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Abstract: Multi-spectral imaging systems typically require the 
cumbersome integration of disparate filtering materials in order to work 
simultaneously in multiple spectral regions. We show for the first time how 
a single nano-patterned metal film can be used to filter multi-spectral 
content from the visible, near infrared and terahertz bands by hybridizing 
plasmonics and metamaterials. Plasmonic structures are well-suited to the 
visible band owing to the resonant dielectric properties of metals, whereas 
metamaterials are preferable at terahertz frequencies where metal 
conductivity is high. We present the simulated and experimental 
characteristics of our new hybrid synthetic multi-spectral material filters 
and demonstrate the independence of the metamaterial and plasmonic 
responses with respect to each other. 

©2013 Optical Society of America 

OCIS codes: (050.6624) Subwavelength structures; (240.6680) Surface plasmons; (160.3918) 
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1. Introduction 

Multi-spectral imaging exploits different contrast mechanisms and data-fusion in order to 
extract more information from a scene than is available in any single spectral band alone [1–
4]. Imaging technology uses different materials, suitable to the wavelength of operation to 
make band selective imagers. For example, a digital camera uses dyed polymer filters 
fabricated on to a complementary metal-oxide-semiconductor (CMOS) chip to record 
separately the red, green and blue color bands, whereas interference filters are widely used in 
the infrared (IR). Traditional techniques impose undesirable restrictions on multi-spectral 
imaging systems because different filtering materials do not lend themselves well to co-
integration. We propose an alternative approach using a structured material that exploits 
multiple modes of operation thus opening up the possibility of multiband imagers suitable for 
large spectral ranges. Candidate technologies include the use of nanolithography to make 
color filters using surface plasmon resonance (SPR) [5–7], and metamaterials (MM) to filter 
terahertz radiation [8–11]. 

In order to understand how these different modalities can be combined, it is important to 
consider the electromagnetic properties of the constituent materials from which the structures 
will be made. The electromagnetic properties of a material may be described in terms of the 
dielectric function, ε. The Drude model describes ε, which is resonant in character, and 
contains a quantity known as the plasma frequency, ωp. For metals, ωp typically occurs at the 
ultraviolet (UV) region of the spectrum, yielding a negative dielectric constant from near UV 
to lower frequencies [12, 13]. The resulting resonant characteristic is frequently described in 
terms of surface plasmons (SPs) that are electron density oscillations at a metal-dielectric 
interface [12]. The physical process underlying plasmonics is SPR wherein incident light 
resonantly couples with SPs to form surface plasmon polaritons (SPPs) [5, 14–16]. Ebbesen 
et al. reported on the transmission of light through a silver film patterned with a periodic 
array of subwavelength holes as a consequence of SPR [5]. 

Plasmonics typically act in metal at visible and IR wavelengths, however at lower 
frequencies, towards the far infrared (FIR), or the terahertz, region of the spectrum, the loss 
component of the permittivity dominates since the metal is a conductor [13, 17]. However, 
metal can still be structured to elicit an electromagnetic response by fabricating electric ring 
resonators (ERR). These structures have resonant characteristics that rely on current flow 
driven by the incident electric field. ERRs are MM unit cells that can be formed into an array 
that displays an effective permittivity, εeff, as though it was a bulk material [8, 9, 18]. Metal-
based MMs, ERR-like structures and plasmonics have been used to design many devices 
including filters [6, 7, 10, 11, 19, 20], lenses [21–24], invisibility cloaks [25, 26] and perfect 
absorbers [27–30]. 

Our synthetic multi-spectral material (SMM) juxtaposes the distinct features of a MM 
filter with plasmonic filters. In this article we design and fabricate a SMM that selectively 
filters light in the visible, near infrared (NIR) and terahertz bands in a single aluminum film 
and can be integrated with the dominant imaging technology (CMOS) to create a multi-
spectral imaging system capable of simultaneous color imaging [31–33] and frequency 
selective terahertz imaging [34] that operates in a manner similar to the standard digital 
camera. This improves on previous theoretical studies that suggest periodic metallic slit 
arrays can support two passbands simultaneously [35]. 

2. Simulation of plasmonic and metamaterial structures 

The SMM uses specific structural and compositional parameters to ensure that the optical 
and terahertz resonances can occur simultaneously whilst having minimal impact on each 
other. Plasmonic filters are strongly affected by metal type, metal thickness, surrounding 
dielectric media, and the hole array pattern [14–16], whereas MM filter performance is most 
greatly impacted by the overall geometry of the MM structure [8, 9, 36]. These features make 
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it possible to design SMM structures in which the optical properties in different regions of 
the spectrum are independently tuned. 

Plasmonic filtering has been demonstrated with hole arrays patterned onto a 150 nm 
aluminum film [6, 7]. Typically silver and gold have been used for plasmonic applications; 
however aluminum is low cost, easy to fabricate and is CMOS compatible. The skin depth of 
aluminum, δ, at 2 THz is less than 60 nm [37–39] therefore a 150 nm aluminum film is also a 
suitable material for a terahertz MM filter. Using this information we can see that it is 
possible to pattern both of these structures into a single 150 nm aluminum layer to create a 
SMM. 

The aluminum should ideally be fabricated on top of a dielectric surface to maintain 
mechanical stability. Since plasmonic filters require index matching between top and bottom 
layers to optimize performance, a dielectric cap layer must also be present [6]. Silicon 
dioxide is suitable for color plasmonics since it exhibits low loss at optical wavelengths, 
however it has a higher absorption coefficient, α, at terahertz frequencies. It has previously 
been reported that α = 780 m−1 at 2 THz [40], therefore, a significant amount of terahertz 
radiation will be absorbed in a silicon dioxide substrate that has a thickness of several 
hundred microns, but a thin membrane will be adequately transparent. 

Our SMM layer structure takes advantage of these properties of aluminum and silicon 
dioxide. To minimize the loss of transmitted terahertz radiation we used a 3 μm silicon 
dioxide membrane, a 150 nm aluminum film patterned with plasmonic and MM structures, 
and a 200 nm cap layer to index match the surfaces above and below the aluminum. 

A triangular hole array is preferable to the more conventional square array for plasmonic 
filters because the triangular periodic structure yields a larger gap between adjacent 
transmission peaks, which is desirable for wavelength discrimination [6, 15, 16]. The 
resonant wavelength of the normal incidence transmission spectra for a triangular hole array 
can be approximated by the following dispersion relation: 
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where λmax is the resonant wavelength, P is the period of the hole array, εm and εd are the 
permittivities of the metal and dielectric, respectively, and i and j are the scattering orders [6, 
16]. The triangular array and the corresponding unit cell are shown in Fig. 1(a), where P 
denotes the array period. 

An ERR can be used to make a band-reject MM filter [8]. Alternatively, a complementary 
ERR (cERR) structure yields a complementary band-pass electromagnetic response, 
consistent with Babinet’s principle [9]. We exploited this concept to design a MM filter 
consisting of an array of cERRs based on a hollow cross ERR design [29]. Similar MM filter 
structures have been shown to operate at terahertz frequencies [10, 11], and have the 
desirable property that we can maximize the MM metal area available for patterning to make 
the SPR filters. 

Typically an optical material is described by its dielectric function. As described above a 
metal SPR may be described by the Drude resonance model. In order to show the multi-
resonance characteristics of the SMM we extract the effective dielectric function for the MM. 
The effective medium description of the MM leads to the concept of spoof SPs which are 
electromagnetic surface modes due to subwavelength structures in the metal. At terahertz 
frequencies, where real SPs cannot be supported because of the high conductivity of the 
metal, spoof SPs play an analogous role to real SPs. At resonance, spoof SPs have been 
proposed as the cause of enhanced transmission [41]. 

MMs are typically described in terms of their complex effective electromagnetic 
parameters, namely the refractive index, neff, the wave impedance, zeff, the electric 
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permittivity, εeff, and the magnetic permeability, μeff [17, 27, 42, 43]. The effective 
electromagnetic parameters are calculated using scattering parameters determined by 
simulation results, and the following equations: 
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where k is the wavenumber of the incident light, d is the thickness of the MM and S21 and S11 
are the complex transmission and reflection scattering parameters, respectively, after having 
been corrected for the phase shift that is observed due to the reduced wavelength of the plane 
wave in the dielectric medium [44]. 

The SMM was designed and optimized using Lumerical’s finite difference time domain 
(FDTD) tool [45]. A 3D simulation model was used throughout to investigate the behavior of 
the SMM in visible to NIR (400 nm to 1 μm) and terahertz (1 THz to 9 THz) wavelength 
regimes. 

2.1 Nanoholes at terahertz frequencies 

The wavelength of radiation in the terahertz region and the period of the MM structures are 
much larger than our visible and NIR plasmonic structures, so that a simulation of the 
subwavelength holes in a complete SMM structure was found to be particularly memory 
intensive and therefore impractical. To overcome this problem, an investigation into how the 
presence of nanoholes in a metal film affects the transmission and reflection of incident 
terahertz radiation was carried out. 

An aluminum film, defined by complex refractive index parameters [39], was positioned 
on the x-y plane. The film was perforated by a single nanohole with a diameter of 140 nm. 
Anti-symmetric and symmetric boundary conditions were used in x and y, respectively, to 
form a square hole array with a period of 250 nm. The z boundaries used perfectly matched 
layers. A uniform mesh was used in the region of the metal with maximum cell sizes of Δx = 
Δy = Δz = 5 nm. The aluminum film was illuminated normally by a terahertz plane wave 
source and the resultant transmission and reflection spectra were recorded at 1 THz to 9 THz. 
Simulations were performed for aluminum thicknesses ranging from 50 nm to 200 nm and 
also repeated for films without nanoholes. In all simulations, the transmission did not exceed 
3.3x10−5 and was of the order of 10−6 for a 150 nm aluminum film patterned with holes. It is 
therefore reasonable to describe an aluminum plasmonic filter at terahertz frequencies as an 
optically thick metal film without perforations. These results are also in agreement with our 
understanding that the aluminum skin depth is small at terahertz frequencies, as discussed 
previously [38, 39]. 

The simulations were repeated for triangular hole arrays in a 150 nm aluminum film with 
periods of 230 nm and 550 nm, and hole diameters of 130 nm and 290 nm, respectively. 
These parameters correspond to blue and NIR filters and transmission was once again 
observed to be of the order of 10−6. The minimal impact on transmission of terahertz 
radiation through a 150 nm aluminum film with nanohole perforations means that it is 
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possible to simulate the plasmonic filters and MM filter structures independently to 
investigate the filtering characteristics of the SMM at optical and terahertz wavelengths. 

2.2 Plasmonic filter simulation 

The simulation was set up as previously described, however in this case, the aluminum was 
sandwiched between a semi-infinite silicon dioxide superstrate and a 200 nm silicon dioxide 
cap layer. Lumerical’s default material database holds Palik aluminum and silicon dioxide 
models that were used to define the constituent materials of the filters at optical wavelengths 
[46]. The aluminum was patterned with a triangular array of 150 nm deep silicon dioxide 
cylinders and the silicon dioxide cap layer was patterned with corresponding 150 nm air 
cylinders, to account for the aluminum resulting in a non-uniform cap layer after fabrication. 
The period and hole size of the arrays were varied and optimized for each of sixteen filters to 
yield discrete wavelength filtering in the visible and NIR band. A plane wave source ranging 
from 400 nm to 1 μm was perpendicularly incident on the top surface of the aluminum film 
and a transmission monitor was positioned at a distance of 800 nm from the silicon dioxide 
cap layer. 

2.3 Metamaterial filter simulation 

It was necessary to find the optimum cERR geometry that maximizes the metal area available 
to be patterned with nanoholes without compromising significantly on terahertz filtering 
characteristics. The MM filter was simulated using a 150 nm aluminum film, defined by 
complex refractive index parameters at terahertz frequencies [39], sandwiched between a 3 
μm silicon dioxide layer and 200 nm silicon dioxide layer. Silicon dioxide, again, used Palik 
refractive index model from the Lumerical database [46]. The structure was positioned in the 
x-y plane. A 150 nm silicon dioxide etched cross was placed in the aluminum layer, thereby 
forming the unit cell as seen in Fig. 1(b). A modified version of Lumerical’s S-parameter 
extraction analysis script was used to post-process simulation data. Transmission and 
reflection monitors were placed at distances 247 μm and 250 μm from the MM, respectively. 
Refractive index monitors were also used at these positions as this data was required to carry 
out phase correction on the scattering parameters. A terahertz plane wave source was incident 
perpendicularly onto the cERR surface. The unit cell was repeated by using anti-symmetric 
and symmetric boundary conditions in x and y, respectively, and perfectly matched layers 
were used in z. The maximum mesh steps through the cross structure were Δx = Δy = 75 nm 
and Δz = 25 nm. 

In other work we explored an empty cross filter structure [19]. It was found that for a 
given unit-cell size, the resonant wavelength of the in-filled cERR we have investigated in 
this work, was approximately doubled compared to the empty cross. 

3. Design and fabrication of the synthetic multi-spectral material 

After separately optimizing the plasmonic filter and MM filter structures, we combined them 
into a single SMM design. In addition to the influence of the substrate the terahertz 
transmission magnitude also depends on the metal fill factor of the cERR. A high metal fill 
factor is desirable because it maximizes the area available for implementing the plasmonic 
filters, but this had to be balanced against an accompanying reduction in the transmission 
magnitude and decrease in bandwidth, as determined by simulations. 

A unit cell of the cERR structure used in the SMM is shown in Fig. 1(b) and the 
dimensions of the cERR are as follows: A = 21 μm, B = 6 μm, C = 8 μm, D = 23 μm with a 
periodicity of 27 μm. The metal regions of the cERR were patterned with triangular hole 
arrays of varying sizes and periods to act as a plasmonic filter set. An illustration of the 
patterned aluminum film of the SMM at varying length scales is shown in Fig. 1(c). On the 
metal surface the cERR array extends to an area of 12 mm x 12 mm. Within this area we 
placed sixteen plasmonic filters, each 1 mm x 1 mm in size and separated from the next 
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adjacent filter by 0.33 mm. A cross-section of the fabricated SMM structure is shown in Fig. 
1(d). 

 

Fig. 1. Synthetic multi-spectral material (SMM) schematic. (a) Schematic of a plasmonic filter 
with unit cell highlighted and the array period, P, shown. (b) Schematic of a terahertz 
metamaterial (MM) filter unit cell with complementary electric ring resonator (cERR) 
dimensions shown. A plasmonic hole array is included, however it is not to scale. (c) An 
illustration of the SMM at various length scales. (d) A cross section of the SMM showing the 
layer structure and incident field direction shown by propagation vector, k. 

The structure was built up on a silicon substrate, then a circular window with a 10 mm 
diameter was back-side etched through the silicon to the silicon dioxide membrane. The first 
step in fabricating the SMM was to deposit a 3 μm layer of silicon dioxide on to a clean piece 
of silicon. A 150 nm aluminum film was evaporated on to the silicon dioxide surface and an 
additional 50 nm layer of silicon nitride was then deposited on to the aluminum surface to 
assist with adhesion of the electron beam resist. ZEP520A was spin coated on to the silicon 
nitride surface and holes were defined in the electron beam resist using a Vistec VB6 
electron beam lithography (EBL) tool. The pattern was developed using o-xylene, and the 
silicon nitride and aluminum holes were etched using trifluoromethane / oxygen (CHF3 / O2) 
in a Oxford Instruments RIE80 + dry etch tool and silicon tetrachloride (SiCl4) in a Oxford 
Instruments RIE100 dry etch tool, respectively. The remaining resist and silicon nitride were 
removed and the sample was cleaned. At this stage, a scanning electron microscope (SEM) 
was used to investigate the quality of the etched holes. Finally, a 200 nm silicon dioxide cap 
layer was deposited on to the aluminum surface. To complete the device it was necessary to 
back etch the silicon substrate to open a window for optical and terahertz transmission 
measurements. The silicon dioxide cap layer was spin coated with S1818 photoresist to act as 
a protective coating for subsequent processing. The silicon surface was then spin coated with 
AZ4562 photoresist and a 10 mm diameter circle was exposed using a photomask and Suss 
MA6 optical mask aligner. The window was developed using diluted AZ400K developer and 
the device was then placed on a carrier wafer before being etched using a STS ICP RIE. 
Figure 2 shows images of the experimental structure with a SEM image of the SMM surface, 
consisting of an etched cERR and nanoholes in Fig. 2(a); a SEM image of a plasmonic filter 
in Fig. 2(b); and transmission optical microscope images of the SMM over different 
plasmonic filter regions in Figs. 2(c)-2(f). 

#191844 - $15.00 USD Received 6 Jun 2013; revised 17 Jul 2013; accepted 17 Jul 2013; published 5 Aug 2013
(C) 2013 OSA 12 August 2013 | Vol. 21,  No. 16 | DOI:10.1364/OE.21.019142 | OPTICS EXPRESS  19148



 

Fig. 2. Images of a fabricated synthetic multi-spectral material (SMM). (a) A scanning 
electron micrograph of the etched complementary electric ring resonator (cERR) structure and 
hole array (period 430 nm). (b) A scanning electron micrograph of the etched hole array 
(period 430 nm) on the metal film. (c) Transmission microscope images of the SMM showing 
blue (hole period 250 nm), (d) green (hole period 340 nm), (e) yellow (hole period 380 nm) 
and (f) red (hole period 430 nm) plasmonic filters with the cERR array. 

4. Experimental characterization of the synthetic multi-spectral material 

The transmission spectra from each of the sixteen plasmonic filter regions of the SMM were 
measured with a TFProbe MSP300 microspectrophotometer. Unpolarized white light from a 
halogen lamp was transmitted through the sample and collected by a camera with a detector 
spot size of 100 µm. A white light background spectrum was taken as a reference 
measurement. 

A Bruker IFS 66v/S Fourier transform infrared spectrometer (FTIR) was used to 
characterize the terahertz filtering capabilities of the SMM. The terahertz source was a 
mercury arc lamp with a 12 mm diameter source aperture. A background spectrum was 
measured by placing a mask with a 7 mm diameter circular window between the source and 
the detector. The SMM was then attached to the mask and the filtered spectrum was 
measured and normalized to the background spectrum. The filtering characteristics of the 
SMM are shown in Fig. 3. 

Fabry-Perot oscillations are present in the color filter transmission spectra due to the 
silicon dioxide membrane acting as a 3 μm cavity [47]. The oscillation peaks are slightly 
shifted across the various plasmonic filters owing to a slight bowing of the membrane due to 
stress. 

The plasmonic filter simulations were repeated using hole sizes that had been measured 
with SEM images of the fabricated filter array, as listed in Fig. 3, so as to fully account for 
the geometry of the as-fabricated devices. The simulated peak wavelengths and 
experimentally measured peak wavelengths from the SMM for the sixteen different array 
periods are shown in Fig. 4(a) and can be seen to exhibit a linear relationship, in agreement 
with Eq. (1). The apparent plateaus in the experimental data (e.g. 330nm ≤ P ≤ 350 nm) arise 
from the Fabry-Perot resonances. 
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Fig. 3. Measured transmission spectra for the synthetic multi-spectral material (SMM). The 
individual filter spectra are shown in (a)-(d). The legend denotes the hole period, P, and 
diameter, d, for the plasmonic filters. cERR denotes the spectral characteristics due to the 
metamaterial (MM) filter component. (e) SMM spectral characteristics over a large 
wavelength range. Plasmonic filter regions of the SMM with hole periods: 250 nm (blue), 330 
nm (green), 430 nm (red) and 550 nm (near infrared) are shown in addition to the MM filter 
component. 

There is no visible light resonant response associated with the cERRs and the plasmonic 
nanoholes are sufficiently subwavelength compared with FIR radiation that they do not 
influence the terahertz response of the device. However, the cERR gaps result in some white 
light transmission across the measured spectrum in addition to the plasmonic color filtering. 
An approximation of the standalone plasmonic filter spectra, that would be observed if the 
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cERR gaps were not present, is acquired by considering the metal fill factor (88% of the 
surface area) and scaling the measured spectra accordingly. 

The simulated transmission spectra and the scaled experimentally measured transmission 
spectra from the SMM for red, green and blue (RGB) filters are shown in Fig. 4(b). The 
simulated structure did not include a 3 μm silicon dioxide layer and therefore no Fabry-Perot 
modes are observed in the simulated spectra. Other than the expected absence of Fabry-Perot 
oscillations, there is good agreement between the simulated spectra and the scaled measured 
spectra. The effect of the cERR gaps could be reduced and possibly eliminated for specific 
applications, such as CMOS imaging, by careful consideration of the cERR positioning and 
geometry. 

 

Fig. 4. Comparison of the simulated standalone plasmonic filter spectra and the measured 
transmission spectra of plasmonic filter regions of the synthetic multi-spectral material 
(SMM). (a) A comparison of simulated peak wavelength with experimentally measured peak 
wavelength for the sixteen plasmonic filters included on the SMM. (b) Simulated transmission 
spectra for standalone RGB plasmonic filters and the scaled SMM RGB plasmonic filter 
spectra. The SMM spectra are scaled to account for the presence of the complementary 
electric ring resonator (cERR) gaps. 

In addition to the visible and NIR filtering characteristics, the device also exhibits a 
transmission peak of 31% at 2.75 THz due to the MM filter structure. These experimental 
results clearly demonstrate the large wavelength range over which we can control the 
bandpass characteristics of a single metal film by exploiting plasmonic and MM phenomena 
simultaneously. 

We refined our MM filter simulations to account for the properties of the materials as 
deposited in fabrication. The aluminum was modeled using the same refractive index 
parameters as had been used previously for terahertz frequencies [39] and the silicon dioxide 
refractive index was chosen to be n = 1.68 + i0.16. This suggests that the silicon dioxide we 
have deposited has a higher absorption coefficient and different refractive index than has 
been reported for silicon dioxide previously [40]. Our simulated transmission spectrum yields 
a magnitude of 37% and peak frequency of 2.65 THz, which is in good agreement with the 
experimentally observed spectrum of the SMM which has a peak at 2.75 THz of 31% as is 
shown in Fig. 5(a). Also included for comparison is the measured transmission spectrum 
from a standalone MM filter with the same cERR design, but lacking the plasmonic 
structures. The standalone terahertz filter exhibits a transmission peak of 34% at 2.74 THz. 
These results demonstrate that the terahertz filtering capabilities are only slightly modified by 
the presence of the plasmonic filters. 

In our characterization experiments and simulations the terahertz radiation is 
perpendicularly incident on the surface of the MM; the magnetic field is incapable of 
inducing currents within the material and the resonant response is due only to the electric 
field driving currents on the metal surface. The surface currents and the cERR geometry lead 
to inductive and capacitive effects, resulting in electric field enhancement and transmission 
of a discrete frequency band [8, 9, 11]. Using Eqs. (2)-(5) we have extracted the effective 
MM parameters. The lack of a magnetic response in the MM is observed in the extracted 
permeability (not shown) where, in the effective medium limit, its real and imaginary 
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components are approximately one and zero, respectively. Our device can therefore be 
classed as an electrically resonant MM and the observed phenomena can be described in 
terms of the extracted effective permittivity as shown in Fig. 5(b). Also shown for 
comparison is the complex permittivity of bulk aluminum at UV wavelengths [39]. In this 
region the permittivity crosses zero and we observe the plasma frequency of aluminum. For 
our MM filter the real part of the effective permittivity crosses zero at the resonant 
frequency, which can be considered an effective plasma frequency, analogous to the plasma 
frequency observed in aluminum at UV wavelengths. The imaginary component of the 
effective permittivity is small in the region of the resonance. These features show a 
characteristic effective Drude response, as is typical of this type of MM filter [9, 11]. 

 

Fig. 5. Metamaterial (MM) filter simulation results and extracted effective parameters. (a) 
Simulated transmission spectra. The experimental results of the synthetic multi-spectral 
material (SMM) filter and a standalone MM filter without plasmonic filters are shown for 
comparison. (b) The complex effective permittivity of the SMM at terahertz frequencies and 
bulk aluminum permittivity at UV wavelengths. The vertical line denotes where the real 
effective permittivity of the SMM and the real permittivity of bulk aluminum crosses zero. 
This is at the effective plasma frequency of the SMM and the plasma frequency of aluminum. 
The bottom x axis and the left y axis are for the SMM effective parameters. The top x axis and 
the right y axis are for aluminum parameters. 

5. Conclusion 

In this article we have shown the successful hybridization of two optical technologies: a MM 
filter and plasmonic filters, to create a new type of synthetic multi-spectral material. The 
resulting device is capable of simultaneously filtering terahertz, NIR and visible radiation, 
thereby eliminating the requirement for multiple optical components to achieve these 
purposes. It has been demonstrated experimentally and by simulation that the presence of 
plasmonic filters on a MM filter have a negligible impact on its responsivity and that 
plasmonic filtering of optical wavelengths are unaffected by a cERR layer, other than by an 
expected increase in transmission intensity. Modification of the cERR layer for specific 
purposes can ensure that this effect is minimized and possibly eliminated. 

This new material demonstrates that the optical passband characteristics of a thin film can 
be engineered over several decades of wavelength using a single lithographic step. It ensures 
that the spectral information acquired per unit area is maximized and can therefore be used to 
make high resolution, multipurpose detectors. 
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