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Abstract

Probiotic bacteria have a wide range of applications in veterinary and human therapeutics. Inactivated probiotics are
complex samples and quality control (QC) should measure as many molecular features as possible. Capillary electrophoresis
coupled to mass spectrometry (CE/MS) has been used as a multidimensional and high throughput method for the
identification and validation of biomarkers of disease in complex biological samples such as biofluids. In this study we
evaluate the suitability of CE/MS to measure the consistency of different lots of the probiotic formulation Pro-Symbioflor
which is a bacterial lysate of heat-inactivated Escherichia coli and Enterococcus faecalis. Over 5000 peptides were detected by
CE/MS in 5 different lots of the bacterial lysate and in a sample of culture medium. 71 to 75% of the total peptide content
was identical in all lots. This percentage increased to 87–89% when allowing the absence of a peptide in one of the 5
samples. These results, based on over 2000 peptides, suggest high similarity of the 5 different lots. Sequence analysis
identified peptides of both E. coli and E. faecalis and peptides originating from the culture medium, thus confirming the
presence of the strains in the formulation. Ontology analysis suggested that the majority of the peptides identified for E. coli
originated from the cell membrane or the fimbrium, while peptides identified for E. faecalis were enriched for peptides
originating from the cytoplasm. The bacterial lysate peptides as a whole are recognised as highly conserved molecular
patterns by the innate immune system as microbe associated molecular pattern (MAMP). Sequence analysis also identified
the presence of soybean, yeast and casein protein fragments that are part of the formulation of the culture medium. In
conclusion CE/MS seems an appropriate QC tool to analyze complex biological products such as inactivated probiotic
formulations and allows determining the similarity between lots.
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Introduction

Probiotic bacteria have a wide range of applications in

veterinary and human therapeutics [1–4]. The internationally

endorsed definition of probiotics determines probiotics as well-

defined micro-organisms that, when obtained in sufficient active

quantities in the gut, lead to positive effects on health (like

stabilising the gut microflora, reconstitution of the gut flora after

antibiotic therapy or having a protective effect against travellers

diarrhoe) [5,6]. Products with bacterial lysates contain heat-

inactivated probiotic bacteria. In that sense bacterial lysates are

not probiotics sensu stricto, but they are produced with probiotic

bacteria and can exhibit similar beneficial effects on the host as live

bacteria [7]. Most of the proven health effects probiotics elicit are

provided in the gastro-intestinal tract (GIT). Probiotics using live

bacteria maintain or promote the GIT homeostasis, and probiotics

have been found to stimulate the growth of indigenous beneficial

gut microbes such as bifidobacteria and inhibit the growth of

pathogenic or opportunistic pathogenic microbes [8–10]. In

addition, inactivated cells (heat or radiation induced) can also

improve the health of the host as shown in patients with irritable

bowel syndrome (IBS) [11]. In these patients administration of a

bacterial lysate of heat-inactivated Enterococcus faecalis (E. faecalis:

DSM16440) and Escherichia coli (E. coli: DSM17252), which was

identical to the bacterial lysate used in our study, significantly

improved IBS symptoms compared to placebo [11]. The

mechanisms of these inactivated bacteria on IBS are less clear,

but in vitro studies have shown that the beneficial effects might

originate from the anti-inflammatory properties of these inacti-

vated bacteria [7,12]. A number of bacterial lysates are

commercially available including Pro-Symbioflor containing an

E. faecalis and Escherichia coli lysate [11,13], Colibiogen containing

an E. coli lysate [14], CytoFloraH containing lysed cell walls of
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Bifidobacterium bifidum, Bifidobacterium infantis, Bifidobacterium longum,

Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus rhamno-

sus, Lactobacillus plantarum, Lactobacillus salivarius, Lactobacillus reuteri,

Lactobacillus casei, Lactobacillus bulgaricus, and a species called

‘‘Lactobacillus sporogenes’’ (which is not an official species name)

[15] and Del-Immune VH containing cell wall peptidoglycans and

DNA fragments of Lactobacillus rhamnosus [16]. Besides for E. coli or

Enterococcus, in vitro studies are also available for Lactobacillus

rhamnosus or Streptococcus thermophilus to support the potential

beneficial effects on health [7,12]. Finally, the field of application

seems to have widened recently since bacterial lysates have been

shown as an alternative therapy of chronic obstructive pulmonary

disease (COPD) [17].

In rare cases probiotic bacteria can be isolated from human

clinical samples in nosocomial infections [18]. To be able to

identify those cases, the identity of the probiotic strain and its

characterisation by molecular methods must be provided by the

manufacturer. The concept of ‘‘Qualified Presumption of Safety’’

(QPS) as developed by the European Food Safety Authority

(EFSA) consequently requires the identification of probiotic

microorganism and also the identification of the organism in the

final product [19]. The requirements for quality control (QC) are

similar for probiotics with viable bacteria or bacterial lysates. In

Europe, this is regulated by European law and in the member

states enforced by national legislation (in Germany e.g. by

Arzneimittelgesetz, supervised by the national Federal Institute

for Drugs and Medicinal Devices) [20]. The difficulty associated

with maintaining a high degree of QC is inhibiting the

development of probiotic-based therapeutics.

Before bacterial cells of these lysates are autoclaved or

irradiated, regular quantitative and qualitative cultural and

genotypic QC methods are applied, as is required for viable

products [5]. These methods are not applicable for the final

product since no cultural methods can be applied and only

molecular methods are applicable. However, the complexity of

bacterial lysates is high and therefore QC of the lysates is best

performed with multidimensional techniques allowing the analysis

of a maximum of molecular features at one time. Indirect

techniques like proteomics are potentially suitable to describe the

molecular features in such complex samples. Proteomics, the

analysis of the total protein content of a sample, is a multidimen-

sional technique potentially able to grasp the complexity of

bacterial lysates. Proteomics has been used in a descriptive way to

determine the differences between a number of potential probiotic

bacterial isolates [21,22]. These studies provide comprehensive

catalogues and carry promise for the discovery of novel probiotic

effector molecules. However these techniques are labour intensive

and reproducibility, if not analysed in the same batch, is in general

low.

Capillary electrophoresis coupled to mass spectrometry (CE/

MS) is a high resolution and high throughput technology that has

been successfully applied for the discovery and validation of

peptide biomarkers of disease in biofluids [23]. CE/MS analysis

allows detecting thousands of peptides in a biofluid sample.

Furthermore, CE/MS has high reproducibility allowing the

comparison of the protein content of samples over time [24].

Therefore in the current study we evaluated the suitability of CE/

MS to serve as a high throughput technique for the QC analysis of

complex samples such as inactivated probiotics.

Materials and Methods

Bacterial strains
We used an autolysate of cells and cell fragments of E. faecalis

(DSM 16440) and E. coli (DSM 17252) called Pro-Symbioflor.

1.5 mL of Pro-Symbioflor contains 3.0 to 9.0 107 CFU of living

bacteria before inactivation. Rapidly after combining both strains

are exposed to heat and pressure (via autoclave), and the final

product is sterile thereafter.

Five Pro-Symbioflor lots were investigated in this study. The lots

were provided directly from the manufacturer (Symbiopharm

GmbH, Herborn, Germany) and stored according to the manufac-

turers instructions at room temperature until investigation. In

addition, for the comparison, a growth medium sample without

bacteria was also studied by CE/MS. The composition of this culture

medium is listed in Table 1. This growth medium is identical to the

medium used in commercial production of the product.

Sample preparation
For the analysis of the peptide content of bacterial lysates,

2.5 ml of Pro-Symbioflor was used. To decrease matrix effects by

removing electrolytes and salts, and also to enrich for polypeptides,

the samples were loaded onto PD-10 desalting column (GE

Healthcare, Sweden) equilibrated with 25 mL 0.01% NH4OH in

HPLC-grade H2O (Roth, Germany). Peptides were eluted by

adding 2.5 mL of 0.01% NH4OH. Finally, samples were

lyophilized and stored at 4uC. Shortly before CE-MS analysis,

lyophilized samples were resuspended in HPLC-grade H2O.

Capillary Electrophoresis-Mass Spectrometry (CE/MS)
analysis

CE/MS analysis was performed as previously described using a P/

ACE MDQ capillary electrophoresis system (Beckman Coulter,

Fullerton, USA) on-line coupled to a MicroTOF MS (Bruker Daltonic,

Bremen, Germany) [25]. The ESI sprayer (Agilent Technologies, Palo

Alto, USA) was grounded, and the ion spray interface potential was set

between 24.0 and 24.5 kV. Data acquisition and MS acquisition

methods were automatically controlled by the CE via contact-close-

relays. Spectra were accumulated every 3 s over a range of m/z 350 to

3000. Details on accuracy, precision, selectivity, sensitivity, reproduc-

ibility, and stability of the CE-MS method have been provided

previously [24,26].

Table 1. Composition of culture medium.

medium composition concentration (mg/ml)

lactose monohydrate 4.9000

sodium carbonate decahydrate 0.9600

sodium chloride 3.8000

magnesium sulfate heptahydrate 0.7790

potassium chloride 0.1330

calcium chloride dihydrate 0.0760

magnesium chloride hexahydrate 0.6080

standard nutrient broth 0.020 ml consisting of:

casein peptone (soybean) 0.300

yeast extract 0.060

sodium chloride 0.120

glucose monohydrate 0.020

doi:10.1371/journal.pone.0066682.t001

Proteomics of Pharmaceutical Probiotic Products

PLOS ONE | www.plosone.org 2 June 2013 | Volume 8 | Issue 6 | e66682



Data processing
Mass spectral ion peaks representing identical molecules at

different charge states were deconvoluted into single masses using

MosaiquesVisu software [27]. Only those signals with z.1 that

were observed in a minimum of 2 consecutive spectra with signal-

to-noise ratios .4 were included. The software employs a

probabilistic clustering algorithm and uses both isotopic distribu-

tion as well as conjugated masses for charge-state determination of

peptides/proteins. The resulting peak list characterizes each

polypeptide by its molecular mass, CE-migration time, and ion

signal intensity (amplitude) value. To minimize effects of biological

and analytical variability between the different lots a normaliza-

tion of retention time, signal intensity and mass was performed.

The CE migration time was normalized by local regression using

281 references between 17 and 46 Minutes. The masses were

calibrated utilizing 274 reference masses in the range of 800–

3000 Da by applying linear regression. Normalization of signal

intensities was based on 43 ‘‘internal standard’’ peptides detected

in all 5 lots with relative low cV, similarly to what has been

described for urinary peptidome analysis [28]. Here linear

regression was applied as well.

All detected peptides were deposited, matched, and annotated

in a Microsoft SQL database, allowing further analysis and

comparison of multiple samples [29]. Peptides were considered

identical within different samples, when mass deviation was lower

than 50 ppm for small peptides or 75 ppm for larger peptides and

proteins. Due to analyte diffusion, CE peak widths increase with

CE migration time. In the data clustering process this effect was

compensated by linearly increasing cluster widths over the entire

measurement from 2 to 5%.

Peptide sequencing
Bacterial lysates were separated on a Dionex Ultimate 3000

RSLS nano flow system (Dionex, Camberly UK). A 5 ml sample

was loaded in 0.1% formic acid and acetonitrile (98:2) onto a

Dionex 100 mm32 cm, 5 mm C18 nano trap column at a flowrate

of 5 ml/min. Elution was performed on an Acclaim PepMap C18

nano column 75 mm315 cm, 2 mm, 100 Å with a linear gradient

of 0.1% formic acid against 100% acetonitrile starting at 5%–50%

over 100 min. The sample was ionised in positive ion mode using

a Proxeon nano spray ESI source (Thermo Fisher Hemel UK) and

analysed in an Orbitrap Velos FTMS (Thermo Finnigan, Bremen,

Germany). The MS was operated in data-dependent mode to

switch between MS and MS/MS acquisition and parent ions were

fragmented by high-energy collision-induced dissociation. Data

files were searched against E. coli, E. faecalis, Bos Taurus, Yeast and

Figure 1. Peptide content of bacterial lysates and medium. Contourplots showing all polypeptides detected in the 5 lots of Pro-SymbioFlor
and culture medium, displayed in three dimensions (x-axis: migration time in Minutes, y-axis: mass in logarithmic scale and Da, peak height (z-axis):
signal intensity).
doi:10.1371/journal.pone.0066682.g001
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Soyabean entries in the Swiss-Prot database without any enzyme

specificity using Open Mass Spectrometry Search Algorithm

(OMSSA, http://pubchem.ncbi.nlm.nih.gov/omssa) with an e-

value cut-off of 0.1. No fixed modification and oxidation of

methionine as variable modifications were selected. Mass error

windows of 10 ppm and 0.05 Da were allowed for MS and MS/

MS, respectively. For further validation of obtained peptide

identifications, the strict correlation between peptide charge at

pH 2 and CE-migration time was utilized to minimize false-

positive identification rates [30]. Calculated CE-migration time of

the sequence candidate based on its peptide sequence (number of

basic amino acids) was compared to the experimental migration

time. Peptides were accepted only if they had a mass deviation

below 680 ppm and a CE-migration time deviations below

62 min.

Figure 2. Similarity of different lots based on peptide content. Graphical representation of the presence of identical peptides. A) Shown is
the absolute number of detected peptides in the 5 different Pro-Symbioflor lots and in the culture medium and B) peptide abundance based on
relative ion counts of each lot.
doi:10.1371/journal.pone.0066682.g002
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Results

Comparison of the different bacterial lysate preparations
Five different lots of the bacterial lysates (lot 0454/10, 0455/2,

0456/2, 0457/10, 0458/2) as well as the culture medium were

analyzed by CE/MS. A total of 5217 different peptides could be

detected in all lots (Figure 1). Each peak in the contourplots

represents a peptide that is tagged by a unique identifier consisting

of a mass and migration time. The height of each peak indicates

the abundance of the different peptides.

Table 2. Percentage of identical peptides present in a lot (expressed as the percentage of the total signal intensity in the lot)
compared to the other lots.

Lot ID 0454/10 0455/2 0456/2 0457/10 0458/2 Culture medium Total PPs*

all 5 lots 72% (84%) 75% (84%) 73% (88%) 71% (83%) 73% (88%) 51% (68%) 1391

4 of 5 lots 15% (12%) 15% (12%) 15% (9%) 15% (11%) 15% (9%) 12% (16%) 894

3 of 5 lots 7% (2%) 5% (2%) 5% (2%) 7% (3%) 5% (3%) 11% (7%) 804

2 of 5 lots 3% (1%) 3% (2%) 4% (1%) 5% (1%) 5% (1%) 8% (4%) 873

1 of 5 lots 2% (1%) 2% (0%) 3% (0%) 1% (0%) 2% (0%) 5% (4%) 1255

only in culture
medium

0% (0%) 0% (0%) 0% (0%) 0% (0%) 0% (0%) 14% (1%) 132

The percentage of sequenced peptides (expressed as the percentage of the total signal intensity) is given between brackets. *PPs, polypeptides.
doi:10.1371/journal.pone.0066682.t002

Figure 3. Expression profiles of sequenced bacterial peptides. Contourplots of the sequenced polypeptides originating from E. coli and E.
faecalis in the 5 lots of Pro-Symbioflor and culture medium. To improve visualization of the peptides in this contourplot, the abundance of the
peptides was artificially amplified with a factor 3 in relation to Figure 1. The 9 signals shown in culture medium are false positive hits by sequencing
via LC-MS/MS. Given that 390 bacterial peptides were identified we obtained an acceptable false discovery rate of below 5%.
doi:10.1371/journal.pone.0066682.g003
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As all five lots are derived from the same set of strains and were

produced under identical conditions, similarity between the data

in the 5 samples should be high, and distinctly different from the

data obtained when analyzing medium only. The overall similarity

of the 5 samples and the difference with medium only can be

clearly observed by visual inspection of the contourplots

(Figure 1). The similarity is also observed when analyzing the

number and abundance of detected peptides in the different lots.

In the bacterial lysates 2939 to 3381 different peptides were

detected, while approximately 3 times less different peptides (964)

were detected in culture medium (Figure 2 A). 132 peptides were

exclusively detected in culture medium suggesting transformation

of these peptides by the bacteria. When looking at the relative

abundance of the peptides, the similarity between the lots is

striking as well. The abundance of peptides detected in all 5 lots

(1391 peptides) represent 71–75% of the total content (based on

ion counting) (Table 2 and Figure 2 B). If the absence of a single

peptide in one of the 5 lots is accepted, an additional 894 peptides

are present in four of the five lots. These peptides represent a total

of 87–89% of all observed peptides, which suggests high

consistency in all samples. Peptides which occur only sporadically

(in one or two lots) represent only 5–7% of the total polypeptide

content.

Overall these data show, using a technique that allows grasping

thousands of molecular features in a routine manner, high

similarity of the 5 different lots.

Sequencing of bacterial lysate peptides
To obtain additional information on the observed peptides and

link the peptides to the different bacterial strains or to medium and

potentially lay the groundwork for the identification of specific

probiotic peptides, MS/MS sequencing was performed. The

search for E. coli and E. faecalis entries in the lots resulted in

identification of 517 peptides originating from E. faecalis and 406

originating from E. coli. These sequences (E. coli and E. faecalis)

were matched to the CE/MS data profiles and resulted in

identification of amino acid sequence of 390 CE/MS-detected

peptides (Table S1 and Figure 3). Ontology-based analysis of

these 390 peptides showed that the majority of the identified

cellular components identified for E. coli originated from the cell

membrane and the fimbrium (Figure 4). In contrast, the major

cellular components identified for E. faecalis originated from the

cytoplasm. However, definition of the peptide-content based on

molecular function showed in both strains enrichment for

hydrolases and transferases. Processes involving DNA (i.e.

Figure 4. Ontology based characterization of the peptides identified by CE/MS. Based on the Uniprot identifiers the involvement of a
protein (defined by one or more CE/MS peptides) in a biological process, molecular function and cellular component was determined. The pie-charts
show the percentage of proteins in each group. Only classes represented by 4 or more proteins are shown. Classes for which we identified less than 4
proteins are indicated and grouped as ‘‘others’’. A) Classification for E. coli and B) classification for E. faecalis.
doi:10.1371/journal.pone.0066682.g004

Proteomics of Pharmaceutical Probiotic Products

PLOS ONE | www.plosone.org 6 June 2013 | Volume 8 | Issue 6 | e66682



damage, integration, recombination etc…) were the top class when

considering biological processes in both strains.

In culture medium 933 different yeast, 199 casein and 88

fragments from soybean could be identified in the MS/MS

experiments confirming the composition of the culture medium

(Table 1). Matching of the sequenced peptides of the medium to

CE/MS detected peptides led to the identification of 175 CE/MS

detected peptides (Table S1 and Figure 5).

Discussion

Quality control of inactivated bacterial lysates has concentrated

on the control of the functional characteristics, like the quantifi-

cation of expressed genes [31]. So far no targeted QC procedures

concerning the identity of the strains for bacterial lysates are

available after inactivation. Especially no cultural methods can be

applied for classical identification and quantification. Only

molecular methods are applicable. However, the complexity of

bacterial lysates is high and therefore QC of the lysates is best

performed with multidimensional techniques allowing the analysis

of a maximum of molecular features at one time. CE/MS has

been largely used for the definition of diagnostic and prognostic

biofluid biomarkers of different diseases [23,29,32–35] and has

been shown to be highly reproducible with a short turnaround

time [24]. For this reason we decided to study whether CE/MS

could be used for QC control of probiotic bacterial lysates. For

QC in CE/MS analysis for clinical use, we 1) developed standard

operating procedures for reproducible sample preparation [36]; 2)

developed specific software solutions for efficient and reproducible

data processing [37] and 3) identified internal calibrants that

enable comparison of the datasets [28]. These quality control steps

were applied to the bacterial lysates in the current study to

minimize the variability and to achieve high reproducibility and

can be used in future studies. Using CE/MS we showed high

similarity between 5 different lots of the Pro-Symbioflor formu-

lation on the peptidome level and identified, using peptide

sequence analysis, the presence of proteins typical for the two

strains included in the formulation. Clear differences between the

peptide content of the Pro-Symbioflor formulation and the

medium used for cultivation of the bacteria could also be observed.

The CE/MS approach provides evidence for Pro-Symbioflor

lot similarity and content on several levels. On the total peptide

level, including peptides with known and unknown sequence and

where peptides are annotated with a unique tag comprised of mass

and CE migration time, a pool of .5000 peptides can be used to

obtain a peptide profile. Based on these peptide profiles, consisting

Figure 5. Expression profiles of peptides originating from the medium. Contourplots of the sequenced polypeptides originating from the
culture medium only. To improve visualization of the peptides in this contourplot, the abundance of the peptides was artificially amplified with a
factor 3 in relation to figure 1.
doi:10.1371/journal.pone.0066682.g005
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of 2000–3000 peptides per lot, high similarity between the lots

could be determined (Table 2). Sequence information of the

peptides allows clear cut identification of the species present in the

sample. The sequenced peptides clearly showed the presence of

fragments of the two bacterial strains with comparable ratios

between the different strains in the different lots.

Ontology analysis showed that the majority of the CE/MS-

detected peptides of E. coli were identified as cell wall components

which might have a role in activating the innate immune system,

as has been shown for Staphylococcus aureus [38]. Parts of the cell

wall of bacteria have also been successfully applied in atopic

dermatitis [39]. These bacterial lysate peptides as a whole are

recognised as highly conserved molecular patterns by the innate

immune system as microbe associated molecular pattern (MAMP)

[39,40].

Upon matching of the sequenced peptides to the CE/MS

peptides, nine sequences originating from either E. coli or E. faecalis

were also found in the medium sample (see Figure 3). pBLAST

analysis showed that all 9 peptides belonged with 100% homology

to the bacterial sequences. Therefore, these 9 sequences were most

likely not correctly matched to the CE/MS-detected peptides

within the allowed mass and migration time deviation. This

suggests that for a reduced number of peptides (2.3%), the

resolution of CE/MS is not high enough to differentiate between

two peptides with very close mass and CE migration time.

Sequence analysis identified with high confidence the presence

of 88 peptide sequences that were fragments of soybean proteins

(OMSSA Search, Table 1). This shows the ability of the CE/MS-

based analysis to identify even hydrolysates in complex samples

such as bacterial lysates.

Finally, CE/MS based detection of peptides originating from

the medium also gives information on the QC for the medium

used for cultivation of the probiotic bacteria. Our method

therefore seems suitable to be used as a QC tool for both quantity

and quality in complex samples to comply with safety rules for

probiotics as required e.g. by EFSA through the QPS system [19].

Although, CE/MS has been extensively used for the discovery

and validation of disease in biofluids this is, to our knowledge, the

first study showing the suitability of CE/MS in quality control of

complex probiotic formulations. CE/MS has been proposed in the

QC of biopharmaceuticals (e.g. production of recombinant human

interferon-b [41], detection of enantiomeric impurities (CE-MS/

MS) [42], purity of drugs such as carbachol, lidocaine and

proguanil [43], cosmetic [44]) or even at traditional Chinese

medicines [45], but never for highly complex formulations such as

inactivated probiotics [46].

In conclusion, our studies on Pro-Symbioflor lysate suggest that

CE/MS is a well suited tool for the QC of inactivated probiotics.

Supporting Information

Table S1 CE/MS Analysis of lots. All detected peptides using

CE/MS are listed. Additionally shown are matched MS/MS hits

of peptides. From left to right: Internal peptide ID, mass in Dalton,

CE migration time in minutes, signal intensity of culture medium

sample, organism, amino acid sequence, description of mother-

protein, accession number (uniprot), start and stop of sequence,

intensity of lots, frequency of found peptides, mean intensity of 5

lots, standard deviation, coefficient of variation in%, sequencing

information for peptides originated from bacteria: organism,

amino acid sequence, protein name, accession number (uniprot)

and start and stop of sequence.

(XLSX)
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