Self-similar coalescence of clean foams

Stewart, P.S. and Davis, S.H. (2013) Self-similar coalescence of clean foams. Journal of Fluid Mechanics, 722, pp. 645-664. (doi: 10.1017/jfm.2013.145)

Full text not currently available from Enlighten.


We consider the stability of a planar gas–liquid foam with low liquid fraction, in the absence of surfactants and stabilizing particles. We adopt a network modelling approach introduced by Stewart & Davis (J. Rheol., vol. 56, 2012, p. 543), treating the gas bubbles as polygons, the accumulation of liquid at the bubble vertices (Plateau borders) as dynamic nodes and the liquid bridges separating the bubbles as uniformly thinning free films; these films can rupture due to van der Waals intermolecular attractions. The system is initialized as a periodic array of equally pressurized bubbles, with the initial film thicknesses sampled from a normal distribution. After an initial transient, the first film rupture initiates a phase of dynamic rearrangement where the bubbles rapidly coalesce, evolving toward a new quasi-equilibrium. We present Monte Carlo simulations of this coalescence process, examining the time intervals over which large-scale rearrangement occurs as a function of the model parameters. In addition, we show that when this time interval is rescaled appropriately, the evolution of the normalized number of bubbles is approximately self-similar.

Item Type:Articles
Glasgow Author(s) Enlighten ID:Stewart, Professor Peter
Authors: Stewart, P.S., and Davis, S.H.
Journal Name:Journal of Fluid Mechanics
Journal Abbr.:J. Fluid Mech.
Publisher:Cambridge University Press
ISSN (Online):1469-7645

University Staff: Request a correction | Enlighten Editors: Update this record