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Abstract

It is well-known that the affective value of an environment can be relative to whether it reflects an improvement or a
worsening from a previous state. A potential explanation for this phenomenon suggests that relative changes from previous
reward contingencies can constrain how brain monitoring systems form predictions about future events. In support of this
idea, we found that changes per se relative to previous states of learned reward contingencies modulated the Feedback-
Related Negativity (FRN), a human brain potential known to index discrepancies between predictions and affective
outcomes. Specifically, we observed that environments with a 50% reward probability yielded different FRN patterns
according to whether they reflected an improvement or a worsening from a previous environment. Further, we also found
that this pattern of results was driven mainly by variations in the amplitude of ERPs to positive outcomes. Overall, these
results suggest that relative changes in reward probability from previous learned environments can constrain how neural
systems of outcome monitoring formulate predictions about the likelihood of future rewards and nonrewards.
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Introduction

After a long period of unemployment, the event of being offered

a job with an average salary is almost always positively evaluated.

This event can certainly lead to an upwards revision of a series of

expectations (e.g. better house, better car, better holidays, family

planning, etc.). In contrast, a high earner who has to change jobs

and accept the same average salary job would instead have to

revise downwards his/her expectations (e.g. smaller house,

cheaper holidays, etc.). This trivial example illustrates a funda-

mental dimension of human cognition: the same objective event

can be at the origin of radically different expectations if it

represents a change from different prior circumstances. It is

important to emphasize that the absolute value of the new

situation (e.g. an average salary job) often has little relevance.

What matters in this case is the change relative to a previous

situation (an improvement or a worsening in overall expectations). This

phenomenon is frequent in everyday life and can potentially be

linked to psychopathological states linked to sudden changes in life

circumstances [1–3].

A mechanistic explanation for this phenomenon could be

inspired from reinforcement learning and conflict monitoring

models [4,5]. According to these models, the human brain keeps

track of previous experiences (and in particular of instances of

positive and negative reinforcements) in order to formulate

predictions about incoming events. The accuracy of these

predictions is measured by monitoring processes which are widely

thought to rely on the medial frontal cortex, and in particular the

Anterior Cingulate Cortex (ACC). If an event does not fit the

predictions of the system, then a discrepancy signal, often called a

reward prediction error (RPE), is produced and can be used to

adjust future predictions [4,6]. From this theoretical approach, it

could be hypothesized that relative changes per se in the frequency

of rewarding events could constrain how monitoring systems

formulate predictions about incoming events. For instance, an

environment characterised by a dynamic increase in reward

probability relative to a previous environment could lead to the

prediction that rewards will become more frequent. Consequently,

the occurrence of nonrewards could reflect deviations from this

expectation. Conversely, a relative decrease in rewards could lead to

the expectation of a growing number of nonrewards, which would

cause rewards to be perceived as prediction errors. Stated

differently, relative changes from prior environments could

determine how much an event deviates from ongoing predictions,

above and beyond the absolute value of this event. These

hypotheses would be consistent with theories emphasizing the

role of contextual factors in the detection of prediction errors [7,8].

For instance, Bar [7,9] suggests that a context created by top-down

memory representations can be the main determinant of whether

an event is appraised as a prediction error, and consequently if this

event will attract attentional resources or not. Applied to the case

described above, it could be speculated that a change in reward

probability could in itself form a context that determines if a

(non)reward is a significant prediction error or not. These

predictions would also be consistent with fMRI studies showing

that medial frontal areas are sensitive to relative changes in reward

contingencies (48–50) and with studies suggesting that RPE indices

can be sensitive to context effects over and above absolute reward

values [10,11].
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The Feedback-related Negativity (FRN) provides an opportu-

nity to test these ideas. The FRN is a scalp event-related potential

(ERP) time-locked to the delivery of decision outcomes, and it is

characterised by a larger negative-going deflection for non-

rewards compared to rewards [12]. Evidence indicates that the

FRN is linked to activity in medial frontal areas, and in particular

the ACC [13–15]. This distinction between ERPs to positive and

negative outcomes is now perceived as reflecting a fundamental

ability to differentiate between valenced outcomes and has become

the object of intense investigation [12,16–23]. An important

characteristic of the FRN is its sensitivity to the unexpectedness of

an outcome [21,22]. In particular, many studies found that FRNs

were larger for unexpected than expected negative outcomes

(when outcomes are ‘‘worse than expected’’) [24,25]. Several

studies show that this pattern is obtained for negative but not for

positive outcomes, for which the effects of unexpectedness can

often follow a different polarity (i.e. more ERP positivity for

unexpected rewards in the FRN time window) [21,22]. These

results are consistent with the theoretical model most frequently

used to explain FRN effects (the ‘‘reinforcement learning theory of

the error related negativity’’, or RL-ERN) which posits that the

FRN is an index of negative RPE [4]. However, a growing

number of studies indicate that the sensitivity of the FRN to

unexpectedness does not always vary according to the valence of

the outcome [26–30]. These results would be more consistent with

a recent model that suggests that the FRN reflects the activity of a

valence-independent system of detection of expectancy violations

[31]. Despite this ongoing debate, there seems to be a consensus

that the FRN indexes deviations from learned predictions [18].

Therefore, the main goal of the present study was to use the

FRN in order to examine whether RPEs can be constrained by a

change per se relative to a previous state of reward contingencies.

Specifically, we predicted that environments with a constant 50%

reward probability would yield different FRN patterns according

to whether these environments correspond to an increase or a

decrease in reward probability relative to a previous context. To

test this hypothesis, this study used a gambling task where

participants were delivered a series of feedbacks reflecting financial

gains or losses (see Figure 1). More specifically, participants had to

perform a forced two-choice decision task followed by a financial

gain or loss over the course of several trials. The experimental

trials were divided in four blocked conditions (each containing 32

trials) across which the reward probability was manipulated: the

‘‘Win Domain’’ (WD), the ‘‘Loss Domain’’ (LD), the ‘‘Post-Win

Domain’’ (PW) and the ‘‘Post-Loss Domain’’ (PL). In WD, 80% of

the trials led to a financial gain. In LD, 80% of the trials led to a

financial loss. Crucially, these two conditions were each followed

by a context in which the relative proportions of gains and losses

were equal (50%): the PL and the PW blocks (more specific details

are described in the Procedure section, and in Figures 1 and 2).

We hypothesized that WD and PL would both be characterized by

positive expectations. In other words, WD and PL would be

contexts in which rewards are expected, and nonrewards are

unexpected. These putative expectations would be induced either

in an ‘‘objective’’ manner for WD (i.e. through the manipulation

of reward/nonreward frequencies) or ‘‘subjective’’ in the case of

PL (i.e. through the improvement in reward probability relative to the

previous block). Conversely, we expected LD and PW to be

contexts characterized by negative expectations induced either by a

low frequency of rewards (LD) or by a worsening relative to the

previous block (PW).

Given that many FRN studies seem to report a valence

asymmetry in FRN effects consistent with the RL-ERN account

(i.e. the FRN is larger when outcomes are worse than expected; see

[21] for a review), we predicted that the effect of valence on the

FRN should be reliable when expectations are positive (negative

feedbacks are unexpected) and it should be smaller or null when

expectations are negative [32,33]. Therefore, the effect of valence

on the FRN should be robust for both WD and PL, but smaller or

null for LD and PW. Crucially, if a change per se relative to a

previous state of reward probability is sufficient to modulate

outcome monitoring systems, then there should be no difference

between expectations induced by ‘‘objective’’ vs. ‘‘subjective’’

methods. Specifically, the behaviour of the FRN should be similar

between WD and PL, and between LD and PW. Finally, the

gambling task used in the present study also required participants

to choose between two possible options: a ‘‘risky’’ option for which

the magnitude of both positive and negative outcomes was in

average larger than a ‘‘safe’’ option (see Procedure and Design

section). This approach enabled us to control for the type of

behavioural choice preceding the outcome, a variable that can

sometimes modulate the FRN [34] and which is often not

explicitly controlled for.

Materials and Methods

Participants
Thirty right-handed healthy participants (17 males; mean

age = 22.87 years, SD = 4.67) with normal or corrected-to-normal

vision and with no history of psychiatric or neurological conditions

participated in this study. Six participants were excluded because

of excessive EEG artifacts leading to less than 16 artifact-free trials

for at least one of the relevant experimental conditions. Two

participants were removed because they were behavioural outliers.

Behavioural outliers were defined as participants who displayed

choice behaviour rates that were more than 1.5 interquartile

ranges below the lower quartile in any relevant experimental

block, as recommended by Tukey [35]. All analyses were

performed on the resulting sample of 22 participants (12 males,

mean age = 23.68 years, SD = 5.2). All participants signed an

informed consent and the study was approved by the Ethics

Figure 1. Task procedure. Each trial started with a fixation cross (750
ms) followed by the presentation of a screen including a circle and a
square (one shape coloured yellow and the other purple) representing
either a risky or safe choice. Participants made a selection between a
risky and safe choice using a keypress. Next, another fixation screen was
displayed and followed by a screen providing a feedback (1000 ms)
detailing whether participants had won or lost points in the trial (see
‘‘Experimental task’’ for more details).
doi:10.1371/journal.pone.0066350.g001

Effects of Reward Probability Changes on the FRN
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Committee of the Institute of Psychological Sciences at the

University of Leeds.

Procedure and Design
The experiment took place in a quiet room with lights dimmed.

After the setup of the EEG electrode net, participants were invited

to sit comfortably at approximately 50 cm away from a computer

screen and were instructed to position their right hand on a

stimulus response pad (Psychology Software Tools Serial Response

Box, Pittsburgh, PA). The experiment was displayed on a 170 Dell

monitor, with a screen resolution of 1280 61024 and refresh rate

of 60 Hz, and controlled by E-Prime (Psychology Software Tools,

Pittsburgh, PA). Prior to the experiment, participants were told

that they would take part in a gambling experiment in which they

could successively choose a ‘‘risky’’ or a ‘‘safe’’ choice that would

be followed by gains or losses of points relative to an initial lump

amount of 1000 points. They were also told that at the end of the

experiment, the final amount of points would be translated into an

actual sum of money of up to £10. As depicted in Figure 1, on

each trial, participants were first shown a fixation cross during

750 ms. Next, participants were shown a screen displaying two

shapes; a circle and square (1500 ms), with one shape coloured

yellow and the other purple. Each of the two colours was linked to

either a risky or a safe choice. Participants were explicitly told

before the experiment which of the two colours was linked to a

risky or safe choice. The association between coloured shapes and

response type (risky vs. safe) was counterbalanced across partic-

ipants. Choosing a risky option would lead to a relatively large

amount of points (a randomised amount between 5 and 9 points)

gained or lost, whereas a safe choice would lead to a relatively low

amount (a randomised amount of points between 1 and 4) of

points won or lost. As soon as the coloured shapes appeared on

screen, participants had to choose between these two options with

a keypress. In order to minimise strategic no-responses, if no key

was pressed 1500 ms after the onset of the screen presenting

coloured shapes, a randomised amount between 1 and 9 points

was deducted from the total score. After choice selection, a fixation

cross (750 ms) preceded the feedback presentation stimuli, which

appeared on the screen for 1000 ms. The feedback screen

provided information about the valence of the feedback (‘‘You

Win!’’ or ‘‘You Lose!’’), a plus or minus signal to indicate reward

or punishment and the amount of points to be added or subtracted

from the total score.

Each participant was presented with a total of 448 trials. These

trials were separated into 14 blocks, each containing 32 trials for

an experiment that lasted approximately 70 minutes. As explained

in the introduction,there were four main types of blocks: Win

Domain (WD), Loss Domain (LD), Post-Win domain (PW) and

Post-Loss domain (PL). In WD, most of the outcomes (80%)

reflected financial gains and in LD, most of the outcomes (80%)

were losses. These two contexts were each followed by a context in

which the relative proportions of gains and losses were equal

(50%): the PL and the PW domain. In addition to these four block

types, ‘‘Neutral’’ blocks appeared twice in the experiment after a

50% reward probability block. The Neutral blocks also had a 50%

reward probability and were included in order to minimize the

expectations that win or loss block would necessarily appear after a

PW or PL block. Each participant was therefore presented with a

randomised sequence of three WD-PW block pairs, three LD-PL

block pairs and two neutral blocks, for a total of 14 blocks with 32

trials for each block. Before the experiment, participants

performed 8 practice trials in order to familiarize with the

procedure.

Electrophysiological Data Recording and Analysis
EEG was recorded with a 128-channel net connected to a high-

input amplifier (Electrical Geodesics, Inc., Eugene, OR) at a rate

of 500 Hz (0.01–200 Hz bandwidth). All electrodes had an

impedance below 50 kV. However, the impedance was lowered

at or below 20 kV for those electrode sites likely to be included in

our analyses (including all the electrodes belonging to the clusters

described in Figure 3d and 4c). EEG data were recorded using a

Cz reference, and digitally converted to an average mastoids

reference. EEG data were analysed using the ERP module of

BESA 5.1 (MEGIS Software GmbH, Gräfelfing, Germany). EEG

data were further filtered offline (0.1–30 Hz bandwith) and

segmented into epochs of 0–1000 ms time-locked to the onset of

the ‘‘win’’ or ‘‘lose’’ feedback (with an additional 200 ms pre-

stimulus baseline). Eye movement artifacts were corrected using a

multiple source analysis method [36,37] as implemented in BESA

5.1 (‘‘surrogate method’’). In addition, for each channel, epochs

with a difference between the maximum and minimum voltage

Figure 2. Example of a sequence of experimental blocks for one participant. In total, participants encountered 14 blocks with 32 trials each.
The reward probability was manipulated within each block. The Win Domain (WD) block had a reward probability of 80% and the Loss Domain (LD)
had a 20% reward probability. Blocks with a 50% reward probability followed WD and LD: Post-loss (PL) blocks always followed LD and Post-Win (PW)
blocks always followed WD. The neutral blocks, which also had a reward probability of 50% did not represent a change in reward expectancy and
were included in order to minimize the expectations that WD or LD blocks would necessarily appear after PW or PL blocks. A randomised sequence of
three WD-PW block pairs, three LD-PL block pairs and two neutral blocks were presented to each participant.
doi:10.1371/journal.pone.0066350.g002

Effects of Reward Probability Changes on the FRN
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amplitude.120 mV and a maximum difference between two

adjacent voltage points.75 mV were rejected (after eye movement

artifact correction). ERP waveforms were first created through

averaging baseline-corrected EEG data epochs for eight trial types

corresponding to ‘‘Win’’ and ‘‘Lose’’ feedbacks for the 4 block

types (WD, LD, PW, PL). An average of 44 artifact-free trials by

condition was attained, and participants with less than 16 artifact-

free trials in any relevant condition were excluded from the sample

(see Participants section).

Following our hypotheses, data analyses focused mainly on the

Feedback-related Negativity (FRN). As the FRN is usually

observed mainly in midline fronto-central sites [10,38], we focused

on this location for our analyses, following standard practice

[12,16,26,28,39]. We formed a cluster in which we averaged

electrode data from a group of midline electrodes surrounding the

standard FCz location (EGI electrode numbers: ‘129, ‘59, ‘69, ‘139,

‘1129, ‘79, ‘1069, ‘Cz9, ‘319, ‘809 and ‘559, see Figure 3d). This

approach is consistent with common practice in high-density EEG

research according to which pooling single electrode data in

clusters improves the stability of ERP data and attenuates

familywise statistical errors [40]. Analyses on the FRN focused

on negative peak amplitudes extracted from the fronto-central

cluster in a 250–350 ms time window, consistent with previous

literature [41–43]. In order to further verify the robustness of our

FRN results, we also computed our analyses on mean amplitudes

and peak-to-peak amplitudes. Peak-to-peak amplitudes were

computed by subtracting the positive peak in the 150–250 ms

time window from the negative peak in the 250–350 ms window.

In order to check if our results were not due to the utilization of a

cluster of electrodes rather than single electrodes, we verified that

similar results were obtained using a single electrode approach

which is often used in FRN studies.In particular, we observed a

similar Feedback X EVal interaction (p= .006) on FRN data using

single electrode e6, which approximates the FCz standard

location.

In addition to the FRN, we examined the Feedback-related P3,

a component also known to be sensitive to decision outcomes. Its

precise functional meaning is still unclear, but evidence suggests

that it may be sensitive to outcome valence, magnitude and

expectancy [12,26,44,45]. We did not have a priori hypotheses

regarding this component, but we also examined it in order to

allow comparisons with previous research. As the Feedback-

related P3 is usually measured in posterior sites [12], we created a

midline parietal cluster surrounding the standard Pz location (EGI

electrode numbers: ’619, ‘789, ‘629, ‘679,‘729,‘779, ‘719 and ‘769, see

Figure 4c). Given that amplitude differences at the onset of the P3

(around the N200) were visible, absolute peak and mean

amplitudes might have been biased and thus we focused only on

peak-to-peak measures. Peak-to-peak amplitudes were obtained by

subtracting negative peak amplitudes from a 250–350 ms time

window from the positive peak amplitude obtained from the 350–

500 ms time window.

The choice of the electrode locations and time windows for both

the FRN and Feedback-related P3 was guided by previous

literature [16,18,38,46,47] and by a careful inspection of our

waveforms. A Feedback (win vs. loss) X EVal (Expectation

Figure 3. FRN data. Figure 3a. Averaged ERP waveforms for the Feedback-Related Negativity (FRN) plotting ERPs to Wins and Losses separately
for the four experimental conditions. A 1–12 Hz bandwith was applied for presentational purposes. Figure 3b. Valence-specific comparisons of
peak-to-peak amplitudes (in mV) between positive and negative expectancy contexts, separately for ERPs to Wins and Losses. Error bars represent one
standard error from the mean. * p-value,.05. Figure 3c. Topographical maps plotting difference scores between Loss minus Win ERPs (peak to peak
amplitudes) between 250 and 350 ms (maxima: +1.0 mV, minima: 23.5 mV). Figure 3d. Scalp location of cluster of electrodes used to quantify the
FRN.
doi:10.1371/journal.pone.0066350.g003

Effects of Reward Probability Changes on the FRN
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valence: positive vs. negative) X EType (Expectation type:

subjective vs. objective) repeated measures ANOVA was comput-

ed for both the FRN and the P3. A ‘‘positive’’ expectation valence

referred to contexts in which we assumed that positive outcomes

would be expected, and negative outcomes unexpected (WD and

PL). ‘‘Negative’’ expectation contexts would have the opposite

characteristics (LD and PW). ‘‘Objective’’ expectations refer to

manipulations of reward frequencies in the current block (WD and

LD) whereas ‘‘subjective’’ expectations refer to manipulations

relative to the previous block (PL and PW). Given that our

hypotheses focused on the well known electrophysiological

distinction between negative and positive feedback, we report

only statistical effects involving the Feedback factor. Significant

interaction terms were followed up by pairwise comparisons

between Win and Loss ERPs. ANOVAs were computed with the

Greenhouse-Geisser correction where relevant to ensure that

results are not biased by potential violations of sphericity. We

consider statistical effects to be reliable at p#0.05, and we also

report the partial eta-squared measure of effect size where

relevant.

We also performed a number of additional analyses: first, we

examined whether the type of behavioural choice (risky vs. safe)

had any effect on the FRN and P3. Second, we examined if our

effects on the FRN were modulated by individual differences in

risk-taking. Third, we examined if our results were different

according to different temporal stages within each block of trials.

The outcomes of these analyses did not modify the main

conclusions of this study. However, for completeness, we report

these analyses in detail in the supplementary sections (specifically,

see Results S2, Figure S1, Figure S2, Results S3, Table S3, Figure

S3, Figure S4; Results S4, Figure S5 and Figure S6).

Results

Behavioural Results
Given that behavioural responses (risky vs. safe choices) were

not predictive of feedback outcome, the type of behavioural choice

preceding feedback cannot be considered as a meaningful

behavioural correlate of the FRN. We have nonetheless analyzed

this behavioural data for the sake of completeness and in order to

assess whether the context manipulation had affected the type of

behavioural choice (risky vs. safe). We analysed response frequency

and response time (RT) using an EVal X EType X Choice

repeated measures ANOVA. The RT data revealed a marginally

significant main effect of EVal (F(1,21) = 4.1, p = .056, g2 = .16),

reflecting faster responses for negative expectancy valence blocks

(M= 547, SE= 23.7) compared to positive expectancy valence

blocks (M= 562, SE= 24.7). This is consistent with previous

research demonstrating faster responses for aversive stimuli [48]

and negative affective states [49,50]. No other significant effect

was found. Analyses on choice frequency revealed no significant

variations in the choice of risky/safe options across blocks.

Specifically, there was no effect of Choice (F(1,21) = 1.2,

p = .285, g2 = .05), no EType X Choice interaction (F(1,21) = 1.5,

Figure 4. Neutral condition ERPs. Averaged ERP waveforms for the Feedback-Related Negativity (FRN) plotting ERPs to Wins and Losses in the
neutral blocks.
doi:10.1371/journal.pone.0066350.g004

Effects of Reward Probability Changes on the FRN
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p = .23, g2 = .07), no EVal x Choice (F(1,21) = 1.0, p = .32, g2 = .05)

and no EVal X EType X Choice (F(1,21) = .11, p = .74, g2 = .005)

interactions. Descriptive statistics of these analyses can be found in

Results S1, Table S1 and Table S2.

FRN
Consistent with our predictions, a sizeable differentiation

between ERPs to wins and losses was found in WD and PL, but

not in LD and PW blocks (see Figure 3a). Consistent with

previous research [25], scalp maps show that the distribution of

this effect is widely distributed across the scalp and clearly

includes fronto-central sites (Figure 3c). Statistical analyses on

peak amplitudes obtained from the Fronto-Central cluster

revealed a robust EVal X Feedback interaction (F(1, 21) = 9.0,

p = .007, g2 = .30). This interaction was driven by a significant

effect of Feedback for positive expectations (F(1, 21) = 8.5,

p = .008, g2 = .29), while this effect was not significant for

negative expectations (F,1). The EVal X Feedback X EType

interaction was not significant (F,1), indicating that the

interaction between valence and expectation was not modulated

by how expectations were manipulated (objective or subjective).

We repeated this analysis using mean amplitudes and peak-to-

peak measures, and the same EVal X Feedback interaction was

found for both measures (Fs.4.8, ps,.04), and these interac-

tions were also driven by an effect of Feedback in positive

expectation contexts specifically (ps,.003). In these cases, EType

also failed to modulate the Feedback X Expectation interaction.

In summary, these results indicate that a robust electrophysi-

ological differentiation between rewards and nonrewards was

observed in contexts thought to convey positive expectations

(WD and PL) but not in contexts characterised by negative

expectations (LD and PW). In addition, these findings did not

differ according to the method used to induce expectations

(manipulation of the reward probability of the current block or

a change relative to the previous block).

Although the classical FRN effect involves assessing the

difference in amplitude between ERPs to negative and positive

feedbacks, a growing number of studies have recently suggested

that variations in FRN effects might often be driven by

differences specific to ERPs to reward related feedback

[28,29,51–54]. In order to examine this question in our data,

we re-analyzed our data breaking down the reported EVal X

Feedback interaction by feedback type (Win or Loss). For peak

amplitudes, we found a highly significant effect of EVal (F(1,

21) = 15.4, p = .007, g2 = .42) for Win ERPs, but not for Loss

ERPs (F,1). This effect appears to have been driven by a

larger negativity of Win ERPs in negative expectation contexts.

The same pattern was also obtained with mean amplitudes and

peak-to-peak amplitudes, where we found a significant effect of

EVal for Win feedbacks in both measures (Fs.5.9, ps,.02),

whereas this effect was not significant for Loss feedbacks

(Fs,3.2, ps..09). Although descriptive statistics from peak-to-

peak analyses suggest that FRNs to negative outcomes appear to

be larger in positive compared to negative expectation contexts,

we found that this difference was not formally reliable (p = .09),

whereas the converse effect (larger FRNs for Win ERPs in

negative expectation contexts) was clearly significant (p = .02). A

more fine-grained block-by-block examination of these results

suggests that win ERPs were sensitive to both WD-LD and PL-

PW contrasts whereas Loss ERPs were sensitive to WD-LD but

not PL-PW (see Figure S7). Relevant descriptive statistics are

depicted in Figure 3b and Figure S7. Overall, these results

suggest that variations in ERPs to positive feedbacks have

played a predominant role in our FRN results.

The significant modulation of ERPs to positive outcomes

suggests that an enhancement of FRN negativity for unexpected

positive outcomes might have attenuated the difference between

ERPs to negative and positive outcomes in PW and LD, which

could have contributed to the EVal X Feedback interaction. In

other words, the overall pattern of FRN results might have been

driven by an attenuation of Win-Loss FRN differences in

negative contexts, rather than by an enhancement in positive

contexts. In order to examine this question, we considered

neutral blocks as a baseline condition. Neutral blocks had a

50% reward probability that did not reflect a change from a

previous block as they were always following blocks with similar

reward probabilities (PW and PL). They had been inserted

purely to attenuate expectations about what blocks would follow

PL and PW blocks and thus were not initially included in the

data analysis design. However, they can be seen as a ‘‘baseline’’

block in which no a priori expectations can be assumed. If an

attenuation of FRN effects has taken place in negative contexts,

then the Loss-Win difference in the FRN time window should

be smaller in negative expectation contexts compared to both

positive expectation and neutral baseline blocks.

In order to test this prediction, we calculated peak-to-peak FRN

difference scores (Loss ERPs minus Win ERPs) for positive,

negative and neutral contexts and computed a one-way ANOVA

testing the effect of context (positive vs. negative vs. neutral) on

these difference scores. We found a significant main effect of

context (F(1.9,40.1) = 3.6, p = .04, g2 = .14), and pairwise compar-

isons revealed that the FRN difference score for negative contexts

was significantly smaller than both positive and neutral contexts

(ps,.05). In addition, no significant difference was found between

positive and neutral contexts (p = .90). Descriptive statistics for this

analysis are included in Figure S8. In order to further verify the

reliability of these effects, we observed that the effect of valence on

FRN activity was significant in neutral blocks using peak

amplitudes (F(1,21) = 8.5, p = .008, g2 = .29). The same effect was

obtained using peak to peak and mean amplitudes (Fs.6.4,

ps,.009). This effect is depicted in Figure 4. Finally, a Block (WD

vs. LD vs. PL vs. PW vs. Neutral) vs. Feedback (win vs. loss)

ANOVA revealed an interaction (F(2.3,47.9) = 3.4, p = .03,

g2 = .14) in the fronto-central cluster in which only PW and LD

had clearly non-significant effects of feedback (Fs,1.1, ps..31).

These findings suggest that our results were driven at least in part

by an attenuation of the effect of valence on the FRN in negative

expectation contexts, caused by a modulation of ERPs to positive

outcomes in these contexts.

P3
As shown in Figure 5, a larger positive peak is visible for Win

ERPs compared to Loss ERPs. Given that visible differences

around N200 could have driven onset differences biasing absolute

peak and mean amplitude measures of the P3, we focused these

analyses on peak-to-peak measures (see Methods section). We

found a significant main effect of Feedback (F(1,21) = 5.4, p = .03,

g2 = .20) showing that positive outcomes yielded overall larger

peaks than negative feedbacks, confirming our observations. We

also observed a complex 3-way interaction between Feedback,

EVal and EType (F(1,21) = 5.9, p = .02, g2 = .22). Subsidiary

analyses showed that this effect was driven by a Feedback X

EType interaction in negative expectation contexts (F(1,21) = 4.4,

p = .05, g2 = .17), indicating that the Feedback effect was

statistically more reliable in LD (F(1,21) = 7.1, p = .01, g2 = .25)

than in PW (F,1). Valence-specific analyses did not yield

significant effects of interest.
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Discussion

The main finding of this study is that a change per se in reward

probability relative to a previous environment can modulate the

Feedback-Related negativity. Specifically, a reliable distinction

between ERPs to negative and positive feedbacks in the FRN time

window was observed in the WD and PL conditions, but not in LD

and PW. This finding indicates that the evaluation of outcomes for

a given reward probability (50% in the cases of PL and PW) can be

different according to whether this probability reflects an increase

or a decrease in reward probability relative to a prior context. In

addition, valence-specific analyses suggested that variations in

ERPs to positive feedbacks have played a predominant role in

these effects. Further, we observed an overall effect of outcome

valence on the P3.

The key finding of this study is that a mere increase or decrease

in reward probability relative to a previous environment led to the

same pattern of FRN modulation as a manipulation of the actual

frequencies of rewards in the current environment. This finding is

consistent with our hypothesis that a relative change per se from

previous reward contingencies can constrain outcome monitoring

systems. This implication is supported by a vast body of research

indicating that the FRN is a neural index of outcome monitoring

systems [12,16] and by evidence indicating that the FRN is an

index of discrepancies between predictions and valenced outcomes

[25,55,56]. These findings are also consistent with previous data

showing that the FRN is sensitive to context manipulations

[10,55]. However, these studies had manipulated context through

the variation of the range of possible outcomes in a given

environment, or by the manipulation of beliefs about future

outcomes. The sensitivity of the FRN to changes per se

(improvement or worsening) relative to prior states of learned

reward contingencies remains largely unexplored.

Previous fMRI and animal model studies had shown that

changes relative to previous states of reward probability could

modulate how medial frontal systems respond to rewards and

punishments [57–59]. However, our findings that similar manip-

ulations can affect the FRN suggest that these effects can

potentially be explained by an account related to the monitoring

of deviations from reward expectancies. Specifically, our findings

suggest that movements upwards or downwards in reward

probability can be coded by brain monitoring systems and lead

to a ‘‘resetting’’ of predictions about what future outcomes are the

most and least likely to occur. Stated differently, a change per se in

reward probability can create a context that determines what

outcomes will be perceived as violations of established predictions

[7]. Specifically, the context in this case could be a representation

that the reward probability is increasing or decreasing, which in

turn determines which type of outcome is expected to occur most

frequently. Further research will be needed to investigate the

precise brain structures involved in the putative re-setting of

outcome predictions suggested by our findings. A significant

amount of evidence indicates a link between the Anterior

Cingulate Cortex (ACC) and the FRN [4,16,60] and between

the ACC and the monitoring of outcome-prediction discrepancies

[6,61,62]. However, fMRI studies that investigated relative

changes in reward environments revealed that a wider network

was involved in such effects, including ACC structures but also the

orbitofrontal cortex (OFC) and subcortical areas [57–59]. In

addition, recent research suggests that the insula may also be

important for the detection of deviations from predictions, and for

how subsequent learning can be guided by these prediction errors

[8,63]. Future research will be needed to investigate whether the

effects of relative context changes on these areas can be accounted

for by differences in outcome prediction setting.

The present findings also provide evidence that can

contribute to a better understanding of the relationship between

the FRN and reward environments. The FRN is classically

operationalized as a difference between ERPs to negative and

positive outcomes in the N2 time window [64]. Our findings

that this difference between rewards and nonrewards is most

reliable in ‘‘positive’’ expectation contexts seems consistent with

the RL-ERN model according to which the FRN reflects a

negative RPE [4,24]. However, this conclusion needs to be

considered within the context of two additional findings in our

data. First, we found that the the interaction between Feedback

and Expectancy valence in our data was mainly due to

variations in ERPs to rewards rather than nonrewards. This

finding is consistent with previous studies showing that FRN

effects might be more related to neural activity related to

rewards rather than nonrewards [51,52,64]. Second, we found

that ERPs in the FRN time window were more negative-going

for unexpected positive outcomes (in blocks LD and PW)

compared to expected positive outcomes (in blocks WD and

PL). This finding does not fit with the RL-ERN account,

whereas it is consistent with the Predicted Response-Outcome

(PRO) model (6). The PRO model suggests that the FRN

reflects the activity of a system of detection of expectancy

deviations, regardless of whether these deviations are positive or

negative [31]. It has to be acknowledged that existing evidence

regarding the modulation of the FRN by positive feedbacks is

contradictory. Several studies report a reduced FRN (i.e. a

larger ERP positivity in the FRN time window) for unexpected

rewards (see [21] for a list of studies showing this result),

whereas other studies obtain results similar to ours [26–30].

There is to our knowledge no consensual explanation that

reconciles these contradictions, although several lines of thinking

have been put forward: First, it is possible that ERPs to positive

feedbacks in the FRN time window might reflect the overlap of

different ERP components [64]. Second, it has been suggested

that the motivational relevance of unexpected outcomes might,

in certain paradigms, be different according to the valence of

the outcome [28]. Therefore the salience of unexpected

outcomes might be different according to outcome valence,

which could explain why in many cases there is a valence X

unexpectedness interaction in FRN data. Third, it has also been

Figure 5. P3 data. Figure 5a. Averaged ERP waveforms for the
Feedback-related P3 plotting ERPs to Wins and Losses separately for the
four experimental conditions. Figure 5b. Topographical maps plotting
difference scores between peak-to-peak amplitudes of Win minus Loss
ERPs between 250 and 350 ms (maxima: +1.0 mV, minima:23.5 mV).
Figure 5c. Scalp location of cluster of electrodes used to quantify the
FRN.
doi:10.1371/journal.pone.0066350.g005
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suggested that these contradictions might be due to systematic

methodological biases in the FRN literature [26]. More research

is necessary to explore these possibilities and resolve current

contradictions in the FRN literature.

Although we had no specific hypotheses about the Feedback-

related P3, we also examined this component to allow comparisons

with previous studies. We observed an overall effect of valence in

which ERPs to positive outcomes were more positive-going than

ERPs to negative outcomes. Further, a three-way interaction on

peak-to-peak measures suggested that this effect was more

statistically reliable in LD compared to PW blocks. The larger

positivities for Win rather than Loss feedbacks are consistent with

many previous studies [42,55,65]. The observation that this effect

was statistically stronger in LD than PW blocks could potentially

be consistent with previous reports that the P3 might be sensitive

to positive RPEs [66]. Both LD and PW are thought to be

environments where positive outcomes are unexpected, but

positive outcomes are more infrequent in LD than PW. Therefore,

it could also be tentatively inferred that the P3 is not sensitive to

relative contextual changes in reward probability. However, this

conclusion has to be drawn with caution, given that the literature

on the Feedback-related P3 has yielded many contradictory results

so far. For instance, some studies have found a more positive peak

for positive compared to negative feedbacks [67,68], whereas other

studies have found the opposite pattern [34,45,69,70], or have

found that valence does not modulate this component [12,65].

Next, evidence that the P3 is sensitive to unexpected positive

outcomes has been reported [71,72], but it has also been shown

that the P3 is sensitive to unexpected outcomes independently of

valence effects [55,71]. Finally, a few studies have reported that

the effect of valence on the P3 was most reliable when certain

types of outcomes were expected [42].

A potential explanation for these apparent contradictions is that

the Feedback-related P3 is modulated by multiple factors that have

yet to be thoroughly disentangled. In particular, the P300 complex

is known to be sensitive to attentional factors [73] that could be

intrinsically embedded in the paradigms used to investigate ERP

correlates of reward outcomes. For instance, attentional param-

eters at feedback delivery could potentially be determined by

variations in the type of choice, uncertainty and task demands of

the behavioural choice that precedes the feedback [45,74]. It could

also be linked to the specific expectations created by the

environment when feedbacks are delivered [66]. Future research

programmes will be necessary to better understand and control

attentional parameters involved in outcome monitoring to help

resolve current contradictions.

Finally, the findings reported in the present paper can

provide additional suggestions for future research. First, we

observed a cancellation of the effect of valence on FRN activity

in PW and LD blocks, which could appear surprising given the

robustness of Win-Loss FRN differences in the literature.

However, the absence of a differentiation between gains and

losses is not uncommon in the literature [34,75]. The reasons

that might lead to a cancellation rather than an attenuation of

the FRN effect are not easy to delineate, but at least two

explanations are possible: (1) In our experiment, expectations

were built up and consolidated over a relatively sustained period

of time (i.e. over many trials). Therefore it is possible that

nonrewards might have completely lost any meaning of

unexpectedness/prediction error. In other words, building

expectations over a sustained sequence of trials could lead to

very stable negative predictions. In such a scenario, negative

outcomes are unlikely to produce an RPE strong enough to

generate an FRN effect. (2) Another explanation is linked to our

findings that Win waveforms are strongly modulated by our

manipulation. In our data, Win waveforms tend to be more

negative-going when they are unexpected [27,28]. Therefore

win ERPs tend to go down to the same level of the Loss

waveforms in LD and PW, which could explain the final result

of an absence of Win-loss differentiation in those conditions.

Future research will be needed to investigate these ideas, and

more specifically (1) the effects of the stability of learned

expectations on FRN activity; and (2) the role of ERPs to

positive outcomes in general FRN effects. Second, we found no

evidence that our effects were different according to whether the

first or the second half of each block was considered (see Results

S4 and Figure S5). However, it is not excluded that temporal

differences might exist between shorter temporal stages within

each block. Such a detailed analysis was beyond the scope of

the current project, and not enough artifact-free trials were

available to follow this approach in the current dataset. A

possible methodological approach for future studies that might

want to explore the temporal modulation of FRN activity within

a block of trials could adopt a design with a substantially larger

number of blocks. This approach could allow one to obtain

enough artifact-free trials for a detailed separation of blocks into

very short temporal stages, although the effects of an overly

long experimental session on the results should be carefully

considered. Third, our findings show that a 50% reward

probability can lead to different FRN patterns according to the

reward probability encountered before the current environment.

However, future research will be needed to explore the extent

to which this phenomenon is independent from the absolute

values of reward probabilities involved. For instance, it remains

to be seen if a similar modulation of the FRN would be

obtained in a change taking place in context of losses (e.g. a

change from 5% to 30% of reward probability) compared to a

change within a context of gains (e.g. a change from 60% to

85%). Finally, our study suggests that context effects on

decision-making are adequately explained by reinforcement

learning models. However, it has been suggested that context

effects in real life decision-making might not be easily explained

by parsimonious learning models [8]. In order to tackle this

issue, it would be interesting to consider recent ecologically-valid

theoretical models of cognitive control and decision-making that

integrate social and phenomenal dimensions with reinforcement

learning principles. For instance, Ibanez & Manes [8] suggest

that a fronto-insular temporal network would be primarily

responsible for how behavioural choices can be constrained by

context, including social contexts. In addition, Singer et al., [63]

suggest that the insula plays a role in integrating experiential

information (‘‘predictive feelings’’) into the process of comparing

predicted outcomes with actual outcomes.

In conclusion, this study provides evidence that a mere change

relative to a prior state of reward contingencies can modulate the

electrophysiological distinction between negative and positive

outcomes in the FRN time window. This finding suggests that

sudden changes relative to prior reward contingencies can

constrain neural systems of outcome monitoring. Further, we also

found that this pattern of results appeared to be driven at least in

part by variations in ERPs to positive outcomes.These findings can

potentially contribute to a more mechanistic understanding of

emotional phenomena linked to sudden changes between

environments, such as negative outlooks caused by life events

[1,2] or the phenomenon of optimism [76]. In both cases, it could

be speculated that monitoring systems possibly located mainly in

the medial frontal cortex are coding the changes relative to prior
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circumstances and accordingly re-setting predictions about future

events.

Data Access
In accordance with the policies of PLOS One, the data reported

in this article can be accessed upon request addressed to the

corresponding authors.

Supporting Information

Figure S1 FRN waveforms separated by prior choice.
Averaged ERP waveforms for the FRN plotting ERPs to Wins and

Losses separately for prior choice (risk; left, safe, right) and block

(PW; top, PL; bottom). Electrode data are taken from the midline

fronto-central cluster (MFC) as described in the methods section.

(PDF)

Figure S2 P3 waveforms separated by prior choice.
Averaged ERP waveforms from the midline parietal (MP) cluster

for the Feedback-related P3 plotting ERPs to Wins and Losses

separately for prior choice.

(PDF)

Figure S3 FRN for high and low-risk takers in objective
blocks. Averaged ERP waveforms from the MFC cluster for the

FRN plotting ERPs to Wins and Losses separately for high (left)

and low (right) risk-takers within the objective reward probability

blocks (WD; LD).

(PDF)

Figure S4 FRN for high and low-risk takers in subjec-
tive blocks. Averaged ERP waveforms from the MFC cluster for

the FRN plotting ERPs to Wins and Losses separately for high

(left) and low (right) risk-takers within the subjective reward

probability blocks (PW; top, PL; bottom).

(PDF)

Figure S5 FRN for early and late stages of blocks.
Averaged ERP waveforms from the MFC cluster for the FRN

plotting ERPs to Wins and Losses separately for early (top) and

late (bottom) stages within the PW (left) and PL (right) blocks.

(PDF)

Figure S6 P3 for early and late stages of blocks. Averaged

ERP waveforms for the P3 plotting ERPs to Wins and Losses

separately for early (top) and late (bottom) stages within the PW

(left) and PL (right) blocks from the Midline Parietal Cluster.

(PDF)

Figure S7 Valence specific contrasts. We used one-tailed t-

tests to examine if FRN activity was more negative for unexpected

rather than expected contexts. For Wins, both WD-LD and PL-

PW contrast were significant (ps #.05). For Losses, WD-LD was

significant (p,.05), but not PL-PW (t,1.0). We thank an

anonymous reviewer for suggesting this analysis. However, these

results have to be considered with caution given that the EVal X

EType X Feedback was not significant.

(PDF)

Figure S8 Attenuation of FRN activity in negative
blocks. We examined the prediction that an attenuation of the

FRN might have taken place in negative expectancy contexts. We

compared the FRN amplitude, by subtracting Win ERPs from

Loss ERPs, in positive, negative and neutral blocks. A one-way

ANOVA revealed a significant main effect of context [F(1.9,

39.6) = 4.9, p = .01, g2 = .19] and pairwise comparisons revealed

that the FRN difference score for negative contexts was

significantly smaller than both positive and neutral contexts

(ps,.05). In addition, no significant difference was found between

positive and neutral contexts (p..40).

(PDF)

Table S1 Frequency of choices across blocks.

(PDF)

Table S2 RTs for choices across blocks.

(PDF)

Table S3 Participant numbers for high risk vs. low risk

separation.

(PDF)

Results S1 Descriptive statistics for the behavioural
data.

(PDF)

Results S2 FRN and P3 analyses separated by preceding
choice (risky vs. safe).

(PDF)

Results S3 Individual differences in risk-taking.

(PDF)

Results S4 The effects of valence on the FRN by
different temporal stages.

(PDF)
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