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Abstract

The notion of a Weyl module, previously defined for the untwisted affine algebras, is extended here to
the twisted affine algebras. We describe an identification of the Weyl modules for the twisted affine algebras
with suitably chosen Weyl modules for the untwisted affine algebras. This identification allows us to use
known results in the untwisted case to compute the dimensions and characters of the Weyl modules for the
twisted algebras.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The notion of Weyl modules for the untwisted affine Lie algebras was introduced in [5] and
was motivated by an attempt to understand the category of finite-dimensional representations of
the untwisted quantum affine algebra. Specifically, the Weyl modules were conjectured to be the
q = 1 limit of certain irreducible representations of the quantum affine algebras. It was proved
that the conjecture was true for sl2 and that this conjecture would follow if the dimensions of the
Weyl modules were known. H. Nakajima has pointed out recently that the dimension formula
follows by using results of [2,11].

Another approach to proving the dimension formula for the Weyl modules can be found in [3]
for sln and in [9] for the general simply laced case. These papers also make the connection be-
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tween Weyl modules and the Demazure modules for affine Lie algebras and also with the fusion
product defined by [6]. The approach in these papers is rather simple and show that one can study
the Weyl modules from a purely classical viewpoint. Other points of interest and generalizations
of these can be found in [7].

We now turn our attention to the case of the twisted affine algebras. None of the quantum ma-
chinery is available and in fact there are rather few results on the category of finite-dimensional
representations of the twisted quantum affine algebras [1,4]. These results do show however that
one can make a similar conjecture; i.e. that one can define a notion of the Weyl module for the
twisted affine Lie algebras such that they are the specializations of irreducible modules in the
quantum case. To do this, one requires the Weyl modules to be universal in a suitable sense. One
of the difficulties is in the case of the algebras of type A

(2)
2n , which are not built up entirely of

algebras isomorphic to A
(1)
1 ; and indeed one needs to understand A

(2)
2 on its own. Thus, we use

results of [8,12] to arrive at the correct definition of the Weyl modules.
The next question clearly is to determine the dimensions of the Weyl modules and also their

decomposition as modules for the underlying finite-dimensional simple Lie algebra. In the un-
twisted case these questions can be answered either by using the fusion product of [6] or the
fact that the modules are specializations of modules for the quantum affine algebra. Both these
techniques are unavailable to us in the twisted case, as far as we know the notion of fusion prod-
uct does not admit a generalization to the twisted algebras. We get around these difficulties by
identifying the Weyl modules for the twisted algebras X

(m)
n , m > 1, with suitably chosen Weyl

modules for the untwisted algebra X
(1)
n . We then use all the known results in the untwisted case

to complete our analysis of the twisted algebras. In conclusion, we note that some of the methods
we use in this paper give simpler proofs of some of the results in [5].

2. The untwisted loop algebras and the modules W(π)

2.1. Throughout the paper C (respectively C×) denotes the set of complex (respectively non-
zero complex) numbers, and Z (respectively Z+) the set of integers (respectively non-negative)
integers. Given a Lie algebra a we denote by U(a) the universal enveloping algebra of a and
by L(a) denotes the loop algebra of a. Specifically, we have

L(a) = a ⊗ C
[
t, t−1],

with commutator given by

[
x ⊗ t r , y ⊗ t s

] = [x, y] ⊗ t r+s

for x, y ∈ a, r, s ∈ Z. We identify a with the subalgebra a ⊗ 1 of L(a). Given a ∈ C×, we let
τa :L(a) → L(a) be the automorphism defined by extending τa(x ⊗ tk) = ak(x ⊗ tk) for all
x ∈ g, k ∈ Z.

Given �,N ∈ Z+ and a = (a1, . . . , a�) ∈ (C×)� let aa,N be the quotient of L(a) by the ideal
a ⊗ ∏�

(t − ak)
N C[t, t−1].
k=1
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Lemma. Let a = (a1, . . . , a�) ∈ (C×)� be such that a has distinct coordinates. For all N ∈ Z+,
we have

aa,N
∼=

N⊕
r=1

aar ,N .

Proof. Since ar �= as if 1 � r �= s � �, it is standard that

C
[
t, t−1]/ �∏

r=1

(t − ar)
N C

[
t, t−1] ∼=

�⊕
r=1

C
[
t, t−1]/(t − ar)

N C
[
t, t−1]

and the lemma now follows trivially. �
2.2. The simple Lie algebras and their representations

Let g be any finite-dimensional complex simple Lie algebra and h a Cartan subalgebra of g

and Wg the corresponding Weyl group. Let Rg be the set of roots of g with respect to h, Ig an
index set for a set of simple roots (and hence also for the fundamental weights), R+

g the set of
positive roots, Q+

g (respectively P +
g ) the Z+ span of the simple roots (respectively fundamental

weights) and θg be the highest root in R+
g . Given α ∈ Rg let gα be the corresponding root space,

we have

g = n− ⊕ h ⊕ n+, n± =
⊕

α∈R+
g±α.

Fix a Chevalley basis x±
α , hα , α ∈ R+ for g and set

x±
αi

= x±
i , hαi

= hi, i ∈ I.

In particular for i ∈ I ,

[
x+
i , x−

i

] = hi,
[
hi, x

±
i

] = ±2x±
i .

Given a finite-dimensional representation of g on a complex vector space V , we can write

V =
⊕
μ∈h∗

Vμ, Vμ = {
v ∈ V : hv = μ(h)v ∀h ∈ h

}
.

Set wt(V ) = {μ ∈ h∗: Vμ �= 0}. It is well known that

Vμ �= 0 ⇒ μ ∈ P and wμ ∈ wt(V ) ∀w ∈ W,

and that V is isomorphic to a direct sum of irreducible representations. The set of isomorphism
classes of irreducible finite-dimensional g-modules is in bijective correspondence with P + and
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for any λ ∈ P + let Vg(λ) be an element of the corresponding isomorphism class. Then Vg(λ) is
generated by an element vλ satisfying the relations:

n+.vλ = 0, hvλ = λ(h)vλ,
(
x−
i

)λ(hi )+1
vλ = 0. (2.1)

2.3. Identities in U(L(g))

For i ∈ I it is easy to see that the elements {x±
i ⊗ tk, hi ⊗ tk: k ∈ Z+} span a subalgebra

of L(g) which is isomorphic to L(sl2). We shall need the following formal power series in u

with coefficients in U(L(g)). For i ∈ I , set

p±
i (u) = exp

(
−

∞∑
k=1

hi ⊗ t±k

k
uk

)
,

x±
i (u) =

∞∑
k=0

(
x±
i ⊗ tk

)
uk+1, x̃±

i (u) =
∞∑

k=−∞

(
x±
i ⊗ tk

)
uk+1.

Given a power series f in u with coefficients in an algebra A, let (f)m be the coefficient of
um (m ∈ Z). The following result was proved in [10, Lemma 7.5] (see [5, Lemma 1.3] for the
formulation in this notation).

Lemma. Let r ∈ Z+.

(
x+
i ⊗ t

)(r)(
x−
i ⊗ 1

)(r+1) = (−1)r
(
x−
i (u)p+

i (u)
)
r+1 mod U

(
L(g)

)
x̃+
i (u).

2.4. The monoid P+

Let P+ be the monoid of I -tuples of polynomials π = (π1, . . . , πn) in an indeterminate u with
constant term one, with multiplication being defined component-wise. For i ∈ I and a ∈ C×, set

π i,a = (
(1 − au)δij : j ∈ I

) ∈P+, (2.2)

and for λ ∈ P +, set

πλ,a =
∏
i∈I

(π i,a)
λ(hi ), λ �= 0.

Clearly any π+ ∈ P+ can be written uniquely as a product

π+ =
�∏

k=1

πλi ,ai
,

for some λ1, . . . , λ� ∈ P + and distinct elements a1, . . . , a� ∈ C× and in this case we set π− =∏�
k=1 π −1 . Define a map P+ → P + by π → λπ = ∑

i∈I deg(πi)ωi .
λi ,ai
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2.5. The modules W(π), V (π)

Given π = (πi)i∈I ∈ P+, let W(π) be the L(g)-module generated by an element wπ with
relations:

L
(
n+)

wπ = 0, hwπ = λπ (h)wπ ,
(
x−
i

)λπ (hi )+1
wπ = 0,(

p±
i (u) − π±

i (u)
)
wπ = 0,

where λπ = ∑
i∈I (degπi)ωi , π+ = π , i ∈ I and h ∈ h. It is not hard to see that if we write

π = ∏�
k=1 πλ�,a�

where a1, . . . , a� are all distinct, then for i ∈ I

(
p±

i (u) − π±
i (u)

)
wπ = 0 ⇔ (

hi ⊗ t r
)
wπ =

(
�∑

j=1

λj (hi)a
r
j

)
wπ .

Let b ∈ C× and let τbW(π) be the L(g)-module obtained by pulling back W(π) through the
automorphism τb of L(g). The next result is standard.

Lemma.

(i) Let π ∈ P+. Then W(π) = U(L(n−))wπ , and hence we have

wt
(
W(π)

) ⊂ λπ − Q+, dimW(π)λπ = 1.

In particular, the module W(π) has a unique irreducible quotient V (π).
(ii) For b ∈ C×, we have τbW(π) ∼= W(πb), where π = (πi(u))i∈I and πb = (πi(b

−1u))i∈I . In
particular we have

W(πλ,a) ∼=g W(πλ,ab).

2.6. The modules W(π) were initially defined and studied in [5] and a formula was conjec-
tured for their dimension. Parts (i) and (ii) of the next theorem were proved in [5]. Part (iii) was
proved in [5] in the case of sl2, for sln it was proved in [3] and for the general simply laced case
in [9]. Part (iii) can be deduced for the general case by using results of [2,11,13] for quantum
affine algebras.

Theorem 1.

(i) Given π = (πi)i∈I with unique decomposition π = ∏�
k=1 πλ�,a�

, ai �= aj for i �= j , we have
an isomorphism of L(g)-modules

W(π) ∼=
�⊗

k=1

W(πλk,ak
).
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(ii) Let V be any finite-dimensional L(g)-module generated by an element v ∈ V such that

L
(
n+)

v = 0, L(h)v = Cv.

Then there exists π ∈ P+ such that the assignment wπ → v extends to a surjective homo-
morphism W(π) → V of L(g)-modules.

(iii) Let λ ∈ P + and a ∈ C×. Suppose that λ = ∑
i∈I miωi . Then

W(πλ,a) ∼=g

⊗
i∈I

W(πωi,1)
⊗mi .

2.7. Annihilating ideals for W(π)

The next proposition is implicit in [5] but since it plays a big role in this paper we make it
explicit and give a proof.

Proposition. Let π = ∏�
r=1 πλr ,ar ∈P+. There exists an integer N = N(π) such that

(
g ⊗

�∏
r=1

(t − ar)
N C

[
t, t−1])W(π) = 0.

Proof. We begin by proving that for all i ∈ I

x−
i ⊗

�∏
r=1

(t − ar)
λr (hi )wπ = 0. (2.3)

Set Ni = λπ (hi). Using the defining relations of W(π) and Lemma 2.3,

0 = (
x+
i ⊗ t

)Ni
(
x−
i ⊗ 1

)Ni+1
wπ = (−1)Ni

(
x−
i (u)p+

i (u)
)
Ni

wπ .

We also have

pi (u).wπ =
�∏

r=1

(1 − aru)λr (hi ).wπ ≡
(

Ni∑
j=0

pi,j u
j

)
.wπ .

Combining these we get

(
x−
i (u)p+

i (u)
)
Ni

wπ =
(

Ni∑
j=0

x−
i ⊗ pi,Ni−j t

j

)
wπ = x−

i ⊗
(

Ni∑
j=0

tjpi,Ni−j

)
wπ = 0.

But it is elementary to see that

Ni∑
tjpi,Ni−j =

�∏
(t − ar)

λr (hi ),
j=0 r=1
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which proves (2.3). Since n− is generated by the elements x−
i , i ∈ I , it is immediate that there

exists N � 0 such that

(
x−
θ ⊗

�∏
r=1

(t − ar)
N

)
wπ = 0. (2.4)

Since [n−, x−
θ ] = 0 and W(π) ∼= U(L(n−))wπ as vector spaces, we get

(
x−
θ ⊗

�∏
r=1

(t − ar)
N

)
W(π) = 0.

Since any element in g is in the span of elements of the form {[x+
i1

[x+
i2

[. . . [x+
ik

, x−
θ ], . . .]]]:

i1, . . . , ik ∈ I }, we now get

(
g ⊗

�∏
r=1

(t − ar)
N C

[
t, t−1

])
W(π) = 0. �

Corollary. Given π ∈ P+ with unique decomposition π = ∏�
r=1 πλr ,ar ∈ P+, there exists

N ∈ Z+ such that the action of L(g) on W(π) factors through to an action of ga,N on W(π)

and W(π) = U(L(n−
a,N ))wπ .

3. The twisted algebras Lσ (g) and the modules W(πσ )

3.1. Assume from now on that g is simply-laced and that σ :g → g is a non-trivial diagram
automorphism of g of order m. In particular σ induces a permutation of I and R+ and we have

σ(gα) = gσ(α), σ (h) = h, σ
(
n±) = n±.

Let ζ be a primitive mth root of unity, we have

g =
m−1⊕
ε=0

gε, gε = {
x ∈ g: σ(x) = ζ εx

}
.

Given any subalgebra a of g which is preserved by σ , set aε = gε ∩ a. It is known that g0 is
a simple Lie algebra, h0 is a Cartan subalgebra and that gε is an irreducible representation of g0

for all 0 � ε � m − 1. Moreover,

n± ∩ g0 = n
±
0 =

⊕
α∈R+

(g0)±α.
g0
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The following table describes the various possibilities for g, g0 and the structure of gk as a
g0-module, here θs

0 is the highest short root of g0 and B1 = A1.

m g g0 gk

2 A2n, Bn Vg0(2θs
0)

2 A2n−1, n � 2 Cn Vg0(θ
s
0)

2 Dn+1, n � 3 Bn Vg0(θ
s
0)

2 E6 F4 Vg0(θ
s
0)

3 D4 G2 Vg0(θ
s
0)

From now we set Rg = R, Rg0 = R0, the sets I , P +, etc., are defined similarly. In addition
we denote by (R0)l , (R0)s the long and short roots of R0. The set of σ -orbits of I has the same
cardinality as I0 and we identify I0 with a subset of I . In the case when g is of type A2n we assume
that n ∈ I0 corresponds to the unique short simple root of g0. We shall also fix ζ a primitive mth
root of unity.

Suppose that {yi : i ∈ I } is one of the sets {hi : i ∈ I }, {x+
i : i ∈ I } or {x−

i : i ∈ I } and assume
that m = 2 and that i �= n if g is of type A2n. Define subsets {yi,ε : i ∈ I0,0 � ε � 1} of gε by

yi,0 = yi if i = σ(i), yi,0 = yi + yσ(i) if i �= σ(i),

yi,1 = yi − yσ(i) if i �= σ(i), yi,1 = 0 if i = σ(i).

If g is of type A2n, then we set

hn,0 = 2(hn + hn+1), x±
n,0 = √

2
(
x±
n + x±

n+1

)
,

x±
n,1 = −√

2
(
x±
n − x±

n+1

)
, hn,1 = hn − hn+1,

y±
n,1 = ∓1

4

[
x±
n,0, x

±
n,1

]
.

Finally if g is of type D4 and m = 3, set

yi,0 = yi if i = σ(i), yi,0 =
m−1∑
j=0

yσj (i) if i �= σ(i),

yi,1 = yi,2 = 0 if i = σ(i),

yi,1 = yi + ζ 2yσ(i) + ζyσ 2(i), yi,2 = yi + ζyσ(i) + ζ 2yσ 2(i) if i �= σ(i).

The finite-dimensional Lσ (g)-modules we will construct in Section 3.6 will be built using
dominant integral weights of g0. However, when g is of type A2n not all dominant integral weights
of g0 will be used. In these cases, the existence of the sl2-subalgebra

〈
y±

2αn
⊗ t∓1,

hn,0 ⊗ 1

〉
⊆ Lσ (g)
2
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(where αn is the unique simple short root of g0 and y±
2αn

∈ (g1)±2αn ) together with the require-

ment that y−
2αn

⊗ t must act locally nilpotently will force λ(
hn,0

2 ) ∈ Z for any λ ∈ P +
0 under

consideration. Therefore, in the rest of this paper in the case when g is of type A2n, we shall
only be interested in elements λ ∈ P +

0 such that λ(hn,0) ∈ 2Z+ and we let P +
σ denote this subset

of P +
0 . Moreover we regard λ ∈ P +

σ as an element of P + as follows:

λ(hi) =
⎧⎨
⎩

λ(hi,0), i ∈ I0, if g is not of type A2n,

0, i /∈ I0,

(1 − δi,n/2)λ(hi,0), if g is of type A2n.

3.2. Let σ̃ :L(g) → L(g) be the automorphism defined by extending,

σ̃
(
x ⊗ tk

) = ζ kσ (x) ⊗ tk,

for x ∈ g, k ∈ Z. Then σ̃ is or order m and we let Lσ (g) be the subalgebra of fixed points of σ̃ .
Clearly,

Lσ (g) ∼=
m−1⊕
ε=0

gε ⊗ tm−εC
[
tm, t−m

]
.

Lemma. Let i ∈ I0 and assume that i �= n if g is of type A2n. The subalgebra of Lσ (g)

spanned by the elements {x±
i,ε ⊗ tmk−ε, hi,ε ⊗ tmk−ε : k ∈ Z,0 � ε � m − 1} is canonically

isomorphic to L(sl2). If g is of type A2n the subalgebra of Lσ (g) spanned by the elements
{x±

n,ε ⊗ t2k+ε, hn,ε ⊗ t2k+ε,∓ 1
4 [x±

n,0, x
±
n,1] ⊗ t2k+1: k ∈ Z,0 � ε � m − 1} is canonically iso-

morphic to Lσ (sl3).

3.3. Identities in U(Lσ (g))

Suppose that either g is not of type A2n and αi ∈ (R0)
+
s or that g is of type A2n and i �= n.

Define power series with coefficients in U(Lσ (g)) by

p±
i,σ (u) = exp

(
−

∞∑
k=1

m−1∑
ε=0

hi,ε ⊗ t±(mk−ε)

mk − ε
umk−ε

)
,

x−
i (u) =

∞∑
k=0

m−1∑
ε=0

(
x−
i,m−ε ⊗ tmk+ε

)
umk+ε+1,

x̃+
i (u) =

∞∑
k=−∞

m−1∑
ε=0

(
x+
i,m−ε ⊗ tmk+ε

)
umk+ε+1.

If g is not of type A2n and αi ∈ (R0)
+
l , then we set

p±
i,σ (u) = exp

(
−

∞∑ hi,0 ⊗ t±mk

k
uk

)
,

k=1



V. Chari et al. / Journal of Algebra 319 (2008) 5016–5038 5025
x−
i (u) =

∞∑
k=0

(
x−
i,0 ⊗ tmkuk+1), x̃+

i (u) =
∞∑

k=0

(
x+
i,0 ⊗ tmk

)
uk+1.

Finally, if g is of type A2n and i = n we have

p±
n,σ (u) = exp

(
−

∞∑
k=1

hn,0/2 ⊗ t±2k

2k
u2k +

∞∑
k=1

hn,1 ⊗ t±(2k−1)

2k − 1
u2k−1

)
,

x−
n (u) =

∞∑
k=0

m−1∑
ε=0

(
x−
n,ε ⊗ tmk+ε

)
umk+ε+1, x̃+

n (u) =
∞∑

k=−∞

m−1∑
ε=0

(
x+
n,ε ⊗ tmk+ε

)
umk+ε+1.

Lemma. Let r ∈ Z+.

(i) If g is not of type A2n and αi ∈ (R0)
+
s or g is of type A2n and αi ∈ (R0)

+
l , we have

(
x+
i,1 ⊗ t

)(r)(
x−
i,0 ⊗ 1

)(r+1) = (−1)r
(
x−
i (u)p+

i,σ (u)
)
r+1 mod U

(
Lσ (g)

)
x̃+
i (u).

(ii) If g is not of type A2n and αi ∈ (R0)
+
l ,

(
x+
i,0 ⊗ t2)(r)(

x−
i,0 ⊗ 1

)(r+1) = (−1)r
(
x−
i (u)p+

i,σ (u)
)
r+1 mod U

(
Lσ (g)

)
x̃+
i (u).

(iii) If g is of type A2n, we have
(a) (x+

n,0 ⊗ 1)(2r−1)(y−
n,1 ⊗ t)(r) = −(x−

n (u)p+
n,σ (u))r mod U(Lσ (g))x̃+

n (u),

(b) (x+
n,0 ⊗ 1)(2r)(y−

n,1 ⊗ t)(r) = −(p+
n,σ (u))r mod U(Lσ (g))x̃+

n (u), where

y−
n,1 = 1

4

[
x−
n,0, x

−
n,1

]
.

Proof. Parts (i) and (ii) are immediate consequences of Lemmas 2.3 and 3.2. Part (iii) is deduced
from [12], [8, Lemma 5.36], exactly as (i) and (ii) were deduced from Garland in [5]. �
3.4. The monoid P+

σ

Let ( , ) be the form on h∗
0 induced by the Killing form of g0 normalized so that (θ0, θ0) = 2.

For i ∈ I0 and a ∈ C×, λ ∈ P +
0 and g not of type A2n let

πσ
i,a = ((

1 − a(αi ,αi )u
)δij : j ∈ I0

)
, πσ

λ,a =
∏
i∈I0

(
πσ

i,a

)λ(hi ),

while if g is of type A2n we set for i ∈ I0, a ∈ C×, λ ∈ P +
σ ,

πσ
i,a = (

(1 − au)δij : j ∈ I0
)
, πσ

λ,a =
∏(

πσ
i,a

)(1− 1
2 δi,n)λ(hi ).
i∈I0
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Let P+
σ be the monoid generated by the elements πσ

λ,a . Define a map P+
σ → P +

σ by

λπσ =
∑
i∈I0

(degπi)ωi,

if g is not of type A2n and

λπσ =
∑
i∈I0

(1 + δi,n)(degπi)ωi,

if g is of type A2n. It is clear that any πσ ∈ P+
σ can be written (non-uniquely) as product

πσ =
�∏

k=1

m−1∏
ε=0

πσ
λk,ε ,ζ

εak
,

where a = (a1, . . . , a�) and am have distinct coordinates; i.e., am
i �= am

j for i �= j . We call any
such expression a standard decomposition of πσ .

3.5. The set i(πσ )

Given λ = ∑
i∈I miωi ∈ P + and 0 � ε � m − 1, define elements λ(ε) ∈ P +

σ by

λ(0) =
∑
i∈I0

miωi, λ(1) =
∑

i∈I0: σ(i) �=i

mσ(i)ωi, if m = 2 and g not of type A2n

λ(0) =
∑
i∈I0

(1 + δi,n)miωi, λ(1) =
∑

i∈I0: σ(i) �=i

(1 + δσ(i),n)mσ(i)ωi,

if m = 2 and g of type A2n

λ(0) = m1ω1 + m2ω2, λ(1) = m3ω1, λ(2) = m4ω1, if m = 3.

Define a map r :P+ →P+
σ as follows. Given π ∈ P+ write

π =
�∏

k=1

πλk,ak
, ak �= ap, 1 � k �= p � �,

and set

r(π) =
�∏

k=1

m−1∏
ε=0

πσ
λk(ε),ζ

εak
.

Note that r is well defined since the choice of (λk, ak) is unique and set

i
(
πσ

) = {
π ∈P+: r(π) = πσ

}
.

We now give an explicit description of the set i(πσ ). Recall that given λ ∈ P +
σ , we also regard

λ ∈ P + as in Section 3.1. In addition, define σ(ωi) = ωσ(i) for i ∈ I .
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Lemma.

(i) Let i ∈ I0 and a ∈ C×. We have

i
(
πσ

ωi,a

) = {πσ r (ωi),ζ
m−r a | 0 � r < m},

and for A2
2n and i = n,

i
(
πσ

2ωn,a

) = {πωn,a,πωn+1,−a}.

(ii) Let πσ = ∏�
k=1

∏m−1
ε=0

∏
i∈I0

(πσ
ωi ,ζ

εak
)mk,ε,i be a decomposition of πσ into linear factors

for g not of type A2n. Then

i
(
πσ

) =
�∏

k=1

m−1∏
ε=0

∏
i∈I0

{πσ r (ωi),ζ
m−r+εak

| 0 � r < m}mk,ε,i

where the product of the sets is understood to be the set of products of elements of the sets.
In the case of A

(2)
2n , let πσ = ∏�

k=1
∏1

ε=0
∏

i∈I0
(πσ

(1+δi,n)ωi ,ζ
εak

)mk,ε,i be a decomposition
of πσ into linear factors. Then

i
(
πσ

) =
�∏

k=1

2∏
ε=0

∏
i∈I0

{
πσ r (ωi),ζ

2−r+εak
| 0 � r < 2

}mk,ε,i .

(iii) In particular, we have

�∏
k=1

πμk,ak
=

�∏
k=1

m−1∏
ε=0

∏
i∈I0

π
mk,ε,i

σ ε(ωi),ak
∈ i

(
πσ

)
,

where μk = ∑m−1
ε=0

∑
i∈I0

mk,ε,iσ
ε(ωi) and am

i �= am
j .

Proof. The first statement is trivially checked, noting that if i is a fixed point of σ , then πσ
ωi ,a

=
πσ

ωi ,ζ
ra for 0 � r < m. The other statements follow immediately from the first one. �

From here on we shall assume that, unless otherwise noted, the element π ∈ i(πσ ) chosen is
of the form given in (iii) of the lemma.

3.6. The modules W(πσ ), V (πσ )

Given πσ = (πi,σ )i∈I0 ∈ P+
σ , the Weyl module W(πσ ) is the U(Lσ (g))-module generated by

an element wπσ with relations:

Lσ
(
n+)

wπσ = 0, hwπ = λπ (h)wπσ ,
(
x−
i,0

)λπ (hi )+1
wπσ = 0,(

p± (u) − π± (u)
)
wπσ = 0,
i,σ i,σ
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for all i ∈ I0 and h ∈ h0. If πσ = ∏�
k=1 πσ

λk,ak
∈ P+

σ , it is not hard to see that for i ∈ I0, we have
if g not of type A2n,

(
p±

i,σ (u) − π±
i,σ (u)

)
wπσ = 0 ⇔ (

hi,ε ⊗ tmk−ε
)
wπσ =

�∑
j=1

λj (hi,0)a
mk−ε
j wπσ , (3.1)

and for g of type A2n,

(
p±

i,σ (u) − π±
i,σ (u)

)
wσ

λ,a = 0 ⇔
(
hi,ε ⊗ tmk−ε

)
wπσ =

�∑
j=1

(
1 − 1

2
δi,n

)
λj (hi,ε)a

mk−ε
j wπσ . (3.2)

3.7. For b ∈ C× we have τb(L
σ (g)) ⊂ Lσ (g) and we let τbW(πσ ) be the Lσ (g)-module

obtained by pulling back W(πσ ) through τb . The next result is proved by standard methods.

Lemma.

(i) Let πσ ∈ P+
σ . Then W(πσ ) = U(Lσ (n−))wσ

π , and hence we have

wt
(
W

(
πσ

)) ⊂ λπσ − Q+
0 , dimW

(
πσ

)
λπσ

= 1.

In particular, the module W(πσ ) has a unique irreducible quotient V (πσ ).
(ii) For b ∈ C×, we have τbW(πσ ) ∼= W(πσ

b ), where πσ = (πi(u))i∈I and πσ
b = (πi(b

−1u))i∈I .
In particular we have

W
(
πσ

λ,a

) ∼=g0 W
(
πσ

λ,ba

)
.

3.8. The main theorem

In the rest of this paper we shall prove the following result.

Theorem 2.

(i) Let πσ ∈ P+
σ . For all π ∈ i(πσ ), we have

W
(
πσ

) ∼=Lσ (g) W(π), V
(
πσ

) ∼=Lσ (g) V (π).

(ii) Let πσ ∈ P+
σ and assume that

∏�
k=1

∏m−1
ε=0 πσ

λk,ε ,ζ
εak

∈ P+
σ is a standard decomposition

of π . As Lσ (g)-modules, we have

W
(
πσ

) ∼=
�⊗

k=1

W

(
m−1∏
ε=0

πσ
λk,ε ,ζ

εak

)
.



V. Chari et al. / Journal of Algebra 319 (2008) 5016–5038 5029
(iii) Suppose that
∏m−1

ε=0 πσ
λε,ζ εa ∈P+

σ . Then

W

(
m−1∏
ε=0

πσ
λε,ζ εa

)
∼=g0

m−1⊗
ε=0

W
(
πσ

λε,ζ εa

)
.

(iv) Let λ = ∑
i∈I0

miωi ∈ P +
σ and a ∈ C×. We have for g not of type A2n

W
(
πσ

λ,a

) ∼=g0

n⊗
i=1

W
(
πσ

ωi,1

)⊗mi

and for g of type A2n

W
(
πσ

λ,a

) ∼=g0 W
(
πσ

2ωn,1

)⊗ mn
2 ⊗

n−1⊗
i=1

W
(
πσ

ωi,1

)⊗mi .

(v) Let V be any finite-dimensional Lσ (g)-module generated by an element v ∈ V such that

Lσ
(
n+)

v = 0, Lσ (h)v = Cv.

Then there exists πσ ∈ P+
σ such that the assignment wπσ → v extends to a surjective ho-

momorphism W(πσ ) → V of Lσ (g)-modules.

Remark. It is easy to see that, in the cases where |σ | = 2, we have

W

(
s∏

i=1

πλi ,ai

)
∼=Lσ (g) W

(
s∏

i=1

πσεi (λ),σ εi a

)
,

where εi = 0 or 1 and σ : C× → C
× is defined by σ(a) = −a. This phenomenon may be sum-

marized for all cases by stating that the Weyl modules for Lσ (g) are parametrized by finite
Z/mZ-equivariant maps from C

× to P +.

4. Proof of Theorem 2

4.1. Annihilating ideals for W(πσ )

Proposition. Let πσ = ∏�
r=1 πσ

λr ,ar
∈P+

σ . There exists an integer N = N(π) such that

(
m−1⊕
ε=0

(
gε ⊗ tm−ε

�∏
r=1

(
tm − am

r

)N C
[
tm, t−m

]))
W

(
πσ

) = 0.

Proof. The subalgebra Lm(g0) = g0 ⊗C[tm, t−m] is canonically isomorphic to L(g0). It follows
from the defining relations that

Lm
(
n

+
0

)
wπσ = 0,

(
h0 ⊗ tmk

)
wπσ =

(
�∑

λr(h0)a
mk
r

)
wπσ ,
r=1
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and hence, U(Lm(g0))wπσ is a quotient of the L(g0)-module Wg0
(πm) where

πm =
�∏

r=1

πλr ,am
r
.

It follows from (2.4) that

(
x−
θ0

⊗
m∏

r=1

(
tm − am

r

))
wσ

π = 0, (4.1)

for some N ∈ Z+, where θ0 ∈ R+
0 is the highest root in R+

0 .
Assume first that g is not of type A2n, then

[
x−
θ0

,Lσ
(
n−)] = 0, [hε,g0] = gε, 0 � ε � m − 1. (4.2)

The first equality in (4.2) gives (x−
θ0

⊗∏�
r=1(t

m − am
r )N)W(πσ ) = 0. One deduces now as in the

untwisted case that

(
g0 ⊗

(
�∏

r=1

(
tm − am

r

)N

)
C

[
tm, t−m

])
W

(
πσ

) = 0.

Applying hε ⊗ tm−ε to the preceding equation and using the second equality in (4.2) gives

(
gε ⊗ tm−ε

(
�∏

r=1

(
tm − am

r

))
C

[
tm, t−m

])
W

(
πσ

) = 0,

for all 0 � ε � m − 1 and the result is proved.
Assume now that g is of type A2n. This time, we use the fact that

(
x−
n,ε ⊗ tεC

[
t2, t−2])wπ ∈ U

(
Lσ

(
h ⊕ n+))(

x−
θ0

⊗ C
[
t2, t−2])wπ

together with (4.1) to conclude that

(
x−
n,ε ⊗

�∏
r=1

tε
(
t2 − a2

r

)N

)
wπσ = 0.

Hence

([
x−
θ0

, x−
n,1

] ⊗
�∏

t
(
t2 − a2

r

)N

)
wσ

π = 0,
r=1
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for some N � 0. Since the element [x−
θ0

, x−
n,1] ∈ g1 generates g1 as a g0-module and

[n−, [x−
θ0

, x−
n,1]] = 0, we can now prove by similar arguments that for some N � 0,

(
g1 ⊗

�∏
r=1

t
(
t2 − a2

r

)N

)
W

(
πσ

) = 0.

Next, using the fact that [x−
θ0

,n−
1 ] = C[x−

θ0
, x−

n,1], we get

(
x−
θ0

⊗
�∏

r=1

(
t2 − a2

r

)N

)
W

(
πσ

) = 0,

which finally gives

(
g0 ⊗

�∏
r=1

(
t2 − a2

r

)NC
[
t2, t−2])W

(
πσ

) = 0,

and completes the proof. �
Given positive integers �,N ∈ Z+, a = (a1, . . . , a�) ∈ (C×)� and a subalgebra a of g such that

σ(a) ⊂ a, let

aσ
a,N = Lσ (g)/

m−1⊕
ε=0

(
aε ⊗ tε

�∏
k=1

(
tm − ak

)N C
[
tm, t−m

])
. (4.3)

Corollary. Let πσ = ∏�
r=1 πσ

λr ,ar
∈ P+

σ be a standard decomposition of πσ and set a =
(a1, . . . , a�) There exists N � 0 such that

W
(
πσ

) = U
((

n
−
am,N

)σ )
wπσ .

4.2.

Proposition. For all πσ ∈ P+
σ , the Lσ (g)-module W(πσ ) is finite-dimensional.

Proof. Let u ∈ W(πσ ) and write u = ywπσ for some y ∈ U(Lσ (n−)). The adjoint action of the
subalgebras n

±
0 on Lσ (g) and hence on U(Lσ (g)) is nilpotent. Using the defining relations we

get immediately that for some r = r(u) > 0, we have

(
x±
α ⊗ 1

)r
u = 0, ∀α ∈ R+

0 .

This implies that U(g0)u is a finite-dimensional g0-submodule of W(πσ ), and hence W(πσ ) is
isomorphic to a direct sum of g0-modules. Write

W
(
πσ

) =
⊕

η∈Q+
W

(
πσ

)
μ
,

0
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where W(πσ )μ = {u ∈ W(πσ ): hu = μ(h)u, ∀h ∈ h0}. The representation theory of g0 now
implies that

W
(
πσ

)
μ

�= 0 ⇔ W
(
πσ

)
w(μ)

�= 0, ∀w ∈ W0.

Since W(πσ )μ = 0 unless μ ∈ λ − Q+
0 and the number of elements in P +

0 with this property is
finite we get that W(πσ )ν = 0, for all but finitely many ν ∈ P +

0 . The proposition follows if we
prove that dim(W(πσ )ν) < ∞ for all ν ∈ P +

0 .
Choose a and N as in Corollary 4.1. Then

W
(
πσ

)
ν
= U

((
n

−
a,N

)σ )
λπ−ν

wπσ

where

U
((

n
−
a,N

)σ )
λπ−ν

= {
y ∈ U

((
n

−
a,N

)σ )
λπ−ν

: [h,y] = (λπ − ν)(h)y, ∀h ∈ h0
}
.

Since this subspace is finite-dimensional it follows that dim(W(πσ )ν) < ∞ as required. �
4.3. Let N ∈ Z+ and a ∈ (C×)�. The inclusion ι :Lσ (g) → L(g) obviously induces a Lie

algebra map ιa,N :gσ
am,N → ga,N , where am = (am

1 , . . . , am
� ). The following proposition will play

a crucial role in the proof of Theorem 2.

Proposition. Let a ∈ (C×)� be such that a and am have distinct coordinates. For all N ∈ Z+ we
have an isomorphism of Lie algebras

ga,N
∼=

⊕
gσ
am
i ,N

∼= gσ
am,N

for all N ∈ Z+. In particular, the composite map Lσ (g) → L(g) → ga,N is surjective.

Proof. The proof that

⊕
gσ
am
i ,N

∼= gσ
am,N

is an obvious modification of the one given in Lemma 2.1 which also shows now that it
is sufficient to prove the proposition when � = 1. For this, let a ∈ C× and f = tεg where
g ∈ C[tm, t−m]. Then,

f ∈ (t − a)NC
[
t, t−1] ⇔ f ∈ tε

(
tm − am

)NC
[
tm, t−m

]
,

which proves that ιa,N is injective. The proposition follows by noting that

dimgσ
am,N = dimga,N = N dimg.



V. Chari et al. / Journal of Algebra 319 (2008) 5016–5038 5033
4.4. We note some elementary observations which we use without further comment. Any
ga,N -module (respectively gσ

a,N ) is obviously an L(g)-module (respectively Lσ (g)-module).

Moreover if a ∈ (C×)� is such that a and am have distinct coordinates then for all N ∈ Z+,
any ga,N -module V is also a gam,N -module and we write it as Vgσ

am,N
. Similarly if we start with

a gσ
am,N -module V we get a ga,N -module which we write as Vga,N

. Note also that if V is a
ga,N -module, then

(Vgσ
am,N

)ga,N
∼=ga,N

V , (Vgσ
am,N

)ga,N
∼=L(g) V . (4.4)

4.5.

Lemma. Let πσ ∈ P+
σ , and assume that π ∈ i(πσ ).

(i) There exists �,N ∈ Z+ and a ∈ (C×)� with a and am having distinct coordinates such that
W(π) and W(πσ ) are modules for both ga,N and gam,N .

(ii) In particular,

W(π)gσ
am,N

= U
(
gσ

am,N

)
wπ ,

and V (π)gσ
am,N

is an irreducible gσ
am,N -module.

Proof. Let π = ∏�
k=1 πλk,ak

, where a = (a1, . . . , ak) and am have distinct coordinates. Propo-
sition 2.7 implies that W(π) = U(ga,N )wπ . Using Proposition 4.3 we see that W(π) is also
module for gσ

am,N and so we get

W(π)gσ
am,N

= U
(
gσ

am,N

)
wπ .

Similarly Proposition 4.1 implies that W(πσ ) is a module for gσ
am,N and hence for ga,N . Since

V (π) is an irreducible module for ga,N , it follows that it is also irreducible as a gσ
am,N -module

and the proposition is proved. �
The following proposition proves (i) of Theorem 2.

Proposition. Let πσ ∈P+
σ , π ∈ i(πσ ).

(i) Regarded as Lσ (g)-module W(π) is a quotient of W(πσ ) and hence

V (π) ∼=Lσ (g) V
(
πσ

)
.

(ii) For N � 0, the Lσ (g)-module structure on W(πσ ) (respectively V (πσ )) extends to an
L(g)-module action on W(πσ ) (respectively V (πσ )).

(iii) The module W(πσ )ga,N
is an L(g)-module quotient of W(π).
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Proof. Using (3.1), (3.2) and the fact that r(π) = πσ , we see that wπ satisfies the defining
relations of W(πσ ). Part (i) follows if we prove that W(π) = U(Lσ (g))wπ . But this is true
because Propositions 4.3 and 4.5 prove that there exists a ∈ (C×)� such that

W(π)gσ
am,N

= U
(
gσ

am,N

)
wπ = U

(
Lσ (g)

)
wπ .

It now follows that V (π)gam,N
is the irreducible quotient of W(πσ ) and hence is isomorphic to

V (πσ ) as Lσ (g)-modules.
To prove (ii), note that we have a surjective homomorphism of Lie algebras

p :L(g) → ga,N → gσ
am,N ,

such that the restriction of p to Lσ (g) is just the canonical surjection. Moreover

p
(
L

(
n±)) ⊂ (

n±)σ

am,N
, p

(
L(h)

) ⊂ hσ
am,N ,

and hence

L
(
n+)

wπσ = 0, L(h)wπσ = Cwπσ .

Since dim(W(πσ )) < ∞, it follows from Theorem 1(i) that W(πσ )ga,N
is a quotient of W(π̃)

for some π̃ ∈ P+. Since the module W(π̃) has an unique irreducible quotient V (π̃), part (iii)
follows if we prove that

V (π) ∼=L(g) V
(
πσ

)
ga,N

.

But this follows from part (i) and (4.4) and part (iii) is now proved. �
4.6. The next proposition proves part (ii) of Theorem 2.

Proposition. Let πσ = ∏�
k=1

∏m−1
ε=0 πσ

λk,ε ,ζ
εak

∈ P+
σ and assume that a and am have distinct

coordinates. As Lσ (g)-modules, we have

W
(
πσ

) ∼=
�⊗

k=1

W

(
m−1∏
ε=0

πσ
λk,ε ,ζ

εak

)
.

Proof. For 1 � k � �, set

πσ
k =

m−1∏
ε=0

πσ
λk,ε ,ζ

εak
.

It is checked easily that the element
⊗�

k=1 wπσ
k

satisfies the defining relations of wπσ and hence
we have an Lσ (g)-module map,

η :W
(
πσ

) →
�⊗

W
(
πσ

k

)
.

k=1
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The proposition follows if we prove that this map is surjective. For then, taking π ∈ i(πσ ) and
πk ∈ i(πσ

k ), we have

dimW(π) = dimW
(
πσ

)
�

�∏
k=1

dimW
(
πσ

k

) =
�∏

k=1

dimW(πk) = dimW(π),

where the first equality uses part (i) of Theorem 2 and the last equality follows from Theo-
rem 1(iii). To prove that η is surjective choose N � 0 so that W(πσ ) is a module for gam,N and
also so that for all 1 � k � � the algebra gσ

am
k ,N

acts on W(πσ
k ) where am

k = {am
k } and we have

W
(
πσ

k

) = U
(
gσ

am
k ,N

)
wπσ

k
.

On the other hand by Proposition 4.3 we have

gσ
am,N

∼=
�⊕

k=1

gσ
am
k ,N ,

and hence
⊗�

k=1 W(πσ
k ) is cyclic for gσ

am,N , i.e.

U
(
gσ

am,N

)( �⊗
k=1

wπσ
k

)
=

�⊗
k=1

W
(
πσ

k

)
.

This proves that η is a surjective map of gσ
am,N -modules and the proof of the proposition is

complete. �
4.7. We now prove (iii) of Theorem 2. Recall that in Section 2.1, we have identified elements

of P +
σ with elements of P + and hence for each a ∈ C× and λ ∈ P +

σ we have elements πλ,a ∈P+
and πσ

λ,a ∈P+
σ . Moreover, πλ,a ∈ i(πσ

λ,a).

Proof. Choose bε ∈ C×, 0 � ε � m − 1 such that

br �= bs, bm
r �= bm

s , r �= s.

Using Lemma 3.7, Theorems 2(ii) and 2(i) in that order gives,

m−1⊗
ε=0

W
(
πσ

λε,ζ εa

) ∼=g0

m−1⊗
ε=0

W
(
πσ

λε,bε

) ∼=Lσ (g) W
(∏

πσ
λε,bε

)
.

Since λε ∈P+
σ , we have

∏
πσε(λε),ζ εbε ∈ i(

∏
πσ

λε,bε
) and so by Theorem 2(i) we get

W
(∏

πσ
λ ,b

) ∼=Lσ (g) W
(∏

πσε(λε),ζ εbε

)
.

ε ε
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Theorem 1 gives

W
(∏

πσε(λε),ζ εbε

) ∼=g W
(∏

πσε(λε),1

) ∼=g W(π∑m−1
ε=0 σε(λε),a

).

And since π∑m−1
ε=0 σε(λε),a

∈ i(
∏m−1

ε=0 πσ
λε,ζ εa), we get

W
(∏

πσε(λε),ζ εbε

) ∼=g0 W(πλ,a) ∼=Lσ (g) W

(
m−1∏
ε=0

πσ
λε,ζ εa

)
,

which completes the proof. �
4.8. We now prove Theorem 2(iv). By Theorem 2(i), we have

Wσ
(
πσ

λ,a

) ∼=Lσ (g) W(πλ,a).

Theorem 1 gives if g not of type A2n that

W(πλ,a) ∼=g

n⊗
i=1

W(πωi,1)
⊗mi

and for g of type gives A2n

W(πλ,a) ∼=g W(π2ωn,1)
⊗ mn

2 ⊗
n−1⊗
i=1

W(πωi,1)
⊗mi ,

which completes the proof.

4.9. We now prove Theorem 2(v). This part of the proof is very similar to the one given
in [5] in the untwisted case and we shall only give a sketch of the proof. Thus, let V be an Lσ (g)-
module, assume that V is finite-dimensional and that it is generated by an element v ∈ V such
that

Lσ
(
n+)

v = 0, U
(
Lσ (h)

)
v = Cv.

Let λ ∈ P +
σ be such that hv = λ(h)v for all h ∈ h0. Since V is finite-dimensional it follows from

the representation theory of the subalgebras {x±
i,0, hi,0}, i ∈ I0 that λ ∈ P +

σ and also that

(
x−
i,0

)s = 0, i ∈ I0, s ∈ Z+, s � λ(hi) + 1. (4.5)

Moreover if g is of type A2n, we find by working with the subalgebra { 1
2hn,0, y

±
n,1 ⊗ t∓1} that

(
y−
n,1 ⊗ t

)s
v = 0, s ∈ Z+, s � 1

λ(hn,0) + 1. (4.6)

2
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Applying (x+
i,0 ⊗ t)s to both sides of (4.5) (i �= n if g of type A2n), we find by using Lemma 3.3(i),

(ii), that

(
p+

i,σ (u)
)
s
= 0, s > λ(hi,0),

while if g is of type A2n, we apply (x+
n,0)

2s to both sides of (4.6) and using Lemma 3.3(iii), we
find

(
p+

n,σ (u)
)
k
= 0, k > λ

(
1

2
hn,0

)
.

Set

πσ
i (u) =

∞∑
k=0

(
pσ

i (u)
)
k
uk,

and let πσ = (πσ
i )i∈I0 . The preceding arguments show that πσ is an I0-tuple of polynomials. We

claim that

λ = λπ , p−
i,σ (u)v = (

πσ
i (u)

)−
v, (4.7)

which now shows that V is a quotient of W(πσ ). To prove that λ = λπ is equivalent to proving
that

(
p+

i,σ

)
λ(hi )

v �= 0, (4.8)

for all i ∈ I , if g is not of type A2n and for all i �= n if g is of type A2n and if g is of type A2n

(
p+

n,σ (u)
)

1
2 λ(hn,0)

.v �= 0. (4.9)

It is now easy to see (keeping in mind that (piσ (u))0 = 1) that the following lemma implies (4.7).

Lemma. Let V be a finite-dimensional Lσ (g)-module and let v ∈ Vλ be such that Lσ (n+)v = 0.
For all i ∈ I0 (i �= n for g of type A2n), we have

(
p+

i,σ (u)
)
λ(hi,0)

(
p−

i,σ (u)
)
k
.v = (

p+
i,σ (u)

)
λ(hi,0)−k

.v, 0 � k � λ(hi,0),

and for g of type A2n, we have

(
p+

n,σ (u)
)

1
2 λ(hn,0)

(
p−

n,σ (u)
)
k
.v = (

p+
n,σ (u)

)
1
2 λ(hn,0)−k

.v, 0 � k � 1

2
λ(hn,0).

Proof. The proof of the first statement is given in [5, Proposition 1.1] and the key ingredient in
that proof is Lemma 3.4(i). The proof when i = n and g of type A2n is entirely similar and one
uses Lemma 3.4(iii)(a) with r = 1

2λ(hn,0) + 1. �
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List of Notation

U(a) 2.1, p. 5017 gε, aε 3.1, p. 5022
L(a), aa,N 2.1, p. 5017 R0, I0, P0 3.1, p. 5022
τa 2.1, p. 5017 xi,ε, yi,ε, hi,ε (0 � ε < m) 3.1, p. 5023
g, h, gα 2.2, p. 5018 P +

σ 3.1, p. 5024
Wg, Rg, Ig, Qg, Pg 2.2, p. 5018 Lσ (g) 3.2, p. 5024

x±
α , h±

α , x±
i , hi 2.2, p. 5018 p±

i,σ (u) 3.3, p. 5024

V (λ), Vg(λ) 2.2, p. 5018 P+
σ , πσ

i,a, πσ
λ,a, πσ , λπσ 3.4, p. 5025

p±
i (u), x±

i (u), x̃±
i (u) 2.3, p. 5019 λ(ε) (0 � ε � m) 3.5, p. 5026

3.3, p. 5024 r(π), i(πσ ) 3.5, p. 5026
P+, π±, π i,a, πλ,a, λπ 2.4, p. 5019 W(πσ ), V (πσ ) 3.6, p. 5027
W(π), V (π) 2.5, p. 5020 aσ

a,N 4.1, p. 5031
σ, ζ, m 3.1, p. 5022 Vga,N

, Vgσ
am,N

4.4, p. 5033
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