TIF)

Table S1 Plasmids generated after the integration of the Ssp

DnaB intein cassette into gpD-Trx.

(TIF)

Table S2 Plasmids generated after the integration of the Npu

DnaE intein cassette into gpD-Trx.

(TIF)

Table S3 Plasmids constructed in this study for identifying an

active split intein insertion in GrsB1S961.

(TIF)

Table S4 Plasmids constructed in this study for identifying an

active split intein insertion in CobAC109 and in CobAS159C.

(TIF)

Table S5 Analysis of the generation of the model protein

integration plasmids via RF-PCR.

(TIF)

File S1.

(DOC)
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